
Genetic Epidemiology 35 : 278–290 (2011)

Disease Model Distortion in Association Studies

Damjan Vukcevic,1y Eliana Hechter,2y Chris Spencer,1z and Peter Donnelly1,2z�

1Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
2Department of Statistics, University of Oxford, Oxford, United Kingdom

Most findings from genome-wide association studies (GWAS) are consistent with a simple disease model at a single
nucleotide polymorphism, in which each additional copy of the risk allele increases risk by the same multiplicative factor, in
contrast to dominance or interaction effects. As others have noted, departures from this multiplicative model are difficult to
detect. Here, we seek to quantify this both analytically and empirically. We show that imperfect linkage disequilibrium (LD)
between causal and marker loci distorts disease models, with the power to detect such departures dropping off very
quickly: decaying as a function of r4, where r2 is the usual correlation between the causal and marker loci, in contrast to the
well-known result that power to detect a multiplicative effect decays as a function of r2. We perform a simulation study with
empirical patterns of LD to assess how this disease model distortion is likely to impact GWAS results. Among loci where
association is detected, we observe that there is reasonable power to detect substantial deviations from the multiplicative
model, such as for dominant and recessive models. Thus, it is worth explicitly testing for such deviations routinely. Genet.
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INTRODUCTION

Genome-wide association studies (GWAS) exploit the
correlation structure in the genome, due to linkage
disequilibrium (LD), by testing a representative subset of
genetic markers for association with disease. As a result,
we expect GWAS to highlight markers correlated with
causal loci rather than to discover the causal loci directly.
Depending on the strength of LD between causal and
marker single nucleotide polymorphisms (SNPs), the
observed disease effect at the marker will be an imperfect
representation of the true disease effect.

In this paper, we study a particular aspect of this
relationship both analytically and empirically. We consider
case-control studies that genotype SNPs and disease
models with either a single SNP or a pair of interacting
SNPs. We ask two related questions. First, how do the
disease model parameters (‘‘effects’’) change as the LD
between the causal and tag SNPs diminishes? Second, how
does the power to detect departure from the multiplicative
model change? We show that as the LD between causal
and marker loci decreases, nonmultiplicative and interac-
tion effects decay faster than multiplicative effects,
quadratically rather than linearly. This makes the former
harder to detect; stated in terms of power, the decay is

quartic rather than quadratic. Furthermore, compared to
the true disease model, the apparent disease effect as
observed at marker SNPs will be distorted to look more
like a multiplicative one.

The impact of imperfect LD has been well characterized
for multiplicative models, both in terms of effect
sizes and power [Chapman et al., 2003; Pritchard and
Przeworski, 2001; Zondervan and Cardon, 2004]. Measuring
the LD using the squared correlation (r2), a well-known rule
of thumb is that a sample size of roughly N/r2 is required at
a marker in order to have the same power to detect an
association as a study with sample size N that types the
causal SNP [Pritchard and Przeworski, 2001]. Here we
derive a similar result, showing that a sample size of about
N/r4 is required to maintain equivalent power to detect a
deviation from a multiplicative model.

We derive an analogous result for a scenario involving
two interacting SNPs under a simple interaction model.
Specifically, suppose we type a marker SNP for each of the
two causal SNPs, with the LD between each pair being r2

1
and r2

2, respectively. We show that a sample size of roughly
N=ðr2

1r2
2Þ would then be required for equivalent power to

detect the interaction as a test with sample size N that
types the causal SNPs directly.

The above results apply for any given, fixed, marker
loci. To study the impact of distortion on actual GWAS
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outcomes, we perform a simulation study with empirical
patterns of LD. We find that loci highlighted by GWAS will
often be highly correlated with the causal SNP, limiting the
amount of distortion observed. When this is the case, there
will be reasonable power to detect substantial departures
from the multiplicative model, such as for recessive and
dominant models. Therefore, there is value in testing for
such departures routinely.

Previous studies have explored the impact of LD on
GWAS. Most have done so empirically, and only for
multiplicative models at single SNPs [e.g. Spencer et al.,
2009]. At least two studies go further: Bhangale et al. [2008]
considered recessive and dominant models empirically;
Zheng et al. [2009] studied nonmultiplicative models
analytically assuming the same allele frequency at the
causal and marker SNP. Our study is more extensive: we
characterize the effect of LD on power analytically, we do
not impose restrictions on allele frequencies, and we study
interactions as well as single-SNP models.

While we focus on case-control studies, we note that
some related work has been published for studies of
quantitative traits using variance components models.
Sham et al. [2000] derived similar results for the impact of
LD, and Hill et al. [2008] showed that additive variation
(analogous to multiplicative effects in case-control studies)
will tend to dominate even when nonadditive effects exist
and the impact of LD is discounted.

THEORETICAL DERIVATIONS

LD MODEL

Let A and B be a pair of biallelic SNPs and code
the alleles at each as 0 and 1. In the situations that we
examine, A will be a causal SNP and B will be a marker
SNP. Let fA 5 Pr(A 5 1) be the frequency of allele 1
in the population at SNP A, and define fB similarly for
SNP B.

For brevity, we will refer to the haplotype with A 5 i and
B 5 j as ij. Consider the population distribution of the four
possible haplotypes formed by the two SNPs; three
parameters are necessary to represent an arbitrary dis-
tribution. Together with fA and fB, we use the population
correlation coefficient to fully parameterize this distri-
bution. The square of this is a commonly used measure
of LD, usually denoted by r2 [e.g. Zondervan and Cardon,
2004].

Define the following conditional probabilities,

q0 ¼ PrðA ¼ 1jB ¼ 0Þ; ð1Þ

q1 ¼ PrðA ¼ 1jB ¼ 1Þ: ð2Þ

These allow the following representation of the haplo-
type distribution,

Prð00Þ ¼ ð1� q0Þð1� fBÞ;

Prð01Þ ¼ ð1� q1ÞfB;

Prð10Þ ¼ q0ð1� fBÞ;

Prð11Þ ¼ q1fB;

and give the identity,

fA ¼ q0ð1� fBÞ1q1fB:

The correlation coefficient can be expressed in terms of
these quantities and can be shown to be,

r ¼ ðq1 � q0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fBð1� fBÞ

fAð1� fAÞ

s
:

By solving these last two equations for q0 and q1, we can
see that the haplotype distribution is fully and uniquely
specified by fA, fB, and r (if they are consistent with a
haplotype distribution).

As is well known, the range of r depends on the allele
frequencies. Suppose, without loss of generality, that fA
and fB are minor allele frequencies and that fArfB. By
considering the possible values of q0 and q1, it can be
shown that,

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fA

1� fA

� �
�

fB
1� fB

� �s
� r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fA

1� fA

� ��
fB

1� fB

� �s
:

ð3Þ

The roles of fA and fB swap if fAZfB. From this we can
see that in order for a high positive correlation to be
possible we need to have fAEfB, and for a high negative
correlation we require fA and fB to both be large.1 A
correlation in either direction will suffice for the marker to
be a good surrogate. Thus, we can conclude that in
situations where one of the SNPs is rare (either the marker
or the causal SNP), the ability to detect associations will be
impaired unless the other SNP is also rare and highly
correlated.

We use the term diplotype to mean a pair of two-SNP
haplotypes belonging to an individual. Let 10

11

� �
represent

the diplotype comprising the two haplotypes 10 and 11
(i.e. having genotype 2 at SNP A and genotype 1 at SNP B).
To obtain a diplotype distribution, we assume Hardy-
Weinberg equilibrium (HWE) for haplotypes, which real
data tends to follow in the context we are considering. For
example, Pr 10

11

� �
¼ 2 Prð10ÞPrð11Þ ¼ 2q0q1fBð1� fBÞ. There

are 10 possible diplotypes but only nine distinguishable
pairs of genotypes. In particular, the genotype pair
consisting of two heterozygotes can correspond to either
of the two diplotypes 10

01

� �
or 00

11

� �
. We only consider

analyses using genotypes so will sum over this diplotype
pair where necessary.

DISEASE MODELS

Consider a diploid individual at a particular SNP. Let
the genotype at the SNP be G and the disease status be Y,
where Y 5 1 denotes a diseased individual and Y 5 0
denotes a healthy individual. Let p ¼ PrðY ¼ 1jGÞ. Logistic
regression models are commonly used to model disease
risk in GWAS [e.g. Cantor et al., 2010]. The most prominent
is one in which the log-odds of disease increases (or
decreases) additively by b with each copy of allele 1,

logitðpÞ ¼ log
p

1� p

� �
¼ m1bG:

In other words, each additional copy of the risk allele
increases the odds of disease by the same multiplicative
factor. This is variously referred to as either the additive
model or the multiplicative model. We use the latter term
1This (apparent) asymmetry is due to the choice of fA and fB as
being the minor allele frequencies.
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throughout but will refer to b as the additive parameter
or effect since it naturally operates additively on the log
scale. The widely used Cochran-Armitage trend test
[Armitage, 1955] is the score test of the null hypothesis
(b5 0) under this model [Sasieni, 1997].

The derivations we present relate disease models by
comparing penetrances at marker and causal SNPs.
For this purpose, it proves convenient to consider log risk
regression models rather than logistic regression. For
example, the multiplicative risk regression model is

logðpÞ ¼ m1bG:

In GWAS, it is standard to use (unphenotyped) cohort or
population samples in place of control samples but
analyze it as a case-control study using logistic regression.
This is actually equivalent to fitting a log risk regression
model [Schouten et al., 1993]. Thus, log risk regression is
an appropriate model to consider in this context. The two
models are related analogously to the way that the odds
ratio (OR) and relative risk (RR) are related, and will be
approximately equivalent when the disease prevalence is
relatively small.

We consider two extensions of the simple model: a
general model with an extra parameter that models
deviation from the simple model at the heterozygote and
an interaction model with an extra parameter that models
the joint multiplicative effect of the two interacting SNPs.

The general model will have three parameters and
would allow a different disease risk for each genotype.
Various parameterizations are possible, we use the
following which is based on the multiplicative model
(and is similar to that of Balding [2006]),

logðpÞ ¼ m1bG1g1G¼1;

where 1G 5 1 is an indicator function that takes value 1 for
heterozygotes and 0 for homozygotes. We refer to this
as the general model. The extra parameter, g, models
the deviation from a multiplicative model at the hetero-
zygote. We refer to it as the dominance parameter.
Other commonly used models are special cases of this
model and can be recovered by setting the dominance
parameter to specific values: g5 0 gives a multiplicative
model, g5 b a dominant model, and g5�b a recessive
model (where b40, which may be assumed without loss
of generality by relabeling the alleles). To distinguish
between parameters corresponding to different SNPs we
label them with a subscript, e.g. bA is the additive
parameter for SNP A.

There are many different ways of modeling interactions
[e.g. Marchini et al., 2005] and correspondingly many
different parameterizations. Here we consider the simplest
form from a statistical standpoint: a two-SNP model with a
single additive interaction parameter,

logðpÞ ¼ m1bAGA1bA0GA01tGAGA0 :

The parameter t models deviation from the two-SNP
multiplicative model and we refer to it as the interaction
parameter.

IMPACT OF LD ON DISEASE PARAMETERS

Multiplicative model. The multiplicative model is
naturally defined for haplotypes as well as genotypes.
Indeed, they are equivalent under the assumption of HWE
[Sasieni, 1997]. For common diseases we do not expect

significant deviations from HWE, and therefore turn
to the haplotype setting as a simplifying device for
studying genotype models. The same approach has
been used by previous authors [Chapman et al., 2003;
Pritchard and Przeworski, 2001; Zondervan and Cardon,
2004].

Let SNP A be causal and SNP B be a marker. Define the
following disease penetrances:

a0 ¼ PrðY ¼ 1jA ¼ 0Þ; b0 ¼ PrðY ¼ 1jB ¼ 0Þ;
a1 ¼ PrðY ¼ 1jA ¼ 1Þ; b1 ¼ PrðY ¼ 1jB ¼ 1Þ:

We can relate the penetrances at the two SNPs by using the
LD model. In particular, using Equations (1) and (2),

b0 ¼a0ð1� q0Þ1a1q0;

b1 ¼a0ð1� q1Þ1a1q1:

Taking the difference gives a convenient summary of the
relationship,

b1 � b0 ¼ ða1 � a0Þðq1 � q0Þ:

Re-writing this in terms of the disease model parameters,
allele frequencies and LD gives,

b1

b0
� 1 ¼

a1

a0
� 1

� �
a0

b0
ðq1 � q0Þ;

ebB � 1 ¼ðebA � 1Þ
emA

emB
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fAð1� fAÞ

fBð1� fBÞ

s
:

We can derive a simpler expression when effect sizes are
small. Using the approximation ex

�1Ex, and also mAEmB

(which is equivalent to saying the penetrances at allele 0
are similar at the two SNPs), we have,

bB � bAr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fAð1� fAÞ

fBð1� fBÞ

s
:

We see that the additive effect at the marker SNP decreases
linearly with r as the LD becomes weaker. This is a key
result: it gives an intuitive and convenient relationship
between the parameters of interest. Furthermore, the
relationship later derived for the effect of LD on power
follows directly from it. In this formulation, this result
appears to be novel.

Zondervan and Cardon [2004] derive a similar formula,
but expressed in terms of different parameters. They
parameterize LD in terms of the disequilibrium coeffi-
cient, D ¼ Prð11Þ � fAfB, instead of r, and use the OR
instead of the RR (recall that we are using a log risk
regression model),

ORB � 1 ¼
DðORA � 1Þ

fB½ð1� fBÞ1ðð1� fBÞfA �DÞðORA � 1Þ�
:

General model. Let A and B now represent
genotypes (note that the haplotype approximation
and corresponding HWE assumption we used above
are thus not required). Define the following disease
penetrances:

a0 ¼ PrðY ¼ 1jA ¼ 0Þ; b0 ¼ PrðY ¼ 1jB ¼ 0Þ;
a1 ¼ PrðY ¼ 1jA ¼ 1Þ; b1 ¼ PrðY ¼ 1jB ¼ 1Þ;
a2 ¼ PrðY ¼ 1jA ¼ 2Þ; b2 ¼ PrðY ¼ 1jB ¼ 2Þ:
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As before, relating the penetrances using the LD model
gives,

b0 ¼a0ð1� q0Þ
21a12q0ð1� q0Þ1a2q2

0;

b1 ¼a0ð1� q0Þð1� q1Þ1a1ðq0ð1� q1Þ1q1ð1� q0ÞÞ1a2q0q1;

b2 ¼a0ð1� q1Þ
21a12q1ð1� q1Þ1a2q2

1:

The expression b2
1 � b0b2 is a measure of the deviation from

a multiplicative model (for which it is exactly 0), and has a
simple form that relates the marker and causal SNP
penetrances,

b2
1 � b0b2 ¼ ða

2
1 � a0a2Þðq1 � q0Þ

2:

Re-writing this in terms of the disease model parameters,
allele frequencies and LD gives,

b2
1

b0b2
� 1 ¼

a2
1

a0a2
� 1

� �
a0a2

b0b2
ðq1 � q0Þ

2;

e2gB � 1 ¼ðe2gA � 1Þ
e2ðmA1bAÞ

e2ðmB1bBÞ

fAð1� fAÞ

fBð1� fBÞ
r2:

When the dominance effect is small, we can derive a
simpler expression using the approximations ex

�1Ex
and mA1bA � mB1bB,

gB � gA

fAð1� fAÞ

fBð1� fBÞ
r2: ð5Þ

We see that the dominance effect at the marker SNP
decreases quadratically with r as the LD becomes weaker.
Analogous to Equation (4), this is a key result and in this
formulation it appears to be novel. Sham et al. [2000]
derive a similar result relating variance components in
models of quantitative traits; our derivation here relates
parameters in models of case-control data. The formula
gives an intuitive and convenient relationship between the
parameters of interest, and the relationship later derived
for the effect of LD on power follows directly from it.
Crucially, this result contrasts with that for the additive
parameter, with the dependence on LD being through r2

rather than r.
GWAS analyses typically employ the trend test,

which effectively fits a multiplicative model. While this
may result in model mis-specification (if the model
underlying the data is not multiplicative), it will never-
theless pick up some of the association signal. For a given
underlying disease model, allele frequency, and ratio of
cases to controls in the sample, there will be a charac-
teristic mean value for the additive parameter when
fitting the multiplicative model. We refer to this as the
ef fective additive parameter and denote it by b0. It can be
calculated numerically by fitting the multiplicative model,
using logistic regression, to the theoretical genotype
frequencies for cases and controls under the disease model
of interest, weighted by the case-control sampling ratio. In
other words, we pretend the theoretical frequencies are
sample counts. To see why this works, imagine taking a
very large case-control sample: the resulting estimate of b0

will be very close to its mean, and the genotype counts will
closely match the underlying genotype frequency distribu-
tion. In the logistic regression fit, point estimates only
depend on relative frequencies of the different genotype/
phenotype classes (although estimates of uncertainty will
also depend on the absolute counts). Specifically, increas-
ing the counts but keeping the relative ratios the same is

equivalent to scaling the log-likelihood by a constant—
it will make it more peaked but not change the location of
the mode.

Figure 1 shows how the effective additive parameter for
a few models varies depending on the allele frequency.
Here we have assumed an equal number of cases and
controls in the sample; varying this ratio gives qualita-
tively similar results and is therefore a less important
factor than the allele frequency (data not shown). One way
to understand the results is think of them as similar to a
weighted average of the disease risks at each genotype.
When the allele frequency is at one extreme, only two of
the three possible genotypes will be represented in the
sample, and the model fit will be based mainly on
the difference in risk between these two. Thus, for both
the dominant and recessive models the limiting values are
either zero effect, when the two equal-risk genotypes
predominate, or a large effect, when the two genotypes
differ in risk. In the later case, the effect is double (on
the log scale) that of the multiplicative model which has
the same homozygous RR as the original dominant/
recessive model.

Note that the diagonal lines in this plot are actually not
symmetric—they intersect at a risk allele frequency less
than 0.5, and reflections neither vertically nor horizontally
will make them match. We may have assumed that there
should be symmetry, for example by interchanging the
cases and controls to switch between dominant and
recessive model. However, this is not valid since they are
ascertained differently, the controls being a sample from
the whole population and the cases from the diseased
subset.

Figures 2 and 3 show the effect of LD and allele
frequency on the disease model parameters, for dominant
and recessive models, respectively. The parameter values

Fig. 1. The effective additive parameter for three disease

models, plotted against the RAF. A homozygous RR of 1.42

and an equal number of cases and controls were assumed for all
disease models. The right-hand y-axis shows the per-allele RR

corresponding to each value of b0 (i.e. RR05 eb0). Note that for the

multiplicative model, b05 b 5 log(1.4) for all RAFs. RAF, risk

allele frequency; RR, relative risk.
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at the marker SNP were calculated using,

bB ¼ log

ffiffiffiffiffi
b2

b0

s !
; gB ¼ log

b1ffiffiffiffiffiffiffiffiffi
b0b2

p

� �
: ð6Þ

The figures also show the effective additive parameters,
b0A and b0B, calculated using logistic regression as described
above. Thus, in these figures we have plotted the exact
values for all parameters, rather than approximations based
on Equations (4) and (5). We can see that the approxima-
tions accurately describe the observed behavior, with the
dominance effect decaying faster than the additive effects,
approximately quadratically vs. linearly.

Another and perhaps more natural way to see the
effect of LD is to plot the two disease parameters against
each other. We refer to this as a model space plot, since each
point corresponds to a particular disease model and all
possible models can be represented in this way (up to the
value of m). Figure 4 shows such a plot with curves for
each of the eight scenarios shown in Figures 2 and 3. The

subspace of multiplicative models is shown by the
horizontal line, and the null model is at the origin.
The curves trace out the theoretical disease model at the
marker SNP, with lower LD corresponding to points closer
to the origin along these curves. We can now clearly see
how LD acts to make the observed model more multi-
plicative—notice that the curves ‘‘bend’’ toward the
horizontal line.

Interaction model. Like the multiplicative model,
the interaction model we use is naturally defined for
haplotypes as well as genotypes and we again turn to the
haplotype setting as a simplifying device. Let SNPs A and
A0 be causal and SNPs B and B0 be their tag SNPs,
respectively. Define the following disease penetrances:

a00 ¼PrðY¼ 1jA¼ 0;A0 ¼ 0Þ; b00 ¼PrðY¼ 1jB¼ 0;B0 ¼ 0Þ;

a01 ¼PrðY¼ 1jA¼ 0;A0 ¼ 1Þ; b01 ¼PrðY¼ 1jB¼ 0;B0 ¼ 1Þ;

a10 ¼PrðY¼ 1jA¼ 1;A0 ¼ 0Þ; b10 ¼PrðY¼ 1jB¼ 1;B0 ¼ 0Þ;

a11 ¼PrðY¼ 1jA¼ 1;A0 ¼ 1Þ; b11 ¼PrðY¼ 1jB¼ 1;B0 ¼ 1Þ:

Fig. 2. Impact of LD on disease model parameters for a dominant model. Parameter values as functions of r, for a selection of RAFs.

A dominant model with a homozygous RR of 1.42 at the causal SNP is assumed, corresponding to general model parameter values of
bA 5 cA 5 log(1.4) 5 0.34. The solid black line shows the dominance parameter (cB), the dashed black line the additive parameter (bB),

and the magenta line the effective additive parameter (b0B) at the marker SNP. The respective parameter values at the causal SNP are

shown by points at r 5 1, following the same color scheme as the lines (in this case, the points for bA and cA overlap since they have the

same value). Plots in each row correspond to a given marker SNP RAF and columns to a given causal SNP RAF, as labeled. The range of
possible values of r depends on the allele frequencies, as shown by Equation (3). Note that a negative value for b is equivalent to a

positive value for it when considered with respect to the other allele at the SNP. RAF, risk allele frequency; LD, linkage disequilibrium;

RR, relative risk; SNP, single nucleotide polymorphism.
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Let A and B denote the 2� 2 matrices of penetrances
with entries as above, and L and L0 denote the following
matrices of LD parameters,

L ¼ 1� q0 q0

1� q1 q1

� 	
; L0 ¼ 1� q00 q00

1� q01 q01

� 	
;

where the former describe the LD between SNPs A and B
and the latter the LD between SNPs A0 and B0. Using the
LD model,

B ¼ LAL0T:
The determinant, jBj ¼ b11b00 � b01b10, is exactly 0 for a
two-SNP multiplicative model and is a convenient
measure for the deviation from it. Since jLj ¼ q1 � q0 and
jL0j ¼ q01 � q00, we obtain,

b11b00 � b01b10 ¼ ða11a00 � a01a10Þðq1 � q0Þðq
0
1 � q00Þ:

We can re-write this in terms of the disease model
parameters, allele frequencies, and LD,

b11b00

b01b10
� 1 ¼

a11a00

a01a10
� 1

� �
a01a10

b01b10
ðq1 � q0Þðq

0
1 � q00Þ;

etBB0 � 1 ¼ ðetAA0 � 1Þ
eðmAA01bAÞ1ðmAA01bA0 Þ

eðmBB01bBÞ1ðmBB01bB0 Þ
ðrr0Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fAð1� fAÞfA0 ð1� fA0 Þ

fBð1� fBÞfB0 ð1� fB0 Þ

s
:

When the interaction effect is small, we can derive a
simpler expression using the approximations ex

�1Ex, and
2mAA01bA1bA0 � 2mBB01bB1bB0 ,

tBB0 � tAA0 ðrr0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fAð1� fAÞfA0 ð1� fA0 Þ

fBð1� fBÞfB0 ð1� fB0 Þ

s
: ð7Þ

The interaction effect at the marker SNPs decreases
quadratically with LD, analogous to the dominance effect.
The quadratic factor is a product of the correlation due to
each of the tag SNPs. This is again a key result, showing
how a simple type of statistical interaction decays with
multiple sources of LD, and the relationship later derived
for the power to detect the interaction follows directly
from it. Crucially, this result contrasts with that for the
additive parameter, the decay with LD being quadratic
rather than linear.

IMPACT OF LD ON POWER

The previous section describes the impact of LD on the
disease effect parameters. We now examine how this
impacts the power of the corresponding tests. Derivations
of the noncentrality parameters for each test are shown in
Appendix A. Combining these with the parameter-LD
relationships from the previous section allows us to give
approximate expressions for the power when testing at
marker SNPs.

Fig. 3. Impact of LD on disease model parameters for a recessive model. Same as Figure 2, but now for a recessive model with a homozygous

RR of 1.42, corresponding to general model parameter values of bA 5�cA 5 log(1.4) 5 0.34. LD, linkage disequilibrium; RR, relative risk.
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Trend test. Suppose we have a case-control
sample of size NA that types the causal SNP and also
one of size NB that types a marker SNP. From
Equation (10), a trend test at the causal SNP has non-
centrality parameter,

Z1 � 2NAfAð1� fAÞfð1� fÞb2
A;

where f is the proportion of cases in the sample. Applying
Equation (4), the same test at the marker SNP has non-
centrality parameter,

Z2 � 2NBfBð1� fBÞfð1� fÞb2
B

� 2NBfAð1� fAÞfð1� fÞb2
Ar2:

Comparing Z1 and Z2, we see that a sample size of
NB5NA/r2 is required to achieve the same power as typing
the causal SNP directly. This is essentially the same
derivation as shown in Pritchard and Przeworski [2001],
but here based on the Wald test.

Deviation test. The Wald test for the dominance
parameter amounts to comparing the multiplicative
and general models and thus tests for a deviation from
the multiplicative model. We therefore refer to this
as the deviation test. Applying the same idea as above,

now using Equations (11) and (5), gives the noncentrality
parameters,

Z1 � 4NAf2
Að1� fAÞ

2fð1� fÞg2
A;

and

Z2 � 4NBf2
Bð1� fBÞ

2fð1� fÞg2
B

� 4NBf2
Að1� fAÞ

2fð1� fÞg2
Ar4:

Thus, a sample size of NB 5 NA/r4 is required to achieve
the same power as typing the causal SNP directly.

Interaction test. The Wald test for the interaction
parameter compares our interaction model to a two-SNP
multiplicative model; we refer to this as the interaction test.
Using Equations (12) and (7) gives the noncentrality
parameters,

Z1 � 4NAfAð1� fAÞf
0
Að1� f 0AÞfð1� fÞt2

AA0 ;

and

Z2 � 4NBfBð1� fBÞf
0
Bð1� f 0BÞfð1� fÞt2

BB0

� 4NBfAð1� fAÞf
0
Að1� f 0AÞfð1� fÞt2

AA0 ðrr0Þ2:

Thus, a sample size of NB 5 NA/(rr0)2 is required to achieve
the same power as typing the causal SNPs directly.

SIMULATION STUDY

Due to the complex LD structure in the human genome,
and also ascertainment effects from GWAS study designs,
it is difficult to evaluate the impact of distortion on GWAS
results analytically. For this reason, we also adopted a
simulation approach, using existing data and methods to
simulate realistic GWAS samples under various disease
models.

METHOD

We took data from the 10 ENCODE regions [ENCODE
Project Consortium, 2004] within the Caucasian (CEU)
analysis panel of HapMap II [International HapMap
Consortium, 2007], which have undergone SNP ascertain-
ment by resequencing. These regions therefore show a
fuller spectrum of SNPs than are represented in the
HapMap data at large, and haplotypes are expected
to be accurate due to the trio design of the HapMap
panels [International HapMap Consortium, 2005].
We used the HAPGEN software package [Spencer et al.,
2009] to produce a population of 100,000 haplotypes
based on the empirical LD patterns in HapMap II.
This haplotype panel served as the base for our GWAS
simulations.

For a given disease model of interest, each allele at each
SNP in each ENCODE region was in turn presumed
causal, and a complete association and replication study
for each (20,968 in total) was simulated according to the
following procedure.

We generated a sample of 2,000 diploid cases and
2,000 diploid controls from the panel as follows. For the
controls, we sampled haplotypes uniformly from the
panel (without replacement) and combined them in pairs.
For the cases, we sampled haplotypes according to the
genotype frequencies at the causal SNP as dictated by
the disease model. Specifically, we first simulated geno-
types at the causal SNP by sampling with probabilities

Fig. 4. Model space plot showing distortion toward a multi-

plicative model. The two disease parameters (dominance vs.
additive; c vs. b) plotted against each other showing the full

space of models up to the value of the baseline parameter (l).

The horizontal gray line shows the subspace of multiplicative

models. The gray lines above the horizontal show the subspace
of dominant models, and those below show the subspace of

recessive models. Curves and points trace out the models for the

scenarios shown in Figures 2 and 3, lying above and below the

horizontal line, respectively. Curves are drawn in different
styles to show the causal and marker SNP RAFs they correspond

to, as shown by the two legends. The two points represent the

true disease models at the causal SNP. SNP, single nucleotide
polymorphism; RAF, risk allele frequency.
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proportional to:

PrðG ¼ 0Þ / ð1� fÞ2;

PrðG ¼ 1Þ / a12fð1� fÞ;

PrðG ¼ 2Þ / a2f2;

where a1 and a2 are, respectively, the RRs of genotypes 1
and 2 relative to genotype 0, and f is the frequency of

allele 1 in the panel. We then sampled pairs of haplotypes
(without replacement) uniformly from the panel such that
they were consistent with the genotypes.

The next step was to thin the SNPs down to a set that
would be present on a typical genotyping chip; we used
the Affymetrix Genome-wide Human SNP Array 6.0
(Affymetrix, Santa Clara, CA) for this purpose. Examining
only SNPs on this chip, for each we applied the trend test
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Fig. 5. Parameter estimates and LD from simulations for a dominant model. Estimates of the additive and dominance parameters respectively

(by column) at the hit SNP, plotted against the r2 between the causal and hit SNPs. The estimates are from the simulated replication sample

from simulations with a dominant causal SNP with homozygous RRs of 1.22, 1.42, and 22, respectively (by row; corresponding to true parameter
values of b5c5 0.5 log(Hom. RR) 5 0.18, 0.34, 0.69). Only simulations where the hit SNP passed the scan and replication criteria are displayed.

The dashed red lines denote the true parameter values. The dashed black lines indicate a zero effect. The blue lines show linear regression fits

to the points on each plot, to aid visual comparisons. LD, linkage disequilibrium; SNP, single nucleotide polymorphism; RR, relative risk.
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and calculated a P-value. We then took SNP with the
smallest P-value, which we refer to as the hit SNP, and
checked whether it showed a P-value less than 1�10�6. If
this occurred we then modeled a replication study at this
SNP using an additional 2,000 cases and 2,000 controls,
and required a P-value less than 0.01. In what follows we
only considered those simulations where the hit SNP on
the genotyping chip met both criteria, as these model the
ascertainment implicit in reported GWAS associations.

The final step was to evaluate the impact in terms of
distortion. For each simulation run where an association
was detected, we applied the deviation test to the hit SNP
using the genotype counts from the replication scan and
checked if a P-value less than 0.05 was obtained. This
procedure is typical of what is applied in GWAS [e.g.
Wellcome Trust Case Control Consortium, 2007]. Thus, there
are three possible overall outcomes from each simulation: (i)
no association detected; (ii) association detected but not
deviation; and (iii) both association and deviation detected.

Effect sizes were estimated by maximum likelihood
using the R statistical software package [R Development
Core Team, 2009].

We ran simulations for a range of RRs, using multi-
plicative, recessive, and dominant disease models. While
there are many possible disease models we might consider,
these represent extreme ends on the scale of deviations
that we would generally expect to observe in real studies.

For simplicity, we only ran simulations with single-
SNP disease models. Since we showed theoretically that
dominance and interaction effects have the same order

decay, we expect that simulations with interaction effects
to show similar results to what we learn about dominance
effects here.

RESULTS

Figure 5 shows how the additive and dominance
parameter estimates at the hit SNPs vary with LD, for
simulations where the causal SNP is dominant. As
predicted by theory, the dominance parameter tends
toward the null value of 0 at a faster rate than does the
additive parameter. Note that these plots show data
covering the entire range of causal allele frequencies in
the ENCODE regions, unlike the theoretical curves
(Figs. 2–4), which are only for two specific values.

Table I shows the distribution of the three outcomes
for simulations across different disease models and RRs.
We see that much of the time when we detect association,
the deviation test will also give the correct outcome, even
at the smaller effect sizes. This is despite the distortion
effect observed above. The reason for this is that the LD
between the causal and hit SNPs is often quite high, and
thus will not suffer from much distortion. Figure 6A
shows a typical LD distribution for a set of simulations—
most of the time the hit SNP is at the extremes of the LD
spectrum. Correspondingly, Figure 6B shows the distribu-
tion of outcomes for a given amount of LD, and Figure 6C
shows the outcome of the deviation test among detected
associations only. We see that, as the LD decreases, the
relative amount of distortion among detected associations

TABLE I. Power estimates from simulations

Outcome (%)
Deviation detection rate

Model Hom. RR Undetected Assoc. only Assoc.1deviation among associations (%)

Multiplicative 1.12 100 0 0 –
Multiplicative 1.22 94 5 0 5
Multiplicative 1.32 70 29 2 6
Multiplicative 1.42 49 49 2 5
Multiplicative 1.52 39 59 3 5
Multiplicative 2.02 23 73 4 5

Dominant 1.12 100 0 0 –
Dominant 1.22 84 9 7 46
Dominant 1.32 64 12 24 68
Dominant 1.42 56 10 34 77
Dominant 1.52 51 10 39 80
Dominant 2.02 41 9 51 86

Recessive 1.12 100 0 0 –
Recessive 1.22 84 8 7 47
Recessive 1.32 62 12 26 69
Recessive 1.42 52 11 37 76
Recessive 1.52 46 11 43 79
Recessive 2.02 32 11 58 85

The distribution of simulation outcomes over a range of disease models and effect sizes. The effect size is given by the homozygous RR
(‘‘Hom. RR’’), which compares the risk of the two homozygotes. Each row shows results aggregated across the 20,968 simulations for a
given disease model and effect size, effectively averaging over the allele frequency distribution in the ENCODE regions. The three possible
outcomes from each simulation are: the hit SNP does not pass the scan and replication criteria (‘‘Undetected’’); that it passes these criteria
but a subsequent deviation test is not significant (‘‘Assoc. only’’); or that this test is significant (‘‘Assoc.1deviation’’). The final column
shows the proportion of simulations for which deviation was detected among those for which an association was detected (omitted for the
smallest effect size due to very small numbers of detected associations). All figures are rounded to the nearest percentage. RR, relative risk;
SNP, single nucleotide polymorphism.
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gradually increases. The overall proportion of associations
detected without deviation may seem slightly small
(i.e. the yellow bars in Fig. 6B), but note that this is in a
sense ‘‘competing’’ with the no-association outcome as the
LD decreases, so will only represent the small window of
outcomes where g is diminished sufficiently to make it
hard to detect but where b0 is not.

The use of the trend test induces an ascertainment bias
in favor of additive effects. A natural alternative is to use
the test with 2 degrees of freedom that compares the
general model with the null model, which we refer to as
the general test. There are merits, but also disadvantages, to
using this test (see Discussion). Since GWAS are typically
analyzed with the trend test, here we focused only on
results from simulations based on that test.

The results we have shown here are for a given sample
size and range of effect sizes. Since power depends on
both of these factors in a simple way, they are also more
generally applicable. Specifically, the noncentrality para-
meter is proportional to Ny2, where y is the parameter of

interest (see Equations (A.3)–(A.5) in Appendix A).
For example, if one is interested in what happens for a
sample size of 2N, then the same qualitative results would
be obtained for y=

ffiffiffi
2
p

as were obtained for y with sample
size N. Thus, it is sufficient to conduct simulations for only
one sample size to yield conclusions that hold more
generally.

DISCUSSION

The correlation along the human genome has allowed
GWAS to look for regions associated with disease without
having to genotype with all known genetic variants.
Although this approach has been successful, it entails that
observed GWAS associations will often only be surrogates
for the casual variants and will typically represent a noisy
measurement of them. One consequence of this is that the
disease model as inferred from associated loci may be a
distorted version of the true disease model. Through
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Fig. 6. A breakdown of the simulation results by outcome and LD, for simulations with a dominant model with a homozygous RR of

1.42. The LD is shown as the r2 between the causal and hit SNPs, split into bins of width 0.1 (labeled on the x-axis with the highest

possible r2 value for each bin). The three possible outcomes are: the hit SNP does not pass the scan and replication criteria
(‘‘Undetected’’); that it passes these criteria but a subsequent deviation test is not significant (‘‘Detected without deviation’’); or that this

test is significant (‘‘Detected with deviation’’). For each LD bin: panel A shows the absolute counts of each outcome, panel B shows

their relative proportions, while panel C shows the relative proportions of the last two outcomes only. Note that the two leftmost

columns in panel C are based on very small counts and so the exact values plotted are not precise estimates of the relative proportions.
LD, linkage disequilibrium; SNP, single nucleotide polymorphism; RR, relative risk.
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analytical derivations, we have characterized the relation-
ship between disease model parameters and LD, and the
resulting impact on power. These show that dominance
interaction effects tend to decay quickly, and that such
distortions therefore tend to make the disease model
look more like a multiplicative model as the correlation
between causal and hit SNPs decreases.

To quantify the effect of distortion on observed GWAS
outcomes, we ran an extensive simulation study designed
to mimic patterns of LD in European Caucasian popula-
tions. We considered recessive and dominant models, both
representing natural extremes for deviation away from a
multiplicative model. We were specifically interested in the
power of detecting such deviations, and also ran simula-
tions under the multiplicative model for comparison.

Our analyses showed that if the true model is recessive
or dominant, but the locus is nonetheless detected by
using the trend test, then a standard test will often also
successfully detect deviation from a multiplicative model.
Informally, for the relatively small effect sizes typical at
GWAS loci, the effect is unlikely to be detected unless the
causal variant is relatively common and well tagged by the
SNPs on the chip. The high correlation between the causal
and hit SNPs then means that there is reasonable power to
detect deviation from the multiplicative model, even
under model distortion. While encouraging, we note, first,
that the dominant and recessive models are extreme, and
power to detect nonmultiplicative models, which are
‘‘closer’’ to the multiplicative model, will be lower. Second,
as our simulations show, there will be settings where the
model distortion is such that under the recessive and
dominant models the locus is not detected at all using the
trend test.

Nearly 3,000 disease associations from GWAS have been
published in the past few years [Hindorff et al., 2010].
Relatively few of these are known to follow specific,
nonmultiplicative models. It may be that testing for
deviations is not done routinely, although even in studies
where such investigations have been carried out, few SNPs
have shown convincing evidence of recessive or dominant
effects [e.g. Wellcome Trust Case Control Consortium,
2007]. Our simulations have shown that such effects will
often be detectable, and therefore it is worth explicitly
testing associated loci for deviations. As noted above, real
disease effects may not deviate as much as fully recessive
and dominant effects, and small deviations from multi-
plicativity will be relatively hard to detect, and easily
disguised with only a slight amount of distortion.

One consideration in the analyses of GWAS data is
which statistical test or model to use for the initial genome-
wide scan. Since we expect to detect SNPs that are affected
to a greater or lesser extent by distortion, a sensible default
choice is the trend test, which is well-powered for
multiplicative effects. It also has the benefit of being more
robust to genotyping error than, for example, the general
two degree of freedom test [Ahn et al., 2007]. We note that
others have also made similar recommendations [Cantor
et al., 2010; Iles, 2008]. Nevertheless, the trend test can be
usefully complemented by the general test [Wellcome
Trust Case Control Consortium, 2007], or other approaches
for investigating nonmultiplicative models, such as the
deviation test. The corresponding advice for Bayesian
analyses is to place most of the prior weight on multi-
plicative models, and spread the rest out more widely
[Stephens and Balding, 2009].
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APPENDIX A: DERIVATION OF THE
NONCENTRALITY PARAMETERS

We derive noncentrality parameters for the three testing
scenarios outlined in the main text: the trend test, the
deviation test, and the interaction test. In each case, we
consider a Wald test using a logistic regression model. While
a score test is standard in the first scenario, deriving the
noncentrality parameter for such a test gives the same result
(derivation not shown), and the two tests are nonetheless
asymptotically equivalent [Cox and Hinkley, 1974].

Let the number of cases and controls be S and R,
respectively, the total number of individuals in the
sample be N, and the proportion of cases in the sample
be f5 S/N. At a given SNP, let the number of individuals
with genotypes 0, 1, and 2 be n0, n1, and n2, respectively.
Let the subscript i refer to individual i.

TREND TEST

For convenience, we reparameterize the multiplicative
model by mean-centering the genotypes,

logitðpiÞ ¼ n1bðGi � �GÞ;

where �G ¼ ðn112n2Þ=N is the genotype mean and n ¼
m1b �G is the new baseline parameter. This makes the
parameterization ‘‘null orthogonal’’ as defined by Kass and
Vaidyanathan [1992], who show that, in what follows, we
may assume that the Fisher information matrix is approxi-
mately diagonal. Note that the b parameter is unchanged (it
only depends on the differences between genotypes between
individuals and these are unchanged after mean-centering),
but m has been replaced by n. We denote the mean-centered

genotypes by Ai ¼ Gi � �G. Note that
P

i Ai ¼ 0.

The likelihood function is L ¼
QN

i p
yi

i ð1� piÞ
1�yi . Let

l 5 log L be the log-likelihood. Since the Fisher information
matrix is approximately diagonal, the likelihood approxi-
mately factorizes into components attributable to each
parameter. Thus, we only need to consider the submatrix
corresponding to b, which can be shown to be,

Ibb ¼ E �
q2l

qb2

� �
¼
XN

i¼1

A2
i pið1� piÞ: ðA:1Þ

We now propose further approximations to this expres-
sion. First, we approximate the logistic function by a

Taylor expansion about n and apply it to the regression
probabilities,

pi ¼
en1bai

11en1bai
¼

en

11en
1

en

ð11enÞ2
bai1

enð1� enÞ

2ð11enÞ3
b2a2

i 1Oðb3
Þ:

Under the null, by design we have,

en

11en
¼ f:

This will be a good approximation under the alternative as
well—it can be shown that the MLE of n satisfies this
equation up to terms OðbÞ. This gives a simpler expression
for the Taylor expansion,

pi ¼ f1fð1� fÞbai1fð1� fÞð1� 2fÞb2a2
i 1Oðb3

Þ:

A useful expression derived from this is,

pið1� piÞ ¼ fð1� fÞ 11ð1� 2fÞbai1Oðb2
Þ


 �
¼ fð1� fÞ1OðbÞ: ðA:2Þ

Note that the terms containing (1�2f) disappear when
f5 1/2 (equal number of cases and controls), meaning
that these approximations are particularly good in that

case—e.g. OðbÞ becomes Oðb2
Þ in the last equation.

Applying the expansion from Equation (9) to Equation (8)
gives,

Ibb ¼ fð1� fÞ
XN

i¼1

A2
i 1OðbÞ:

The reciprocal of this is the asymptotic variance of the MLE

of b, varðb̂Þ ¼ I�1
bb . The Wald test statistic for b asymptoti-

cally follows a w2
1 distribution with noncentrality parameter

Z5b2/var(b̂). Therefore,

Z ¼ fð1� fÞ
XN

i¼1

A2
i b

21Oðb3
Þ:

When effect sizes are small, as is the norm for GWAS, the

Oðb3
Þ terms become negligible and may be omitted. We can

also further simplify this expression by assuming HWE and
taking the expectation over the genotypes,

E
XN

i¼1

A2
i

 !
¼ ðN� 1Þ varðGÞ ¼ ðN� 1Þ2fð1� fÞ � 2Nfð1� fÞ;

which gives,

Z � 2Nfð1� fÞfð1� fÞb2: ðA:3Þ

Chapman et al. [2003] derive a similar result, with their
formula expressed in terms of allele frequencies in cases
and controls rather than the disease effect parameters
directly.

DEVIATION TEST

Considering the general model, we follow an analogous
derivation to the above. The mean-centered reparameter-
ization is,

logitðpiÞ ¼ n1bðGi � �GÞ1g 1Gi¼1 �
n1

N

� 

;

with n1/N being the mean of 1Gi¼1 across the sample, and

n ¼ m1b �G1gn1=N. Let Ai ¼ Gi � �G and Bi ¼ 1Gi¼1 � n1=N.
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Note that
P

i Ai ¼
P

i Bi ¼ 0. With this parameterization,
we only need to consider the Fisher information submatrix
corresponding to the disease effect parameters, b and g,

I ¼ I ðb;gÞðb;gÞ ¼
XN

i¼1

A2
i AiBi

AiBi B2
i

� 	
pið1� piÞ:

A two-dimensional Taylor expansion similar to Equation (9)
gives,

pið1� piÞ ¼ fð1� fÞ1Oðb; gÞ;
and lets us simplify the Fisher information,

I ¼ fð1� fÞ
P

A2
i

P
AiBiP

AiBi
P

B2
i

� 	
1Oðb; gÞ:

Assuming HWE we have,

E
XN

i¼1

A2
i

 !
¼ðN � 1Þ varðGÞ

¼ðN � 1Þ2fð1� fÞ

�2Nfð1� fÞ;

E
XN

i¼1

AiBi

 !
¼ðN � 1Þ covðG; 1G¼1Þ

¼ðN � 1Þ2fð1� fÞð1� 2fÞ

�2Nfð1� fÞð1� 2fÞ;

E
XN

i¼1

B2
j

 !
¼ðN � 1Þ varð1G¼1Þ

¼ðN � 1Þ2fð1� fÞð1� 2f12f2Þ

�2Nfð1� fÞð1� 2f12f2Þ:

Replacing the terms in the matrix above with these
expectations gives,

I � 2Nfð1� fÞfð1� fÞ
1 1� 2f

1� 2f 1� 2f12f2

� 	
1Oðb; gÞ:

Inverting and taking the bottom-right element gives the
asymptotic variance of ĝ,

varðĝÞ ¼ I�1
gg �

1

4Nf2ð1� fÞ2fð1� fÞ
1Oðb; gÞ:

The Wald test statistic for g asymptotically follows a w2
1

distribution with noncentrality parameter Z ¼ g2=varðĝÞ.
Therefore,

Z � 4Nf2ð1� fÞ2fð1� fÞg21Oðbg2; g3Þ:

When effect sizes are small, as is the norm for GWAS, the
Oð�Þ terms become negligible and may be omitted,

Z � 4Nf2ð1� fÞ2fð1� fÞg2: ðA:4Þ

INTERACTION TEST

We follow an analogous derivation to the above using
the interaction model. We will assume that the genotypes
at the two SNPs in the model are independent (i.e. in
linkage equilibrium). This is the simplest scenario and will

generally hold for SNPs that are distant to each other or on
separate chromosomes. When there is LD between the two
SNPs, the ability to observe interaction is impaired
because some of the genotype combinations become less
frequent. In the extreme scenario of complete LD,
interaction cannot be observed at all.

For notational convenience, we denote the genotypes at
the two SNPs by G and H, respectively, and the additive
parameters by b1 and b2, respectively. The mean-centered
reparameterization is,

logitðpiÞ ¼ n1b1ðGi � �GÞ1b2ðHi � �HÞ1tðGiHi � �MÞ;

with Mi 5 GiHi and �M being its mean across the sample. Let
Ai ¼ Gi � �G, Bi ¼ Hi � �H, and Ci 5 GiHi�M. Note thatP

i Ai ¼
P

i Bi ¼
P

i Ci ¼ 0. With this parameterization, we
only need to consider the Fisher information submatrix
corresponding to the disease effect parameters, b1, b2, and t,

I ¼ I ðb1 ;b2 ;tÞðb1 ;b2 ;tÞ ¼
XN

i¼1

A2
i AiBi AiCi

AiBi B2
i BiCi

AiCi BiCi C2
i

2
4

3
5pið1� piÞ:

A three-dimensional Taylor expansion similar to Equation (9)
gives,

pið1� piÞ ¼ fð1� fÞ1Oðb1; b2; tÞ;

and lets us simplify the Fisher information,

I ¼ fð1� fÞ

P
A2

i

P
AiBi

P
AiCiP

AiBi

P
B2

i

P
BiCiP

AiCi
P

BiCi
P

C2
i

2
4

3
51Oðb1; b2; tÞ:

Assuming HWE, we have

Eð
P

A2
i Þ � 2Nfð1� fÞ; Eð

P
AiBiÞ � 0;

Eð
P

B2
i Þ � 2Nf 0ð1� f 0Þ; Eð

P
AiCiÞ � 4Nff 0ð1� fÞ;

Eð
P

C2
i Þ � 4Nff 0ð11f1f 0 � 3ff 0Þ; Eð

P
BiCiÞ � 4Nff 0ð1� f 0Þ;

where f and f 0 are the allele frequencies of the two SNPs.
These expectations are derived as previously, based on the
variances and covariances of the quantities G, H, and M.
Replacing the terms in the matrix above with these
expectations gives,

I � 2Nfð1�fÞ

fð1� fÞ 0 2ff 0ð1� fÞ

0 f 0ð1� f 0Þ 2ff 0ð1� f 0Þ

2ff 0ð1� fÞ 2ff 0ð1� f 0Þ 2ff 0ð11f1f 0 � 3ff 0Þ

2
64

3
75

1Oðb1;b2; tÞ:

Inverting and taking the bottom-right element gives the
asymptotic variance of t̂,

varðt̂Þ ¼ I�1
tt �

1

4Nfð1� fÞf 0ð1� f 0Þfð1� fÞ
1Oðb1;b2; tÞ:

The Wald test statistic for t asymptotically follows a w2
1

distribution with noncentrality parameter Z ¼ t2=varðt̂Þ.
Therefore,

Z � 4Nfð1� fÞf 0ð1� f 0Þfð1� fÞt21Oðb1t
2; b2t

2; t3Þ:

When effect sizes are small, as is the norm for GWAS, the
Oð�Þ terms become negligible and may be omitted,

Z � 4Nfð1� fÞf 0ð1� f 0Þfð1� fÞt2: ðA:5Þ
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