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Inflammatory bowel diseases (IBD), encompassing ulcerative colitis (UC), and Crohn’s 
disease (CD), are a group of disorders characterized by chronic, relapsing, and remitting, 
or progressive inflammation along the gastrointestinal tract. IBD is accompanied by 
massive infiltration of circulating leukocytes into the intestinal mucosa. Leukocytes such 
as neutrophils, monocytes, and T-cells are recruited to the affected site, exacerbating 
inflammation and causing tissue damage. Current treatments used to block inflammation 
in IBD include aminosalicylates, corticosteroids, immunosuppressants, and biologics. The 
first successful biologic, which revolutionized IBD treatment, targeted the pro-inflammatory 
cytokine, tumor necrosis factor alpha (TNFα). Infliximab, adalimumab, and other anti-TNF 
antibodies neutralize TNFα, preventing interactions with its receptors and reducing the 
inflammatory response. However, up to 40% of people with IBD become unresponsive 
to anti-TNFα therapy. Thus, more recent biologics have been designed to block leukocyte 
trafficking to the inflamed intestine by targeting integrins and adhesins. For example, 
natalizumab targets the α4 chain of integrin heterodimers, α4β1 and α4β7, on leukocytes. 
However, binding of α4β1 is associated with increased risk for developing progressive 
multifocal leukoencephalopathy, an often-fatal disease, and thus, it is not used to treat 
IBD. To target leukocyte infiltration without this life-threatening complication, vedolizumab 
was developed. Vedolizumab specifically targets the α4β7 integrin and was approved to 
treat IBD based on the presumption that it would block T-cell recruitment to the intestine. 
Though vedolizumab is an effective treatment for IBD, some studies suggest that it may 
not block T-cell recruitment to the intestine and its mechanism(s) of action remain unclear. 
Vedolizumab may reduce inflammation by blocking recruitment of T-cells, or pro-inflammatory 
monocytes and dendritic cells to the intestine, and/or vedolizumab may lead to changes 
in the programming of innate and acquired immune cells dampening down inflammation.
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INTRODUCTION

Inflammatory bowel disease (IBD), encompassing ulcerative 
colitis (UC), and Crohn’s disease (CD) are a group of disorders 
that are characterized by chronic, relapsing, and remitting, or 
progressive inflammation along the gastrointestinal tract. UC 
involves continuous inflammation of the colon and the rectum 
(Fakhoury et  al., 2014). It is limited to the mucosal layer of 
the intestinal wall. In contrast, CD causes discontinuous, 
transmural inflammation that can occur anywhere along the 
digestive tract, though it most commonly affects the distal 
ileum (Fakhoury et  al., 2014). Canada has among the highest 
prevalence of IBD with 1  in 140 people affected (Kaplan et  al., 
2019). IBD has traditionally been regarded as a disease of 
developed and high-income nations, though incidence rates 
appear to have stabilized with high burden and prevalence. 
Incidence of IBD is now rapidly rising in newly industrialized 
countries (GBD 2017 Inflammatory Bowel Disease Collaborators, 
2020). There were 6.8 million cases of IBD globally in 2017, 
with approximately 1.5 million in North America and 2 million 
in Europe (GBD 2017 Inflammatory Bowel Disease Collaborators, 
2020; Jairath and Feagan, 2020). Individuals with IBD suffer 
from intestinal inflammation that can lead to debilitating 
symptoms including pain, nausea, and diarrhea (Rosen et  al., 
2015). In addition to disease burden, the chronic nature of 
IBD and its requirement for lifelong treatment causes significant 
economic burden for the individual and society. As analyzed 
by Park et  al. (2020), the annual mean health care cost for 
people with IBD is over 3-fold higher than for people without 
IBD (selected from the general population using a health plan 
member database). Mehta (2016) estimated that extrapolated 
direct costs of IBD are between $11 to 28 billion in the 
United  States. Including direct and indirect costs associated 
with loss of productivity and earnings, the total cost of IBD 
is between $14.6 and 31.6 billion annually (Mehta, 2016).

The etiology of IBD is multifactorial and includes genetic 
susceptibility, inappropriate immune activity, and 
environmental triggers. For example, a loss of function gene 
variant in the NOD2 gene is associated with increased 
susceptibility to CD due to increased production of 
pro-inflammatory cytokines (Ogura et al., 2001). Environmental 
factors affecting incidence of disease include geography, 
smoking, and pollution (Ananthakrishnan et  al., 2018). 
Genetics, immune responses, and environmental variables 
also impact the host intestinal microbiota, which is often 
included as a fourth important factor in the development 
of IBD (Ananthakrishnan et al., 2018). While the exact cause 
is unknown, it is widely accepted that IBD occurs in genetically 
susceptible individuals with environmental influences that 
result in a dysregulated immune response to commensal 
intestinal microbiota (Rosen et  al., 2015). The wide variation 
in disease presentation and treatment efficacy reflects the 
complexity of IBD pathogenesis (Chichlowski and Hale, 2008).

In this review, we will focus on the role of specific immune 
cells in IBD pathogenesis and how their trafficking and activity 
may be  affected be  vedolizumab. IBD is characterized by 
massive infiltration of circulating leukocytes into the inflamed 

intestinal mucosa. Diseased sections of the intestines have 
cytokine profiles that differ from healthy sections, indicating 
that cytokines play a pivotal role in the incidence and progression 
of disease (Murch et  al., 1993; McAlindon et  al., 1998). In 
particular, immune cells that are isolated from people with 
IBD display increased expression of pro-inflammatory cytokines 
and chemokines (Singh et  al., 2016). Chemokine production 
leads to inappropriate recruitment and retention of cells such 
as T-cells, dendritic cells, and macrophages, which cause 
inflammation and establish the chronic inflammation that is 
characteristic of IBD (Singh et  al., 2016). Chronic activation 
and proliferation of these immune cells leads to disruption 
of healthy tissues and thus further exacerbation of disease 
(Schippers et  al., 2016). Macrophages in particular have a 
unique role in IBD due to their ability to exhibit 
pro-inflammatory activity that contributes to disease and 
Interleukin-10 (IL-10)-mediated anti-inflammatory activity 
(Kozicky et  al., 2015). Anti-inflammatory macrophage activity 
has recently been described in the resolution of IBD during 
anti-TNFα therapies in mice and humans (Koelink et al., 2020). 
Specifically, macrophage IL-10 signaling was described to be the 
driving force behind the therapeutic effect of these therapies 
(Koelink et  al., 2020). With respect to these studies, IBD 
therapies can reduce inflammation by targeting leukocyte 
trafficking to the intestine and pro-inflammatory activity.

There is no standard treatment for IBD. Therapeutic options 
are non-specific anti-inflammatories that include aminosalicylates, 
corticosteroids, and other immunosuppressants, and some 
biologics. New biological therapies have been designed to 
be  specific to the gut to minimize side effects and increase 
responsiveness (Hazel and O’Connor, 2020). In particular, anti-
integrin antibodies target key players in leukocyte trafficking 
to the gut to reduce immune cell infiltration and the resulting 
inflammation (Hazel and O’Connor, 2020). Vedolizumab is a 
therapy that was designed to reduce pathological inflammation 
in IBD by blocking T-cell recruitment to the intestine (Zeissig 
et  al., 2019). However, some evidence suggests that it does 
not affect T-cell migration to the intestine (Zeissig et al., 2019). 
Herein, we  describe the potential mechanisms of action by 
which vedolizumab may reduce pathological inflammation in IBD.

LEUKOCYTE TRAFFICKING AND 
ACTIVATION IN IBD PATHOGENESIS

Leukocyte Trafficking
Inflammatory bowel diseases is characterized by immune 
infiltration from the circulation into the inflamed intestinal 
mucosa. This migration is facilitated by complex interactions 
between circulating leukocytes and intestinal endothelial cells. 
Sialyl LewisX-modified glycoproteins on leukocytes bind selectins 
on the endothelial cells with low affinity, allowing leukocytes 
to roll along the endothelium (Wright and Cooper, 2014). 
Chemokines act as chemoattractants for the rolling leukocytes 
to promote their infiltration into the mucosa (Wright and 
Cooper, 2014). Integrins on leukocytes mediate adhesion by 
binding cellular adhesion molecules (CAMs) that are expressed 
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on the endothelial cells during inflammation (Wright and 
Cooper, 2014). Integrins are heterodimeric receptors composed 
of an α and a β subunit, which exist in several forms that 
can combine to allow tissue-specific adhesion (Arseneau and 
Cominelli, 2015). For example, the α4β7 receptor is a marker 
for leukocyte trafficking to the intestine (Clahsen et  al., 2015).

Three CAMs have been reported to mediate leukocyte 
trafficking to the inflamed intestine, contributing to IBD: 
intracellular adhesion molecule (ICAM)-1, mucosal addressin 
cellular adhesion molecule (MAdCAM)-1, and vascular cell 
adhesion molecule (VCAM)-1 (Arseneau and Cominelli, 2015). 
Pro-inflammatory cytokines that are expressed during 
inflammation increase ICAM-1 expression, which binds the 
αLβ2 receptor on leukocytes (Bendjelloul et al., 2000; Arseneau 
and Cominelli, 2015). MAdCAM-1, which is expressed within 
Peyer’s patches and intestinal lymphoid tissues, binds the α4β7 
receptor on memory/effector T-cells to regulate their homing 
to the intestine (DeNucci et al., 2010; Arseneau and Cominelli, 
2015). It is upregulated at sites of inflammation in people 
with IBD (Briskin et  al., 1997). VCAM-1 binds the α4β1 and 
α4β7 receptors, which mediate leukocyte trafficking to the 
central nervous system and intestine, respectively, (Arseneau 
and Cominelli, 2015; Schippers et  al., 2016). Blocking the 
integrin-CAM interactions in the intestine is used as a strategy 
for IBD therapy aimed at reducing immune cell infiltration 
into the inflamed intestine.

T-Cells
T-cells play a prominent role in the regulation of the inflammatory 
response associated with IBD. In the past, CD was thought 
to be  a Th1-mediated disease characterized by elevated levels 
of the pro-inflammatory mediators interleukin-2 (IL-2), interferon 
gamma (IFNγ), and tumor necrosis factor alpha (TNFα; Fais 
et  al., 1991; Breese et  al., 1993; Fuss et  al., 1996). Since then, 
additional cytokines have been implicated in the pathogenesis 
of CD. Neurath et  al. (1995) reported that antibodies against 
the p40 subunit of IL-12, a cytokine which induces Th1 cell 
differentiation, were able to attenuate 2,4,6-trinitrobenzene 
sulfonic acid (TNBS)-induced colitis (Jacobson et  al., 1995; 
Neurath et  al., 1995). Th17 cells were implicated in intestinal 
inflammation when IL-23, which maintains and expands Th17 
populations, was found to share the p40 subunit with IL-12 
(Oppmann et  al., 2000; Stritesky et  al., 2008). Furthermore, 
IL-23 was also shown to be a key driver of intestinal inflammation 
in the Helicobacter hepaticus infection and T-cell transfer models 
of colitis (Hue et  al., 2006). UC is characterized by higher 
expression of IL-5 and IL-13, but not IL-4 (Karttunnen et  al., 
1994; Fuss et  al., 1996). IL-13 is a key effector, synergizing 
with TNFα to modulate the proteins in tight junction formation, 
thereby disrupting the epithelial barrier (Heller et  al., 2005; 
Chen and Sundrud, 2016). Recently, Rosen et al. (2017) showed 
that IL-17A and IL-23 mRNA in pediatric rectal mucosal 
samples were increased in UC in addition to higher IL-5 and 
IL-13 mRNA. Thus, targeting T-cell trafficking may reduce the 
relative concentration of proinflammatory cytokines described 
to be involved in IBD. Finally, T-regulatory (Treg) cells regulate 
self-reactive lymphocytes by secreting inhibitory cytokines such 

as IL-10 and transforming growth factor-β (TGFβ; Taylor et al., 
2006). By suppressing immune responses and maintaining 
tolerance to commensal microbes, Tregs are involved in intestinal 
homeostasis (Himmel et  al., 2012).

Recent developments show multiple IBD susceptibility loci 
associated with T-cell activation and memory formation (Liu 
et  al., 2015). Genes such as CD28 (T-cell co-stimulation), 
CCL20 and CCR6 (T-cell migration), NFATC1 (lymphocyte 
proliferation), NFKBIZ (Th17 development) associated with 
T-cell function demonstrate the potential for therapeutic 
strategies, which target different stages of T-cell involvement 
in IBD, such as recruitment, activation, proliferation, and 
retention. Genome-Wide Association Studies (GWAS) are 
crucial to explore potential genes associated with disease 
susceptibility and are further supported by literature that 
shows protein-level discrepancies between people with IBD 
and healthy control study participants. The presence of T-cells 
in the gut of people with IBD may be  mediated via CCR6, 
CCL20, or the α4β7 integrin (Perez-Jeldres et al., 2019). Thus, 
blocking the interaction of these molecules with their respective 
ligands or receptors has not been accepted as the sole mechanism 
of T-cell trafficking. Drugs such as natalizumab, which binds 
α4 integrin, and vedolizumab, which targets the α4β7 
heterodimer, have been developed specifically to target T-cell 
trafficking (Hazel and O’Connor, 2020). Therefore, it is crucial 
that we  continue to explore the potential mechanisms of 
these, and other, therapies in order to improve existing therapies 
and to develop new ones.

Dendritic Cells
Dendritic cells (DCs) are professional antigen-presenting cells 
that control the innate and adaptive immune responses. In 
the intestine, there are two described subsets: conventional 
(cDCs) and plasmacytoid DCs (pDCs). Depending on their 
location within the epithelium, cDCs either secrete IL-10 and 
induce Th2 cells or secrete IL-12 and induce Th1 cells (Guan, 
2019). They can be  further distinguished by their expression 
of cell surface receptors, such as the integrin subunit CD103 
(αE), which binds β7 to form the αEβ7 complex (Johansson-
Lindbom et  al., 2005; Clahsen et  al., 2015). CD103 facilitates 
the retention of lymphocytes in the epithelium by binding 
E-cadherin (Johansson-Lindbom et  al., 2005). CD103+ cDCs 
make up the majority of the DC population in the small 
intestine (Johansson-Lindbom et al., 2005; Clahsen et al., 2015). 
They are located in the lamina propria and intraepithelial 
compartment, but they can migrate to the mesenteric lymph 
node (MLN) to induce expression of the gut homing receptors 
CCR9 and α4β7 integrin on B and T-cells (Annacker et  al., 
2005; Schulz et  al., 2009). Additionally, CD103+ cDCs can 
promote the development of Treg cells (Annacker et  al., 2005; 
Clahsen et  al., 2015). In contrast, CD103- (CX3CRI+) cDCs 
do not migrate (Schulz et  al., 2009). Instead, they penetrate 
the epithelium to sample antigens in the lumen and present 
antigen to CD4+ T-cells, which differentiate into effector T-cells 
that secrete pro-inflammatory cytokines (Guan, 2019). Finally, 
pDCs are rare cells that secrete large quantities of 
type  I  interferons (Guan, 2019).
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During IBD, DCs are attracted to sites of inflammation in 
the intestine by chemokines, such as CCL20 and MAdCAM-1 
(Guan, 2019). Large numbers of activated DCs are found in 
the lamina propria and MLN and promote inflammation in 
murine models of IBD (Berndt et  al., 2007; Guan, 2019). 
Conversely, ablation of DCs can also exacerbate disease (Muzaki 
et  al., 2016). By regulating immune responses and tolerance 
to the microbiota, DCs play a critical role in IBD pathogenesis.

Macrophages
Macrophages play a role in all stages of inflammation: recognition, 
response, and resolution. They are highly heterogeneous, 
demonstrating a wide range of activation states (Kozicky et  al., 
2015). Cues from the microenvironment polarize macrophages 
to specific activation states (Kozicky et  al., 2015). The three 
main phenotypes are grouped by function: inflammatory, wound-
healing, and regulatory/anti-inflammatory, as reviewed in 
Steinbach and Plevy (2014). Inflammatory macrophages are 
promoted by IFNγ from NK and T-helper 1 (Th1) cells and 
TNFα from antigen presenting cells (Steinbach and Plevy, 2014). 
TNFα can also result from innate immune stimuli signaling 
that activates suppressor of cytokine signaling 3 (Steinbach and 
Plevy, 2014). Inflammatory macrophages produce high levels 
of the pro-inflammatory cytokines TNFα, IL-12, IL-6, and 
reactive oxygen and nitrogen species, which promote Th1 and 
Th17 cell activity and low levels of the anti-inflammatory cytokine, 
IL-10 (Hausmann et  al., 2001; Heinsbroek and Gordon, 2009). 
Inflammatory macrophages are essential in the response to 
intracellular infections but can aggravate IBD due to their 
production of pro-inflammatory cytokines (Heinsbroek and 
Gordon, 2009). Wound-healing macrophages are induced by 
IL-4 from granulocytes or Th2 cells in response to tissue injury 
(Kozicky et  al., 2015). They produce relatively lower levels of 
pro-inflammatory cytokines and higher levels of IL-10, protecting 
against parasites and promoting wound healing through the 
suppression of NLRP3 inflammasome activation, angiogenesis, 
tissue remodeling, and debris scavenging (Steinbach and Plevy, 
2014; Yao et al., 2015). Wound-healing macrophages are protective 
in murine models of intestinal inflammation but may contribute 
to fibrosis in CD (Steinbach and Plevy, 2014). Regulatory or 
anti-inflammatory macrophages are a recently described phenotype 
that require two stimuli, one of which is pro-inflammatory 
(Mosser and Edwards, 2008; Kozicky et  al., 2015). They can 
be  activated by macrophage-derived TGFβ, IL-10, or immune 
complexes and a pro-inflammatory stimulus (Anderson et  al., 
2002; Mosser and Edwards, 2008; Kozicky et  al., 2015). They 
produce high levels of IL-10 (Kozicky et  al., 2015). In addition, 
regulatory macrophages express costimulatory molecules that 
activate T-cells (Steinbach and Plevy, 2014). They further differ 
from wound-healing macrophages in their lack of extracellular 
matrix production (Steinbach and Plevy, 2014). Regulatory 
macrophages play a key role in turning off the inflammatory 
response by reducing IL-12 synthesis (Kozicky et  al., 2019) and 
are not predicted to promote fibrosis (Steinbach and Plevy, 2014).

In the lamina propria, macrophages control homeostasis by 
responding to infectious challenges with phagocytic and 
microbicidal activity while maintaining immune tolerance to 

commensal microbes. Differentiation into a tolerant phenotype 
is promoted by the presence of IL-10 and TFGβ in the 
microenvironment (Smythies et  al., 2005). In contrast to the 
resident macrophages that do not mount an oxidative burst 
or inflammatory response, circulating blood monocytes are 
recruited to the sites of inflammation in the intestinal epithelium 
via chemokines and aggravate disease (Guan, 2019). Infiltration 
of these blood monocytes to local tissues is facilitated through 
tight α4β7-MAdCAM-1 interactions among other adhesion 
molecule and cadherin interactions (Berlin et  al., 1993; Gorfu 
et  al., 2009). Acute intestinal inflammation and chronic 
inflammation cause an influx of pro-inflammatory blood 
monocytes, which differentiate into inflammatory macrophages 
and exacerbate disease (Schippers et  al., 2016). Macrophages 
isolated from people with IBD have increased oxidative burst 
activity and pro-inflammatory cytokine production (Guan, 
2019). However, invading monocytes have been shown to 
dampen the inflammatory response through the release of IL-10 
(Koelink et al., 2020). There is growing evidence that intestinal 
macrophages may play a critical role in the resolution of IBD, 
especially when activated towards regulatory or wound-healing 
phenotypes (Koelink et al., 2020). For this reason, macrophages, 
and subcellular molecules that modulate macrophages like 
chemokines and cytokines are potential therapeutic targets to 
ameliorate intestinal inflammation in IBD.

CURRENT TREATMENTS

The increasing disease burden of IBD reflects a need for a 
greater understanding of the mechanisms of IBD pathogenesis 
to improve existing therapies and develop new and effective 
therapies. IBD typically causes significant morbidity and requires 
lifelong medication in addition to possible dietary and lifestyle 
changes (Seyedian et al., 2019). There is no standard treatment 
regimen for individuals with IBD. Therapy relies on non-specific 
immune suppression to reduce symptoms, maintain remission, 
and prevent relapse (Hazel and O’Connor, 2020). Therapies 
include aminosalicylates, non-specific immunosuppressants, 
steroids, and biologics that target pro-inflammatory cytokines 
or leukocyte trafficking to the gut (Shi and Ng, 2018; Seyedian 
et al., 2019; Hazel and O’Connor, 2020). Surgery, which involves 
removal of the affected region, is an option for some people 
with acute, severe, refractory UC (Sica and Biancone, 2013), 
but not CD (Seyedian et  al., 2019). Efficacy of therapy can 
be  limited by a lack of primary response, secondary loss of 
response, and adverse side effects (Shi and Ng, 2018).

Anti-TNFα Biologics
Tumor necrosis factor alpha is an inflammatory cytokine that 
plays a prominent role in active inflammation associated with 
IBD (Fakhoury et  al., 2014). An increase in TNFα has been 
shown to induce cell proliferation, differentiation, and 
upregulation of adhesion molecules on the endothelium to 
increase cell trafficking to the site of inflammation (Nawroth 
and Stern, 1986; Fakhoury et  al., 2014). Considering its role 
in IBD, neutralizing TNFα has been used effectively to treat 
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IBD (mechanisms of action reviewed by Park and Jeen (2015) 
and Adegbola et  al. (2018)).

Anti-TNFα biologics, including golimumab, certolizumab, 
infliximab, and adalimumab, have revolutionized IBD treatment. 
However, many people with IBD are unresponsive or experience 
significant adverse effects; up to 40% of people with IBD are 
predicted to become unresponsive to anti-TNFα antibodies 
(Shi and Ng, 2018). More specifically, a recent meta-analysis 
showed secondary loss of response occurs in approximately 
33% of people taking infliximab and 41% of people taking 
adalimumab with a median follow up of 1  year (Qiu et  al., 
2017). These studies highlight the need for developing new 
therapeutics to treat IBD.

Anti-interleukin Biologics
Ustekinumab is a monoclonal antibody which binds the p40 
subunit of IL-12 and IL-23 and acts as an antagonist (Feagan 
et  al., 2016; Sands et  al., 2019). People with CD who received 
ustekinumab had significantly higher clinical response rates in 
the UNITI-1 and UNITI-2 clinical trials compared to placebo 
(Feagan et  al., 2016). People with UC who were treated with 
ustekinumab had significantly higher rates of achieving and 
maintaining clinical remission compared to placebo (Sands 
et  al., 2019). The FDA approved ustekinumab for treatment 
of moderate to severe CD in September 2016, and for treatment 
of moderate to severe UC in October 2019.

Anti-integrin Biologics
Natalizumab
Natalizumab is a humanized monoclonal antibody that targets 
the α4 chain of the α4β1 and α4β7 integrins expressed on 
the surface of leukocytes (Leger et  al., 1997; Stuve et  al., 2006; 
Haanstra et  al., 2013). α4β1 binds VCAM-1 expressed by 
endothelial cells, which allows leukocytes to firmly adhere to 
the surface (Alon et  al., 1995; Cerutti and Ridley, 2017; Chae 
et  al., 2018). Natalizumab blocks the interaction between α4β1 
and VCAM-1, which is required for leukocytes to cross the 
blood-brain barrier into the central nervous system (CNS; 
Kumar et  al., 1975; Burkly et  al., 1991).

Natalizumab was first used successfully for the treatment 
of relapsing and remitting multiple sclerosis (MS; Polman et al., 
2006; Rudick et  al., 2006). In January 2008, natalizumab was 
also approved by the United States Food and Drug Administration 
(FDA) for treatment of CD (Guagnozzi and Caprilli, 2008). 
It was the first anti-adhesion biologic used to treat IBD and 
established evidence for the potential efficacy of blocking 
leukocyte trafficking to treat IBD. However, clinical trials and 
market distribution of natalizumab were discontinued due to 
reports that two people had developed progressive multifocal 
leukoencephalopathy (PML; Kleinschmidt-DeMasters and Tyler, 
2005; Langer-Gould et  al., 2005; Van Assche et  al., 2005). 
PML is an aggressive demyelinating disease of the central 
nervous system (CNS) caused by the opportunistic John 
Cunningham (JC) virus, for which the majority of the population 
(75–80%) is seropositive. The recall of natalizumab prompted 
the retrospective analysis of samples from a deceased person 
with CD who had been treated with natalizumab in a separate 

clinical trial (Van Assche et  al., 2005). The individual’s serum 
and brain lesion samples were positive for JC virus, and there 
was a temporal relationship between natalizumab treatment 
and increase in viral load (Van Assche et al., 2005). Natalizumab 
was reapproved by the FDA and European Medicine Agencies 
(EMA) for the treatment of relapsing-remitting MS but it is 
not used for CD, due to risk of serious infections (European 
Medicines Agency, 2007; Ransohoff, 2007; Planas et  al., 2014; 
Avasarala, 2015).

Vedolizumab
Vedolizumab is a humanized monoclonal antibody that was 
developed to reduce lymphocyte trafficking to the intestine by 
specifically targeting the α4β7 heterodimer, which is expressed 
on the surface of gut-specific lymphocytes (Soler et  al., 2009; 
Feagan et  al., 2013). In contrast to natalizumab, vedolizumab 
does not interfere with lymphocyte trafficking to the brain 
(Feagan et  al., 2013).

Three Phase 3 clinical trials evaluated the efficacy and 
safety of vedolizumab for the induction and maintenance of 
clinical response and remission in people with moderate to 
severe UC (GEMINI 1) and CD (GEMINI 2 and GEMINI 
3; Feagan et  al., 2013; Sandborn et  al., 2013; Sands et  al., 
2014). In the GEMINI 1 trial, 47.1% of people with UC had 
clinical responses by week 6 compared to 25.5% on placebo 
(Feagan et  al., 2013). For the maintenance arm, 41.8% of 
people with UC who were treated with vedolizumab every 
8  weeks and 44.8% of people with UC who were treated 
every 4  weeks maintained clinical remission at week 52 of 
the trial compared to only 15.9% of people with UC on 
placebo (Feagan et  al., 2013). In the GEMINI 2 trial, 14.5% 
of people with CD who were treated with vedolizumab achieved 
clinical remission by week 6 compared to 6.8% on placebo 
(Sandborn et  al., 2013). For the maintenance arm, 39.0% of 
people with CD who received vedolizumab every 8  weeks 
and 36.4% who received vedolizumab every 4  weeks were 
in clinical remission at 52  weeks, compared to 21.6% on 
placebo (Sandborn et  al., 2013). In the GEMINI 3 trial, 
vedolizumab was subsequently shown to be effective for people 
who have moderate to severe CD and are refractory to TNF 
antagonists, but induction of remission required 10  weeks of 
treatment (Sands et  al., 2014). Based on this, in May 2014, 
the FDA and European Medicines Agency (EMA) approved 
vedolizumab for the treatment of UC and CD (Raine, 2014).

VEDOLIZUMAB: POTENTIAL 
MECHANISMS OF ACTION

Vedolizumab was designed to reduce intestinal inflammation 
by interfering with the T-cell trafficking to the intestines 
(Picarella et  al., 1997; Feagan et  al., 2013). As mentioned 
earlier, α4β7 integrin is a receptor expressed on lymphocytes 
that recognizes MAdCAM-1 (Berlin et al., 1993). MAdCAM-1 
is constitutively expressed on venular endothelium and 
upregulated during inflammation (Briskin et al., 1997). Though 
already approved by the FDA for treatment of UC and CD, 
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the molecular mechanisms of vedolizumab in humans have 
not been elucidated and still require further study.

In a study by Zeissig et  al. (2019), T-cell trafficking to the 
intestinal lamina propria in people with CD and UC, who 
were treated with vedolizumab, was not reduced. Vedolizumab 
treatment did not affect the intestinal T-cell receptor repertoire 
or the relative abundance of lamina propria CD4+ T-cells, 
CD8+ T-cells, central memory T-cells, or effector memory 
T-cells. However, in vitro and in vivo models of intestinal 
inflammation have been used to investigate the potential effects 
of vedolizumab on T-cell migration to the intestine (Fischer 
et  al., 2016; Binder et  al., 2018). An inventive in vitro model 
of blood flow using glass tubes and a peristaltic pump to 
mimic blood flow through capillaries was highlighted by Binder 
et  al. (2018). The model allowed for researchers to study the 
effects of vedolizumab treatment on integrin adhesion properties 
and expression in various T-cell subsets in a distinct, controlled 
environment (Binder et  al., 2018). The group reported that 
vedolizumab treatment reduced the adhesion of CD4+ and 
CD8+ T-cells to MAdCAM-1 (Binder et  al., 2018). Fischer 
et al. (2016) injected human T-cells or PBMCs into the ileocolic 
artery of mice lacking murine lymphocytes and NK cells. They 
demonstrated that vedolizumab specifically restricts the migration 
of Tregs from people with UC in this model but does not 
affect the migration of effector T-cells (Fischer et  al., 2016). 
In contrast, Lord et  al. (2018) reported differences in α4β7 
expression on circulating lymphocytes, postulating that 
vedolizumab may preferentially block the recruitment of 
pro-inflammatory cells to the intestine. Moreover, because Tregs 
express less α4β7 than effector cells, they may be  less affected 
by vedolizumab and successfully recruited to inflammatory 
sites where they suppress local inflammation (Lord et al., 2018). 
Ex vivo work with blood and colonic biopsies from people 
with IBD, published by Rath et  al. (2018), suggests that 
vedolizumab treatment reduces α4β7 integrin expression on B 
cells, NK cells, Th1, Th2, and Th17 CD4+ T-cell subsets. In 
addition, vedolizumab therapy-induced clinical remission was 
associated with a reduction of α4β7 expression on Th2 and 
Th17 mucosal CD4+ T-cells, which together could reduce 
recruitment of pro-inflammatory cells to the gut mucosa. 
Moreover, Rath et al. (2018) suggested that higher α4β7 expression 
on T-cells before vedolizumab treatment was associated with 
clinical remission. Together these studies suggest that vedolizumab 
may act via selective inhibition of specific T-cell subtypes 
migrating to the gut.

Clahsen et  al. (2015) reported the CD103+ (a subunit of 
the αEβ7 integrin) subpopulation of cDCs is reduced in 
MAdCAM-1 deficient mice. CD103+ cDCs play a role in inducing 
the expression of α4β7 integrin on T-cells and promoting Treg 
cell development. This may explain the observation made by 
Fischer et  al. (2016) that Treg cell migration was reduced by 
vedolizumab. If vedolizumab treatment similarly results in fewer 
CD103+ cDCs, α4β7 expression would be  reduced, limiting 
T-cell recruitment. Fuchs et  al. (2017) found an association of 
αEβ7 expression on effector T-cells with worsened clinical 
parameters. They propose that αEβ7 upregulation may be  an 
alternative pathway for lymphocytes beyond the α4β7-MAdCAM-1 

axis (Fuchs et  al., 2017). Furthermore, Zundler et  al. (2017) 
reported that αEβ7 expression was increased on CD8+ T-cells 
following vedolizumab treatment in people with IBD, suggesting 
that lymphocytes may use an alternative integrin to ensure their 
localization in the intestine despite vedolizumab-mediated 
inhibition of α4β7. Together, this suggests that vedolizumab may 
indeed cause changes in T-cell recruitment. Though results of 
these studies suggest that vedolizumab restricts T-cell recruitment 
via integrin binding, there are limitations in the applicability 
of in vitro and in vivo animal models when studying vedolizumab, 
and additional work is required to translate these findings for 
people with IBD.

Alternative mechanisms of action in blocking monocyte and 
dendritic cell recruitment have been proposed (Figure  1). 
Zeissig et  al. (2019) investigated the migration of leukocytes 
to the intestines by staining and labeling peripheral blood 
leukocytes with Indium-111 and fluorescein for scintigraphy 
and endomicroscopy. Imaging showed the accumulation of 
leukocytes in the intestines was not affected by vedolizumab. 
However, there was a strong association between vedolizumab 
treatment and the downregulation of genes involved in the 
innate immune system in the sigmoid colon. Genes that regulate 
innate effectors, innate immune receptors, chemokines, and 
chemokine receptors were downregulated in people with UC 
and CD who achieved clinical remission with vedolizumab. 
Interestingly, the relative abundance of inflammatory and wound-
healing macrophages was also affected by vedolizumab treatment, 
skewing macrophages toward a healing phenotype (Figure 1A).

Conversely, vedolizumab treatment has also been reported 
to interfere with homing of non-classical monocytes, which 
skew toward wound-healing macrophages (Olingy et  al., 2017; 
Schleier et  al., 2020). Approximately 5% of non-classical 
monocytes express α4β7 integrin, so it has been suggested 
that vedolizumab may actually disrupt intestinal wound healing 
and lead to complications (Schleier et  al., 2020). Despite that, 
Danese et al. (2019) found that people with moderate to severe 
CD who were treated with vedolizumab presented with 
endoscopic and histological healing at both 26 and 52  weeks. 
Furthermore, Shen et al. (2019) analyzed data from the GEMINI 
1, GEMINI 2, GEMINI Long Term Safety studies, and 
Vedolizumab Global Safety Database, reporting only a minor 
difference in the frequency of postoperative complications after 
intestinal surgery in people treated with vedolizumab compared 
to placebo. Together, this suggests that the beneficial anti-
inflammatory effects of vedolizumab may override concerns 
about a lack of recruitment of non-classical monocytes, 
compromised wound healing, and downstream complications.

Schippers et al. (2016) suggested that the therapeutic efficacy 
of vedolizumab is linked to changes in the innate immune 
system rather than the adaptive immune system. They reported 
that the β7-integrin chain leads to recruitment of more 
inflammatory monocytes to the colon in the dextran sodium 
sulfate (DSS) model of IBD. In this model, DSS is administered 
in the drinking water of mice to disrupt the intestinal epithelial 
layer. The compromised intestinal barrier allows the luminal 
microbes to interact with underlying immune cells, leading to 
colitis that models human UC. β7-integrin deficient mice had 
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a lower disease activity index (DAI; an additive score based 
on weight loss, stool consistency, and fecal blood). Colonic 
mRNA expression of inducible nitric oxide synthase (iNOS), 
proinflammatory cytokines, such as IL-6 and TNFα, and the 
chemokine CCL2 was lower in β7-integrin deficient mice than 
wild-type mice. RAG2 deficient mice, which lack mature T and 
B cells (Shinkai et al., 1992), were more susceptible to DSS-induced 
colitis than their wild-type counterparts. β7-integrin deficiency 
protected DSS-treated RAG2 deficient mice and mice double 
deficient in β7 and RAG2 in DAI and histopathology (Schippers 
et  al., 2016). This suggests that an anti-integrin therapy, like 
vedolizumab, may block the recruitment of proinflammatory 
monocytes to the site of inflammation (Figure  1B).

Mucosal addressin cellular adhesion molecule primarily interacts 
with the α4β7 integrin to mediate lymphocyte homing, including 
effector and memory T-cells. Clahsen et  al. (2015) propose a 
novel role for MAdCAM-1  in mediating intestinal localization 
of DCs to the intestinal epithelium. They found that MAdCAM-1 
deficient mice and β7-integrin deficient mice had lower numbers 
of cDCs and pDCs in the intestinal epithelium compared to 
wild-type mice. They propose that MAdCAM-1 may mediate 
localization of cDCs and pDCs into the gut via the α4β7 integrin. 
Thus, vedolizumab may work, in part, by blocking recruitment 
of DCs that promote inflammation (Figure  1C).

FUTURE DIRECTIONS

A long-term goal including a system wide analysis of the effect 
of vedolizumab on α4β7- and αEβ7-mediated trafficking, myeloid 
and T-cell populations in the intestine, and clinical outcomes 
would be  of tremendous value in this field. Additionally, the 

possibility that selective T-cell trafficking is blocked by 
vedolizumab should continue to elucidate the effect of less 
abundant T-cell populations, like Tregs, and the important ratio 
of Tregs/effector T-cells in the gut after vedolizumab treatment. 
Vedolizumab may also work in part by blocking pro-inflammatory 
monocyte and dendritic cell recruitment. Further studies on 
the properties of leukocyte populations in relation to vedolizumab 
treatment for people with IBD should be conducted. Additional 
studies using data derived from people with IBD being treated 
with vedolizumab are essential to translate potential mechanisms 
elucidated in vitro and in murine models to people with IBD.

CONCLUSION

In this paper, we  reviewed multiple proposed mechanisms of 
action for vedolizumab, a relatively new biologic used to treat 
IBD. It was specifically developed to block T-cell trafficking 
to the gut, but recent evidence suggests that this may not 
be  its sole mechanism of action. Three alternative mechanisms 
of action have been reported. Zeissig et  al. (2019) examined 
a mechanism where vedolizumab intervention led to the 
downregulation of inflammatory gene expression in innate 
immune cells like monocytes. Clahsen et  al. (2015) described 
a mechanism in which the MAdCAM-1 interaction with α4β7 
integrin of pDCs and cDCs is necessary for migration into 
the intestinal epithelium, where these dendritic cells have been 
known to exhibit pro-inflammatory phenotypes. Lastly, Schippers 
et  al. (2016) demonstrated a mechanism whereby vedolizumab 
restricts the recruitment of β7+ effector monocytes to the 
intestinal epithelium, thereby limiting the inflammatory response. 
Understanding the mechanism(s) of action of vedolizumab may 

A B C

FIGURE 1 | Vedolizumab: three potential mechanisms of action. (A) Vedolizumab binds α4β7 integrin, which alters gene expression of blood monocytes, skewing 
the population toward a wound-healing phenotype, and away from an inflammatory phenotype. (B) Vedolizumab binds to α4β7 integrin on blood monocytes, 
thereby inhibiting their ability to enter the intestinal epithelium. (C) Vedolizumab blocks localization of cDC and pDCs in the intestinal epithelium by binding α4β7.
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enable us to improve the efficacy of current treatment and 
the develop new therapeutic strategies to treat IBD.
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