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To understand the evolutionary dynamics between transcription factor (TF) binding and gene expression in mammals, we
compared transcriptional output and the binding intensities for three tissue-specific TFs in livers from four closely related
mouse species. For each transcription factor, TF-dependent genes and the TF binding sites most likely to influence mRNA
expression were identified by comparing mRNA expression levels between wild-type and TF knockout mice. Independent
evolution was observed genome-wide between the rate of change in TF binding and the rate of change in mRNA ex-
pression across taxa, with the exception of a small number of TF-dependent genes. We also found that binding intensities
are preferentially conserved near genes whose expression is dependent on the TF, and the conservation is shared among
binding peaks in close proximity to each other near the TSS. Expression of TF-dependent genes typically showed an
increased sensitivity to changes in binding levels as measured by mRNA abundance. Taken together, these results
highlight a significant tolerance to evolutionary changes in TF binding intensity in mammalian transcriptional networks
and suggest that some TF-dependent genes may be largely regulated by a single TF across evolution.

[Supplemental material is available for this article.]

A multitude of cis-regulatory elements, including promoters, en-

hancers, silencers and insulators, control the initiation and regu-

lation of gene expression. The action of transcription factors (TFs)

in recognizing and dynamically binding to degenerate sequence

motifs located at regulatory elements plays a key role in tran-

scription. Binding of multiple TFs in close vicinity of one another

defines cis-regulatory modules that can specify distinct cell fates,

and variable occupancy levels of the same cis-regulatory module

can regulate the same set of target genes to changed biological

outcomes (MacArthur et al. 2009). The importance of such co-

operative regulation is highlighted by the codependence of TF

binding observed across evolution (He et al. 2011; Paris et al. 2013;

Stefflova et al. 2013).

Much of our current understanding of the regulatory land-

scape in animals and the complex transcriptional pathways they

control is derived from studies in Drosophila and yeast (Biggin

2011). However, mammalian genomes are more vulnerable to

random genetic drift due to smaller effective population sizes

(Lynch 2007). How such differences have shaped the transcription

factor binding landscape and how this then impacts the elaborate

gene networks they control is poorly understood. TF binding may

evolve under less selective pressure in mammals compared with

nonvertebrate species due to the aforementioned population ef-

fect. Indeed, a recent study by Cusanovich et al. (2014) showed

that following the siRNA knockdown of 56 TFs in a human lym-

phoblastoid cell line, only a modest change in genome-wide gene

expression levels could be detected (;10% median effect size).

Their results also suggest that the majority of binding events have

little to no impact on gene expression.

Chromatin immunoprecipitation followed by deep sequenc-

ing (ChIP-seq) is widely used to identify in vivo TF binding sites

across the genome—producing a quantitative measure at each

genomic locus where the TF is bound to DNA. Known as binding

intensity or binding occupancy, this signal correlates with se-

quence motif conservation and also reflects in vivo binding

strength (Sun et al. 2013).

Comparative ChIP-seq studies across closely related species

have revealed that both TF peak turnover and peak intensity are

highly variable in mammals (Schmidt et al. 2010; Stefflova et al.

2013). In contrast, the locations of TF binding sites are generally

conserved among yeast and Drosophila species (Borneman et al.

2007; Bradley et al. 2010), where;50%of binding peaks are shared

across Drosophila species despite changes to binding intensity

levels (Bradley et al. 2010; He et al. 2011).

To examine the coevolution of TF binding and gene expres-

sion in mammals, we leveraged liver ChIP-seq data sets for three

liver-specific transcription factors, FOXA1, CEBPA, and HNF4A,

across four closely related species ofmice (Stefflova et al. 2013) and

supplemented these data sets by sequencing matching liver tran-

scriptomes for the same mouse species. Given the rapid rate of

biochemical change in transcription factor binding, the short

evolutionary timescale simultaneously allows adequate time for

transcriptional changes to accrue and yet provides sufficient levels

of regulatory conservation across species for comparative study.

We tracked the evolutionary trajectory of mRNA output over
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evolutionary time to study its pattern of

divergence as well as its covariance with

lineage-specific transcription factor bind-

ing. Finally, we exploited the availability

of genetically modified TF knockout mice

to identify the cis-binding events that are

likely to influence transcriptional output.

Analysis of the binding events associated

with these TF-dependent genes allowed

us to assess the relative contribution of

binding intensity change to gene expres-

sion across evolution.

Results

Gene expression levels are more
evolutionarily conserved than
collective TF binding

We sought to directly compare the con-

servation of gene expression levels with

that observed for TF binding in closely

related mouse species (Stefflova et al.

2013), and thus we generated RNA-seq li-

braries of liver samples from at least three

individuals from the four mouse species

used in the prior study: Mus musculus

musculus (BL6), Mus musculus canstaneus

(CAST), Mus spretus (SPRET), and Mus

caroli (CAR) (see Methods). To define

orthologous genes across species, we

aligned Mus musculus cDNA sequences

against the genomes of CAST, SPRET, and

CAR (Keane et al. 2011; Stefflova et al.

2013). RNA-seq reads were then mapped

to their respective genomes, and the ex-

pression level for each gene was de-

termined by allocating aligned reads to

gene annotations for each species (see

Methods; Supplemental Fig. S1). A total

of 10,115 putative orthologous genes

were expressed across species above a read

count threshold of 10. In total, 4465

genes (44% of expressed genes) were dif-

ferentially expressed in at least one pair-

wise species comparison (FDR < 0.01).

The numbers of differentially expressed

genes between species correlated with evolutionary distance and

ranged from 705 genes (BL6 versus CAST) to 2686 genes (CAST

versus CAR).

In order to directly compare TF bindingwith gene expression,

we calculated an integrated binding score representative of the

proximal binding intensity of each TF for each expressed gene. Our

analysis of TF binding data thus focused on two quantitative

measures: (1) Each discrete binding site has what we call a peak

intensity, and (2) the collective binding intensity of all individual

peaks near each gene was referred to as binding intensity. To cal-

culate a collective binding intensity score for each gene, we took

into account the number of peaks, the peak intensities, and peak

distance from the transcription start site (TSS), up to 100 kb in both

the 59 and 39 directions (see Methods; Fig. 1A,B). Distal peaks were

down-weighed as proximal enhancers are generallymore predictive

of gene expression than distal ones (Andersson et al. 2014). We

found that an approach using summed binding intensity values

linearly weighted by distance provided a better correlation with

mRNA levels compared with unweighted summed peak inten-

sities or simple peak counts (e.g., HNF4A BL6 R2: using distance

weights = 0.13, summed intensity = 0.089, total peak counts = 0.087).

Once binding intensities were obtained, we quantile-normalized

these values across species and log-transformed the values. We

also mean-centered and set the variance of binding values to 1 on

a species-specific basis; mRNA counts were similarly processed (see

Methods).

More than 50,000 binding sites were found for each TF in

each species. Following the above method of peak aggregation,

a median of four to seven binding sites were associated to each

gene for each species and TF. The maximum numbers of peaks

Figure 1. Evolution of transcription factor binding and gene expression between closely related
mammals. (A) Overview of lineage-specific relationship of TF binding (green) and gene expression
(purple), sorted by gene expression. Darker regions in the heatmap denote higher values of binding and
expression. Genes were selected for the heatmap based on differential expression in one lineage versus
the others with expression values in other lineages also shown. Corresponding binding values in the
proximity of each gene are displayed and illustrate the noisy relationship between binding and ex-
pression. (B) Description of the method used for calculating a binding score for each gene (i) for each TF
(j). Each peak (k) was weighted by its distance from any TSS within 100 kb. For each gene, weighted
peak intensities for all peaks within 100 kb of either direction from the TSS were summed. (C ) High
expressed genes are more highly occupied by TFs. (D) Spearman’s rho for pairwise correlation of ex-
pression and binding between mouse species. (E) Decay rate of correlation coefficient for binding and
expression. Shaded areas represent point-wise 95% confidence intervals.
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associated with a gene ranged from 61 for CEBPA and FOXA1 to 72

for HNF4A. Approximately 60% of assigned peaks were associated

with more than one liver-expressed protein-coding gene.

We found gene expression to be more highly conserved com-

pared to binding intensities across species (expression Spearman’s

rho = 0.79–0.92; binding Spearman’s rho = 0.53–0.78) (Fig. 1D). By

mapping the correlation coefficient of pairwise binding intensities

and expression values against species divergence times using a

linearmodel, we found amarginally faster rate of correlation decay

for binding compared to expression (P < 0.05; binding slope =

�0.4; expression slope = �0.2) (Fig. 1E). To measure the predictive

ability of TF binding on gene expression, we performed multiple

linear regression on gene expression level using the binding in-

tensities of all TFs as independent variables. Separate regressions

wereperformed for each species.Consistentwith findings inhuman

cell lines and fruit flies (Ouyang et al. 2009; Paris et al. 2013), we

found binding intensities to beweakly predictive of gene expression

(multiple linear regression, adj. R2 = 0.21–0.23, P < 2.2 3 10�16)

(Fig. 1C). For all species, regressions that included interaction

terms between TFs were significantly more predictive than those

that did not (ANOVA, P < 2.2 3 10�16). For all species, the three-

way interaction regression coefficient was significant, indicative

of differential interactions between TFs (multiple linear regression,

P < 1 3 10�3).

Overall, these results demonstrate higher evolutionary con-

servation for gene expression compared to TF binding in the same

mammalian system, and confirm that combinatorial TF binding is

positively correlated with transcriptional levels of nearby genes.

Collective binding intensity near TF-dependent genes
are preferentially conserved

To identify protein-coding genes that are most likely to be regu-

lated by our set of TFs, we compared protein-coding mRNA ex-

pression in the livers of wild-type (WT) and TF knockout (KO)

mice (Fig. 2). We assigned the term ‘‘TF

dependent’’ to those genes that show

altered expression levels following TF

knockout. Conversely, for simplicity, we

assigned the term ‘‘TF independent’’ to

those genes that did not meet our strin-

gent cutoff for differential expression (see

Methods).

Gene expression results for FOXA1

and CEBPA KO mice have been pre-

viously reported (Schmidt et al. 2010;

Bochkis et al. 2012), and we used these

data directly. For HNF4A, we performed

RNA-seq using Hnf4a KO and WT mice

(Fig. 2A). We conservatively estimated

that;3% of genes showed a clear change

in gene expression following Hfn4a knock-

out. TF-dependent protein-coding genes

from similar knockout experiments in adult

mouse liver for Cebpa (Schmidt et al. 2010)

and Foxa1 (Bochkis et al. 2012) comprised

of 0.8%and0.5%, respectively, of the liver-

expressed genes in our data set (Fig. 2B).

Compared to TF-independent genes,

TF-dependent genes showed a higher abun-

dance of binding sites of the TF near the TSS,

suggesting that they are more likely to be

directly regulated by the deleted transcription factor; such amodel is

a general mechanism in fruit flies (Biggin 2011; Paris et al. 2013).

Under our stringent significance cutoffs, the genes considered

dependent on any of the three TFs were largely distinct from one

another (Fig. 2C). TF-dependent genes were also more likely to

be differentially expressed between different species, with the

exception of FOXA1 (Odds ratio [OR]: HNF4A = 1.4, CEBPA = 5.4,

FOXA1 = 0.95). In addition, our data show that mammalian TF-

dependent genes typically possessed higher binding intensity

compared to genes less sensitive to TF knockdown (Fig. 3A).

We used general linear models to assess whether binding in-

tensities proximal to TF-dependent genes weremore conserved.We

calculated the correlation coefficients of binding intensities for each

pair of species for TF-dependent and TF-independent genes (Fig. 3B,

C). The null hypothesis that binding intensities for TF-dependent

and TF-independent genes were statistically indistinguishable from

one another was tested using the analysis of covariance (ANCOVA)

(seeMethods).We found that collective binding intensitywas better

conserved proximal to TF-dependent genes compared to inde-

pendent genes (ANCOVA; HNF4A: P = 4.33 10�4; CEBPA: P = 3.33

10�3; FOXA1: P = 7.5 3 10�4) (Fig. 3B,C). Moreover, the rate of

binding correlation change over time was slightly, but signifi-

cantly, faster for HNF4A and FOXA1 independent genes com-

pared to dependent genes (linear regression; HNF4A difference in

slope = 0.03, P = 8.53 10�3; FOXA1 difference in slope = 0.02, P =

1.9 3 10�2).

Average binding intensities across species were negatively

correlatedwith the standard deviation (P < 2.23 10�16, Pearson’s r =

�0.21 to �0.31) (Supplemental Fig. S2A–C), meaning that sites of

strong TF binding show lower variability in TF binding between

mouse species. We therefore considered the possibility that this

correlation may explain the TF binding stability at target genes.

To explore this, we first restricted the set of TF-independent

genes to only those with binding intensities greater than the me-

dian intensity of TF-dependent genes. Using a matched cutoff for

Figure 2. TF-dependent genes are defined by differential expression analyses against wild-type
samples after knockout experiments. (A) TF-dependent genes are defined as those genes whose gene
expression changed in the liver following knockout of the TF. Numbers of HNF4A target genes were
conservatively estimated using a stringent P-value cutoff. (B) TF-dependent genes for CEBPA, FOXA1,
and HNF4A respective to total numbers of liver-expressed genes (genes with raw expression counts
above 10 reads per species). (C ) Venn diagram shows the number of common and distinct genes be-
tween all TF-dependent gene sets.
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dependent genes, we measured conservation values, as before,

based on pairwise correlation between species, and tested for

a difference between the fitted regression lines for restricted TF-

dependent versus restricted independent genes. Binding in-

tensities remained significantly less conserved for TF-independent

genes for all TFs, suggesting that the conservation of TF binding

was not conditional on high binding intensities (ANCOVA;

HNF4A: P = 4.03 10�7; CEBPA: P = 8.3�4; FOXA1: P = 9.13 10�3).

In addition, we also subsampled from the set of TF-independent

genes to construct a set of TF-independent genes with a similar

binding intensity distribution to TF-dependent genes. Compari-

sons between the TF-dependent and subsampled TF-independent

groups were consistent with our previous findings, albeit with re-

duced statistical significance (HNF4A: P = 9.8 3 10�6; CEBPA: P >

0.1; FOXA1: P = 1.8 3 10�3) (Supplemental Fig. S3A).

Next, we explored the effect different approaches for in-

tegrating peak intensities had to our finding. Intensities of peaks

flanking 10 kb on each side of the TSS were used to calculate

a binding value for each gene. We found that binding intensities

near TF-dependent genes were conserved without distance-based

adjustment of peaks, however to a lesser extent (Supplemental

Table S1). Significant differences in conservation of binding in-

tensities between TF-dependent versus independent genes were

observed for HNF4A and CEBPA (HNF4A: P = 2.4 3 10�4; CEBPA:

P = 1.9 3 10�4; FOXA1: P = 0.7).

We investigated the effect of varying the distance-weighting

given to peaks around the TSS by introducing an exponential func-

tion that gives greater weight to peaks further away (Supplemental

Fig. S4). A constant value, d0, was used to

control the rate at which the intensity of

a peak decayed as the distance from the TSS

increases (see Methods). A small d0 value

will increase the speed of decay, and lessen

the contribution of more distant peaks.

Because the linear method strongly down-

weighted distant peaks, we parameterized

the exponential using d0 = 500 and d0 =

5000, both of which increased the contri-

bution of distant peaks (Supplemental Fig.

S4). For both exponential parameters, we

found similar results to the linear weight-

ing, all of which were substantially supe-

rior to no distance-based weighting of TF

binding (Supplemental Table S1), support-

ing the relative importance of proximal TF

binding sites in predicting mRNA levels.

In summary, we find that binding

intensities close to TF-dependent genes

are better conserved than bulk genes. This

trend is significant even after taking into

account the differences in binding in-

tensity levels between the groups and

different strategies of peak assignment to

genes.

Peak intensity, peak count,
and proximity of peaks to the TSS
are associated with binding
conservation near TF-dependent genes

In light of the variable nature of TF peak

conservation in mammals, we sought to

determine the genomic characteristics of TF binding sites associ-

ated with the observed increase in binding intensity conservation

near TF-dependent genes.We first investigated the 10 kb upstream

of and downstream from each transcription start site as a single

regulatory region for both TF-dependent and -independent genes.

We compared changes to pairwise correlation values between

species to evaluate the contribution made to the conservation of

collective binding intensity by (1) the total number of peaks in

each proximal promoter; (2) the summed binding; and (3) the

average binding intensity within each proximal promoter (sum-

med binding divided by the total number of peaks).

To closely examine the relationship between TF binding

conservation and distance from the TSS, we also divided the region

surrounding each TSS into 1-kb bins. We then compared the av-

erage correlation coefficients of TF binding for TF-dependent and

TF-independent genes between the three pairs of mouse species

that are of equal divergence times, namely BL6 andCAR, CASTand

CAR, and SPRET and CAR.

For HNF4A and FOXA1, but not CEBPA, TF-dependent genes

showed elevated conservation in summed peak intensities com-

pared with nontarget genes for all bins (Fig. 4; Supplemental

Fig. S4) (Mann-Whitney U test, across all bins comparing TF de-

pendent and independent; HNF4A: P = 4.5 3 10�5; FOXA1: P =

2.13 10�3; CEBPA: P = 0.25). Peak numbers were also best conserved

in the immediate vicinity surrounding the TSS for HNF4A- and

FOXA1-dependent genes, particularly in the 1-kb region immedi-

ately upstream of the TSS (Fig. 4; Supplemental Fig. S4) (one-tailed

paired t-test at 1-kb upstream of TSS, P-value HNF4A: P = 6.53 10�4;

Figure 3. Collective binding intensity is conserved near TF-dependent genes. (A) Boxplots comparing
collective binding intensities between TF dependent and TF independent for each TF (values are aver-
aged across species). P-values were calculated using the Mann-Whitney U test. (B) Correlation co-
efficients (Spearman’s rho) were derived from pairwise comparison of collective binding values between
taxa for both TF-dependent and TF-independent genes. (C ) Decay of TF binding correlation coefficient
over evolutionary time for the three TFs. TF-dependent genes tend to show greater conservation of
collective binding intensity compared to TF-independent genes. Shaded areas represent point-wise
95% confidence intervals.
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FOXA1: P = 2.2 3 10�2; CEBPA: P = 0.96; Mann-Whitney U test

across all bins; HNF4A: P = 2.3 3 10�2; FOXA1: P = 7.1 3 10�3;

CEBPA: P = 0.68). Peak intensities remained conserved for these

TF-dependent genes near the TSS after normalizing for the number

of peaks (Mann-WhitneyU test; HNF4A: P = 3.43 10�5; FOXA1: P =

1.9 3 10�2; CEBPA: P = 0.25).

We sought to determine the evolutionary scenario that gave

rise to total peak counts being more conserved in the general vi-

cinity of TF-dependent genes. Was this due to the conservation of

individual specific peaks, or was an average peak number main-

tained in the face of persistent peak turnover? We obtained peak

location information from Stefflova et al. (2013), in which peaks

from all species have been mapped to BL6 genome coordinates for

the purpose of direct comparison. We considered all peaks that lie

within a distance of 10 kb of any TSS. For each peak in BL6 and

CAR, peak locations were tested for genomic overlap between

species. We used Pearson’s x2 tests to assess whether individual

peak locations were more conserved near TF-dependent or TF-in-

dependent genes for each TF. These comparisons were performed

relative to the distribution of TF-independent peaks.

Individual peaks tend to be more conserved for HNF4A-

dependent genes. However, there is a trend across all TFs for

individual peaks to be more conserved at TF-dependent versus

TF-independent genes, although results were only statistically

significant (P < 1 3 10�3) for HNF4A. This was likely due to the

smaller numbers of TF-dependent genes for FOXA1 and CEBPA

(mean OR across TFs = 1.26) (Supplemental Table S2). To ascertain

whether our results were due to our choice of species for compar-

ison, we performed the same tests between two different species,

CAST and SPRET. Consistent with our previous results, we found

that with the general exception of HNF4A-dependent genes, peaks

were not statistically significantly more conserved for TF-de-

pendent versus TF-independent genes (Supplemental Table S3).

We then examined peak conservation on a gene-by-gene basis

by looking at the fraction of conserved peaks per gene (taken here

as overlapping locations between BL6 and CAR) for TF-dependent

and -independent genes. We assumed a parsimonious model of

evolutionary change, which does not take into account peak re-

birth, but is likely valid given the brief divergence time between

species.We found that a higher proportion of peaks were invariant

in the vicinity of HNF4A-dependent genes (Mann-Whitney U test;

BL6: P < 2.23 10�16; CAR: P = 1.43 10�3). Similarly, we witnessed

a similar fraction of invariant peaks in CEBPA and a slightly higher

fraction for FOXA1-dependent genes compared to background

values (Mann-Whitney U test; CEBPA BL6: P = 0.82, CAR: P = 0.97;

FOXA1 BL6: P = 6.7 3 10�3; CAR: P = 3.5 3 10�2).

In summary, peaks near TF-dependent genes (HNF4A,

FOXA1) were generally more likely to be invariant across species,

suggesting they are under selective constraint. Both TF binding

intensities and TF peak numbers are conserved. Intriguingly, de-

spite overall conservation of CEBPA binding intensities for CEBPA-

dependent genes (Supplemental Table S1), the exact locations of

peaks near CEBPA-dependent genes were not maintained across

species (Supplemental Tables S2, S3). This may suggest that overall

binding intensities at a locus are conserved despite the turnover of

individual peaks.

The transcription of genes dependent on HNF4A and CEBPA
show increased variability over evolution

One intuitively appealing model is that the transcription of genes

required for a tissue’s function, many of which are directly bound

by tissue-specific TFs, would be more stable over evolutionary

time. To test this, we used the change in correlation coefficient of

mRNA levels between species tomeasure the change in correlation

for mRNA abundance over time.

Figure 4. Both peak intensity and total number of peaks are conserved
near TF-dependent genes. Spearman’s rho correlation coefficient of
summed binding intensities (summation of all peak intensities within
binned region), peak counts, and average peak intensities (summed peak
intensities divided by the number of peaks in each bin) averaged over BL6
and CAR, CAST and CAR, and SPRET and CAR comparisons. These values
are summarized for 1-kb binned distances from TSS for TF-dependent
versus TF-independent genes for all three TFs. HNF4A dependent (dark
green) and HNF4A independent (light green). For other TFs, see Supple-
mental Figure S5.
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In contrast to this intuition, we found that gene expression of

TF-dependent genes varies more than bulk genes, even across

closely related mouse species; this contrasts sharply with the in-

creased conservation in TF binding found near TF-dependent

genes (Fig. 5A). In contrast to whatwe observed for TF binding (Fig.

3C), expression of TF-dependent genes was less conserved and

changes at a relatively faster rate compared with bulk genes. This

trend was statistically significant for CEBPA (P = 1.7 3 10�3) and

HNF4A (P = 4.73 10�5), but despite a similar trend, not significant

for FOXA1 (P = 0.04). A significantly faster rate of change in the

level of gene expression conservation was also observed for CEBPA

and HNF4A-dependent genes (CEBPA delta slope = 0.03; HNF4A

delta slope = 0.03). To explain the coupling of divergent gene ex-

pressionwith tightly conserved binding intensities at TF-dependent

genes, we hypothesized that TF-dependent genes were more sensi-

tive to changes in binding, with slight perturbations of regulator

occupancy capable of triggering a disproportionate transcriptional

response (Figs. 3C, 5A).

To further explore this result, we correlated mean expression

levels against their variance across species and found that average

expression values across species were slightly negatively correlated

with their standard deviation as a result of the log transform (P <

2.2 3 10�16; Pearson’s r = �0.08) (Supplemental Fig. S2D). Thus,

the increased variance observed in the more highly expressed TF-

dependent genes suggests that our results could not be due to an

underlying mean-variance relationship in liver gene expression

(Fig. 5B). Applying a variance stabilizing transformation to the

count data such that the values were approximately homoscedas-

tic supported this conclusion.

We assessed whether our findings could be due to differences

in expression levels between TF-dependent and TF-independent

genes by subsampling TF-independent genes to identify a collection

with a similar distribution in expression values to the TF-dependent

genes. This analysis revealed that TF-dependent genes are more

highly variable in gene expression compared to subsampled TF-

independent genes with similar expression distributions, consis-

tent with our previous findings (HNF4A: P = 6.35 3 10�6; CEBPA:

P = 4.7 3 10�4; FOXA1: P = 0.01) (Supplemental Fig. S3B). Fur-

thermore, restricting the analysis set to those genes that were

expressed at least as highly as the median expression level in the

TF-dependent gene set did not change the overall results (HNF4A:

P = 3.03 10�3; CEBPA: P = 0.01). TF-dependent genes also did not

show increased levels of inter-species variability compared to TF-

independent genes across taxa and TFs (Kolmogorov-Smirnov

one-tail test: HNF4A mean across species P = 0.67; CEBPA mean

across species P = 3.63 10�2; FOXA1mean across species P = 0.35).

We obtained similar results when we extended our analysis to

include BL6 to rat evolutionary comparisons using published rat

liver mRNA-seq data (ArrayExpress accession: E-MTAB-867) (Sup-

plemental Table S4; Kutter et al. 2012). Because transcript abun-

dance for the mouse-rat data set was estimated through de novo

transcriptome assembly without mapping reads to a genome, the

increased divergence in transcriptional variance of TF-dependent

genes appears robust to RNA-seq analysis methods.

To summarize, HNF4A- and CEBPA-dependent gene expres-

sion was less conserved and changed at a relatively faster rate

compared with TF-independent genes. That an increased level of

transcriptional variation was found for TF-dependent genes de-

spite an increased conservation of overall binding intensities may

at first seem counterintuitive. However, this would indeed be

expected if TF-dependent genes were, as a whole, inherently more

sensitive to changes in TF intensities, where in contrast, the ex-

pression of TF-independent genes was buffered against changes to

TF binding levels.

A Brownian motion model reveals TF
binding evolution is typically
decoupled from gene expression
evolution in mammals

To test the hypothesis that the transcrip-

tion of TF-dependent geneswas inherently

more sensitive to changes in TF binding

intensities, we used a Brownian motion

model of continuous character change

(Felsenstein 1985) to estimate and com-

pare evolutionary rates of binding and ex-

pression change. We modeled these traits

for all expressed genes by applying a maxi-

mum likelihood strategy to fit a rate of

binding change and a rate of expression

change, which were conditional on the

expected phylogeny of the mice species.

This analysis was performed for each gene

and separately for binding and gene ex-

pression (Fig. 6A).

Rates of TF binding change were mod-

estly correlated between TFs (Spearman’s

correlation P < 2.23 10�16; FOXA1 versus

CEBPA rho = 0.27, FOXA1 versus HNF4A

rho = 0.33, CEBPA versus HNF4A rho =

0.34). The rate of binding evolutionwas, on

average, greater than that for gene expres-

sion and was also more variable around

Figure 5. HNF4A and CEBPA TF-dependent genes show divergent transcriptional output. (A) Evo-
lutionary change for gene expression for TF-dependent versus TF-independent genes for the three TFs.
Darker shading denotes the point-wise 95% confidence interval for TF-dependent genes, whereas
lighter shading represents the interval for TF-independent genes. (B) Mean gene expression level across
species for genes independent of the three TFs and TF-dependent genes for each of the TFs. P-values
were calculated by comparing TF-dependent versus TF independent gene expression values using the
Mann-Whitney U test.
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the mean, consistent with evidence that transcriptional output is

better conserved than binding (Fig. 6B). Average expression levels

across species also showed a significant, but noisy, negative cor-

relation with gene expression evolutionary rates; in other words,

highly expressed genes tend to evolve more slowly (P < 2.2 3

10�16; Pearson’s r = �0.13) (Fig. 6B).

Most notably, across all expressed genes we found no corre-

lation between the rate of collective binding intensity change and

the corresponding rate of change in mRNA transcript level at each

gene (HNF4A P = 0.03, Pearson’s 95% CI [2 3 10�3, 4 3 10�2];

CEBPA P = 7.4 3 10�3, Pearson’s 95% CI [7 3 10�3, 5 3 10�2];

FOXA1 P = 0.15, Pearson’s 95%CI [�53 10�3, 33 10�2]) (Fig. 6C).

This result is in clear contrast to the significant, albeit noisy,

correlation found between expression and nearby TF binding

within single eukaryotic species (Ouyang et al. 2009; Paris et al.

2013; Andersson et al. 2014). That the

rate of binding and expression change

is not correlated despite correlation be-

tween gene expression and TF binding

suggests that tight regulation of the pre-

cise binding level of these liver-specific

TFs is not required for stable gene ex-

pression in adult liver. Similarly, an in-

dependent relationship between binding

variance and expression variance has been

reported inDrosophila embryos (Paris et al.

2013).

Additionally, we fitted the same

data sets to the more complex Ornstein-

Uhlenbeck model, which adds two pa-

rameters to the Brownian motion model

to estimate selection, stabilized to an opti-

mal binding or expression value. Likeli-

hood tests supported the simplerBrownian

motion model over the more complex

one. This was expected given our small

sample sizes with large numbers of mul-

tiple P-value correction tests (Holm

method) due to the large number of

expressed genes.

Hence, we do not observe covariance

of binding and expression evolutionary

rates for the majority of expressed genes

over time. These results suggest that over-

all gene expression levels aremodulated in

liver largely independently of variations in

binding intensities of these liver tran-

scriptional regulators across species time.

HNF4A-dependent genes show subtle
covariance in transcriptional
and binding rates of evolutionary
change

Given that TF-dependent genes appeared

more transcriptionally sensitive to TF

binding, we hypothesized that TF-de-

pendent genes may show covariance in

their rates of binding and transcriptional

change, despite the little effect observed

for bulk genes. We thus compared the

evolutionary rates for binding and expres-

sion for genes dependent onHNF4A as a representative TF and found

a significant linear correlation between rates of binding and expres-

sion change (P = 7.4 3 10�4, Pearson’s 95% CI [0.08, 0.32], permu-

tation test P < 1 3 10�4) (Fig. 6D). In contrast, HNF4A independent

genes did not show a linear relationship (P = 0.03, Pearson’s 95% CI

[3 3 10�3, 0.04]). However, similar correlations were not found for

CEBPA- or FOXA1-dependent genes. This could reflect either func-

tional differences between the TFs, or qualitative differences in the

gene expression data sets from the various species of genetically

engineered mice. Notably, HNF4A-dependent genes were also typi-

cally more highly expressed and possessed greater numbers of

binding sites specific to the TF compared with CEBPA- and FOXA1-

dependent genes (Fig. 5A).

In summary, although transcriptional rates of change are

largely independent of variance in binding intensity across bulk

Figure 6. Brownian motion analysis reveals decoupling of TF binding and gene expression evolution
rates. (A) A phylogenetic generalized least-squares model based on evolution by Brownian motion was
used to estimate the evolutionary rate of binding and expression change. The most likely binding and
expression rates for each gene were estimated based on the topology of the phylogeny and the binding
intensity and expression values for each species. (B) Boxplots compare the evolutionary rates of binding
and expression for HNF4A. Lower boxplots contrast the evolutionary rates for target versus nontarget
HNF4A genes separately for binding and expression. (C ) Density scatterplots showing the rate of HNF4A
binding evolutionary change against gene expression for all genes. Correlation was calculated using
Pearson’s method with log-transformed values. (D) Density scatterplots showing the rate of binding
evolutionary change against expression for HNF4A TF-dependent and TF-independent genes. Corre-
lation was calculated using Pearson’s method with log-transformed values.
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genes, a subtle but significant linear relationship exists for HNF4A-

dependent genes. Taken together, our results suggest that TF-de-

pendent genes aremore sensitive to variations in binding intensity

and also imply that TF-dependent genes are more likely to be

regulated by the action of a single TF.

Effects of cooperativity of binding intensities among TFs

Given that cooperativity between transcription factors is known to

increase the explanatory power of regulatory binding to gene ex-

pression in a single species, we used a multiple linear regression to

test whether the collective rates of change in HNF4A, FOXA1, and

CEBPA binding intensities could explain the evolutionary rate of

change inmRNA levels. After taking into account the evolutionary

rate of all three TFs, no significant correlation was found between

the rates of binding and expression change (adj. R2 = 6.7 3 10�4,

P = 0.02, R regression formula: gene expression rate of change ;

HNF4A rate of binding change + FOXA1 rate of binding change +

CEBPA rate of binding change).

We further tested whether the rate of change in TF binding

intensity is correlated to binding intensity levels, i.e., are genes of

higher binding intensities associated with faster rates of binding

change over evolutionary time? Binding intensities of different TFs

were not strongly predictive of the rate of binding intensity evo-

lution (adj. R2 = 0.08 to 0.16, P < 2.2 3 10�16, multiple linear re-

gression where binding rate of change for HNF4Awas predicted by

the binding intensities of all TFs). Significant interactions between

HNF4A and FOXA1 binding were positively correlated with the

rate of binding evolution (P = 5.1 3 10�9 to 8.0 3 10�3, multiple

linear regression). Indeed, cobinding of HNF4A and FOXA1 occurs

more frequently than other TF pairings among the three TFs

(Stefflova et al. 2013). Except in BL6, we also found a significant

positive three-way interaction between all TFs in predicting the

rate of binding change. The marginal coefficients of independent

variables were negative for all species, indicating that in the ab-

sence of CEBPA and FOXA1 binding, the rate of HNF4A binding

change was slower. These results together indicate that faster rates

of binding change are loosely associated with both higher binding

intensities and interaction (statistical) among cobinding TFs.

We also tested whether genes of high binding intensities were

associated with an increased rate of gene expression change. For

each species, we used multiple linear regression to predict the rate

of expression change using the binding intensity of HNF4A,

CEBPA, and FOXA1 and their interactions terms. TF binding in-

tensities for each species do not appear to account for rates of gene

expression change despite a significant statistical effect (multiple

linear regression, adj. R2 = 7.5 3 10�3 to 0.01, P < 2.2 3 10�16 to

8.6 3 10�15). However, interaction of binding intensities between

both FOXA1 and CEBPA and between FOXA1 and HNF4A were

consistently predictive of expression evolutionary rate in all taxa,

albeit with negligible effect sizes (multiple linear regression, P =

3.3 3 10�5 to 0.03). Both effects were positively associated with

changes in expression rate.

Discussion
To explore the evolutionary relationship between TF binding and

gene expression for three liver-specific TFs, we generated novel

transcriptome data to combine with matched TF binding maps in

four closely related mouse species. We developed an integrated

analysis of peaks near protein-coding genes, which allowed us to

compare TF binding intensities with gene-specific transcriptional

responses across evolution. Transcript levels between wild-type

and transcription factor knockout mice were compared to identify

those genes whose stable expression was reliant on the transcrip-

tion of the deleted TF. Given the pervasive and often functionally

neutral nature of TF binding (Biggin 2011), our approach defined

the subset of genes where TF binding was required.

Our analyses newly reveal an unexpected relationship be-

tween mammalian tissue-specific regulatory programs and gene

expression divergence. We show, at high resolution using an in-

tegrated analysis exploiting TF knockout mice, that transcription

factor binding intensity and magnitude of gene expression are

largely decoupled in mammalian tissues. This effect exists despite

the preferential conservation of average TF binding intensities and

peak numbers near the TSS of genes transcriptionally dependent

on the factor.

In contrast to findings in other species (Biggin 2011; Paris

et al. 2013), we detected a modest correlation between HNF4A

binding and expression levels. This suggests that certain genes

may be predominately modulated by a single TF. Variable buff-

ering in transcriptional responses may have significant pheno-

typic consequences for evolutionary adaptation as well as disease

phenotypes.

Although both CEBPA- and FOXA1-dependent genes did not

show correlation in evolutionary rates of binding and expression

change, binding intensities near these genes were preferentially

conserved. This suggests that binding intensity may be conserved

at these genes for a functional role that is uncoupled from the rate

of mRNA production. Indeed, a number of lines of evidence sug-

gest the different functional roles of the TFs in this study may ac-

count for the differences in results observed between the TFs. For

example, HNF4A-dependent genes also tended to be more highly

expressed and were located proximal to a greater number of

binding sites than CEBPA- and FOXA1-dependent genes. We also

found that certain groups of target genes (CEBPA andHNF4A) were

associated with a more variable transcriptional profile across evo-

lution. In contrast, the transcriptional output of FOXA1-de-

pendent genes did not appear to deviate significantly from bulk

genes across species. FOXA1 acts as a pioneer factor without which

other TFs may not bind, establishing competence for gene ex-

pression (S�erandour et al. 2011). Its binding has also been reported

to have a ‘‘bookmarking’’ effect duringmitosis in liver cells (Caravaca

et al. 2013). Hence, FOXA1 may regulate genes in a manner that

is largely transcriptionally independent of mRNA abundance.

Additionally, that full deletion of HNF4A and FOXA1, but not

CEBPA, are embryonically lethal further suggests that functional

differences between TFs may significantly contribute to the dif-

ferences observed between TFs in our study (Bernardo and Keri

2012; Bonzo et al. 2012). However, it is also possible that our evo-

lutionary models were not sensitive enough to explain the rates of

change. Although the true evolutionary scenario is likely to bemore

complex than the Brownian motion model used here, given short

divergence times, the lack of obvious differences in liver physiology

and function between species, and the limited numbers of species

for comparison, a simple model of evolutionary drift was deemed

most appropriate andwas found to bemore suitable than a complex

model invoking stabilizing selection.

That little correlation exists between evolutionary changes in

TF binding intensities and gene expression appears to contradict

the observed (adj. R2 ; 0.2 from this study) and widely reported

(Ouyang et al. 2009; Paris et al. 2013) correlations between ex-

pression and binding intensities within a single species. However,

several potential and not mutually exclusive reasons may explain
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this disconnect. First, if the majority of binding sites do have little

influence on transcriptional levels, a substantial amount of evo-

lutionary decoupling would be expected because sites near tomost

genes would be evolving under genetic drift. Indeed, the small

correlation observed for HNF4A-dependent genes supports the

idea that the majority of binding sites are evolving neutrally. A

second possible explanation for the incongruities between the

within- and cross-species observations is the presence of functional

redundancies among TFs, whose overlapping roles lead to differ-

ential binding combinations and intensities resulting in similar

transcriptional effects. Hence, gene expression is buffered or

‘‘canalized’’ across evolution. Such redundancies have been widely

reported (Biggin 2011). Indeed, TF binding motif strength in yeast

has been found to better correlate with gene expression levels

when a biological response is orchestrated by a single TF compared

with genes controlled by the actions of multiple TFs (Tirosh et al.

2008).

Although we recognize that TF dependency spans a contin-

uum, we have deliberately demarcated between TF-dependent and

TF-independent genes using set cutoffs as a way to determine rel-

ative evolutionary conservation. This allowed us to directly com-

pare a distribution of covariance values between the two groups of

genes. However, the exact extent of such a continuum on overall

tissue function is unknown. Additionally, we cannot discount that

observed differences between TF-dependent genes are in part due

to experimental design as HNF4A-dependent genes were identified

using next-generation sequence data, whereas FOXA1- and CEBPA-

dependent genes were definedwith array data. Finally, theremay be

an unseen role of post-transcriptional modifications between spe-

cies on the overall abundance of mRNA transcripts.

In summary, peak intensities near TF-dependent genes are

preferentially conserved in a collective manner. HNF4A-de-

pendent genes proximal to highly occupied binding sites tend to

be more transcriptionally sensitive to changes in binding in-

tensities over evolutionary time. Except for a small number of

HNF4A-dependent genes, comparison of binding and expression

evolutionary rates reveals extreme tolerance of mRNA abundance

to binding variability, suggestive of extensive redundancy in TF

networks. Variability in the extent of TF binding buffering on

transcriptional response may have significant phenotypic impli-

cations in both species evolution and human disease.

Methods

Species-specific ChIP-seq data
The three TFs chosen for this are heavily investigated, liver- and
lineage-specific TFs. All three TFs are of different protein families,
representing a cross section of the kinds of proteins and their in-
teractions that control regulatory DNA.We choose to work in liver
as it is a relatively homogeneous tissue, comprised of mainly
(;70%–80%) hepatocytes (Si-Tayeb et al. 2010). The TFs chosen
are generally well characterized functionally and have mouse ge-
netic knockouts. Additionally, the antibodies for these TFs have
been well tested, and we have used this system tomodel in vivo TF
evolution (Schmidt et al. 2010; Stefflova et al. 2013).

Liver ChIP-seq data sets for the four inbred mouse species
were generated by Stefflova et al. (2013) (ArrayExpress accession:
E-MTAB-1414). The data set was comprised of two biological rep-
licates for each species for three transcription factors (HNF4A,
CEBPA, and FOXA1). Binding data were processed with methods
identical to those described in Stefflova et al. (2013). Briefly, reads
were aligned using BWA (Li and Durbin 2009) with default

parameters. Peak locations and intensities were called by SWEMBL
(https://github.com/stevenwilder/SWEMBL) using genomic DNA
as control. Motif searches at regions directly flanking predicted
peak summits were carried out to confirm the presence of expected
TF binding motifs. Final peak sets contained peaks called in both
biological replicates. Peak intensities were taken as the total
number of reads that make up a peak for each set of pooled repli-
cates. To account for differences in sequencing depths between
species, distributions of binding intensities were quantile nor-
malized. This was performed separately for each TF.

Association of binding sites to genes

For each gene, we assigned a binding score that is a function of the
number of proximal peaks, peak intensity, and distance from TSS.
Peak intensities for all peaks that reside in the region 100 kb up-
stream of and 100 kb downstream from each TSS were first
weighted by dividing its peak intensity by the distance to the re-
spective TSS and then summed as follows:

aij = Skgk
��

dk +0:1
�
;

where gk is the peak intensity of the kth peak of the TF j; and dk is
the distance of peak k to the TSS of gene i. This resulted in a single
binding value (aij) per gene for each species. These valueswere then
quantile normalized across species, a pseudocount of 13 10�4 was
added prior to log-transformation. They were also mean-centered,
and the variances were set to 1 on a species-specific basis. Again,
this does not change the shape of the distribution for these values
and was done to compare binding and expression rates across spe-
cies.Weusedalternativemethods of binding association to assess the
degree to which peak turnover and distance to TSS contribute to
overall binding changes: (1) We aggregated peaks by summing all
binding intensities within the 200-kb region surrounding the TSS
(the difference to the method described above is that this did not
take into account the distance of individual peaks to the TSS); and
(2) we took a binary approach to binding whereby each peak is
denoted only by its presence. The binding score was obtained for
each gene by counting the number of peaks in the 200-kb window
encompassing the TSS.

In order to explore the effect of our peak intensity integration
strategy on our findings, we performed the same analysis, compar-
ing binding conservation, using a method that incorporates a
parameter controlling the rate of exponential peak decay. The pa-
rameter changes the level of contribution a peak makes depending
on its distance from the TSS (Ouyang et al. 2009).

aij = Skgke
�dk=d0 ;

where gk is the peak intensity of the kth peak of the TF j; dk is the
distance of peak k to the TSS of gene I; and d0 is a constant which
controls the speed of peak decay.We reanalyzed our data using d0 =
500 and 5000, where a small d0 increased the rate at which peaks
decayed relative to distance from the TSS. Compared to ourmethod,
both d0 values tested produce less down weighing of distant peaks
(Supplemental Fig. S4).

Species-specific RNA-seq data generation

RNA-seq libraries were prepared for 3–4 biological replicates of
perfused liver samples from each of the identical four species from
which binding data was obtained. Mice used for RNA-seq analysis
were from the same colony and reared under identical conditions
as those used for the ChIP-seq study. In total, three biological
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replicates were produced for each BL6, CAST, and SPRET, and with
four replicates sequenced for CAR. BL6 andCASTRNA-seq data sets
were previously published in Goncalves et al. (2012) (ArrayExpress
accession: E-MTAB-1091).

Wild-type mice were maintained at the University of Cam-
bridge, CRUK (Cambridge Institute under the auspices of a UK
Home Office license). The livers were freshly dissected and flash
frozen in liquid nitrogen prior to RNA isolation. About 20 mg of
each tissue was homogenized in 600 mL RLT buffer (Qiagen) with
b-mercaptoethanol using ceramic beads (Precellys). RNA was
extracted using RNeasy kit (Qiagen), and DNA was digested using
TURBODNase (Ambion). The quality of the total RNAwas assessed
by Bioanalyzer Eukaryote Total RNA Nano Series II chip (Agilent).
Polyadenylated mRNA was enriched from the total RNA using
the PolyATract mRNA isolation system (Promega). Directional
double-stranded cDNA was generated according to the method of
Parkhomchuk et al. (2009), using the SuperScript Double-Stranded
cDNA Synthesis kit (Invitrogen), with uracil substituted for thy-
mine in the second strand. On average, 250 ng of double-stranded
cDNA in 300 mL volume was fragmented by sonication using
Bioruptor (Diagenode, 30 s on/off, 10 min total sonication time),
end repaired, A-tailed, and a sequencing library prepared for the
Illumina platform using the Paired End Oligo Only kit (Illumina)
according to the manufacturer’s instructions (with the adapters
diluted 1:10). Strand specificity was then introduced by digestion
of the second strand of cDNA using uracil-N-glycosylase. Each li-
brary was PCR-amplified using Illumina’s PE primers, size selected
(200–300 bp) performed by 2% agarose gel electrophoresis, fol-
lowed by paired-end 75-bp sequencing on an Illumina GA IIx
according to themanufacturer’s instructions in theGenomics Core
facility of the Cambridge Institute.

Species-specific mRNA abundance quantification

Reads were aligned to species-specific genomes that were con-
structed by the addition of species-specific SNPs (Keane et al. 2011;
Stefflova et al. 2013) to the NCBI37/mm9 assembly of the mouse
genome as detailed in Stefflova et al. (2013). To construct gene sets
for CAST, SPRET, and CAR, the Ensembl version 72 M. musculus
gene set (Flicek et al. 2013) was mapped using BLASTN (Altschul
et al. 1997) against the respective genomes. Searches were per-
formed using exons derived from the longest M. musculus tran-
scripts. Only the best match below an E-value cutoff of 1 3 10�5

was kept for each exon query. Of 21,783 protein-coding tran-
scripts, 21,061 showed 97% or more conservation in transcript
lengths across all species (comparison against BL6).

RNA-seq reads were trimmed using Trimmomatic (Lohse et al.
2012) (leading and trailing bases below a phred quality score of 25
were removed, up to a minimum length of 70 bp; LEADING:25;
TRAILING:25; MINLEN:70). Reads were then mapped to their re-
spective genome using GSNAP with a maximum of three mis-
matches and filtered to keep only uniquely mapping reads (Wu
and Nacu 2010). Python package HTseq (Anders et al. 2014) was
used to obtain counts for each gene in each species by counting
reads binned by alignment position to annotated gene locations
(-union setting). Exon counts were summed to obtain a count
value per gene for each replicate of each species. Differential ex-
pression analyses and between replicate library size normalization
were performed using DESeq (Anders and Huber 2010). Differen-
tial expression analyses were performed in a pairwise species
manner using DESeq taking advantage of biological replicates, and
additionally with multispecies comparison using a generalized
linear model (GLM) implemented in edgeR (Robinson et al. 2010),
and estimating dispersion on a gene-wise basis. Both methods pro-
duced similar results. For evolutionary analyses, a single expression

value for each gene per species was obtained by taking themean of
normalized expression values between replicates. Genes with av-
erage read count of 10 or below, corresponding to a transcript per
million (TPM) threshold of ;1–1.5, in any species were removed.
Values were then log-transformed and mean-centered, and their
variances were set to 1 on a species-specific basis. This does not
change the shape of the distribution for these values and was done
to allow comparison of binding and expression rates across species.
Variance stabilizing transformation was performed using DESeq
after a blind estimation of the variance function. Raw counts and
normalized values are available in the Supplemental Data file.

HNF4A KO data generation

Liver-specific HNF4A null mice were generated by inducible CRE-
loxP-mediated excision of exons 4 and 5 of theHnf4a gene. To this
end, Hnf4alox/lox (Hayhurst et al. 2001) mice were crossed with TTR-
Cre ind (Tannour-Louet et al. 2002)mice. One-month-oldHnf4alox/lox/
TTRCre indmicewere intraperitoneally injectedwith 2mg/20 g/day
of tamoxifen for 5 consecutive days. Analysis was performed at
postnatal day 45. The library was prepared in a similar way with
the exception of attaching a single end oligo, followed by single-
end 36-bp sequencing.

Definition of TF-dependent genes

The genes that were further sorted into dependent and inde-
pendent sets had two characteristics: (1) their component genes
had to be expressed above a normalized expression value of 10; and
(2) a TF binding event was located nearby. After these criteria were
met, TF-dependent genes were identified as those genes whose
expression was altered following knockout.

To identify HNF4A-dependent genes, RNA-seq reads derived
from three liver biological replicates of BL6 HNF4A KO and one
BL6WTmice were quality filtered and aligned against the NCBI37
mouse genome assembly allowing for one mismatch. Multiple
mapping reads were removed, and reads were binned into gene
annotations, as described above. edgeR was used to normalize
between the replicates and test for differential expression be-
tween KO and WT samples. Because there was only one WT
sample sequenced in the same batch as the KO samples, we also
performed differential expression comparisons of KO against
the BL6 WT samples described above. Conservatively, we took
the intersection of genes with a Benjamini-Hochberg-corrected
P-value below 1 3 10�3 for both analyses as those genes tran-
scriptionally dependent on HNF4A (Benjamini and Hochberg
1995).

CEBPA-dependent genes were defined by Schmidt et al.
(2010) using microarray data from BL6 CEBPA knockout mice
(ArrayExpress accession: E-MTAB-178). FOXA1-dependent genes
were determined using Limma (Smyth 2005) with a Benjamini-
Hochberg adjusted P-value cutoff of 0.05 on microarray profiles of
FOXA1 null and wild-type mice (Benjamini and Hochberg 1995;
Bochkis et al. 2012) (ArrayExpress accession: E-MEXP-3426).

Binding and expression evolution analysis

Spearman’s rho was calculated in a pairwise manner between
species. Where mentioned, we produced empirical P-values by
recalculating the correlation coefficient by resampling the
number of TF-dependent genes from those not sensitive to TF
KO. P-values were estimated after 10,000 rounds of resampling
with replacement using the count of the number of times a rho
value more extreme than that seen for TF-dependent genes was
observed.
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Analyses were carried out using general linear models to test
the difference between TF-dependent and TF-independent decay
in correlation coefficient over evolutionary time. To test whether
significant differences existed, for each TF we performed an anal-
ysis of covariance (ANCOVA) using the pairwise Spearman’s cor-
relation coefficients between species as a dependent variable
against the Boolean value of whether a gene is sensitive to KO and
evolutionary time as predictor variables. The formula for defining
the ANCOVA model is the following:

correlation coefficient;TF dependence+ evolutionary time:

A secondmodel incorporating an interaction effect between TF
dependence and evolutionary time was calculated, and we used
ANOVA to test between both models in order to assess whether re-
moval of the interaction term significantly affected the fit of the
model. If a significant interaction between TF-dependent and bulk
genes exists, we fitted separate linear regression models to estimate
their respective rates of change. If a significant interaction effect was
identified, where P < 0.005, the P-value reported for that variable is
that of the interaction term. Analyses were performed using R (R
Core Team2014). ANCOVAwasperformedusing the ‘‘aov’’ function.

To subsample TF-independent genes to obtain a set of genes
with similar binding intensities or expression levels as TF-dependent
genes,we identified, for each TF-dependent gene, the TF-independent
gene with the most similar mean binding intensity or mean expres-
sion value to the binding intensity or expression value for the de-
pendent gene.

Data sets for binning analyses were quantile-normalized and
log-transformed prior to analyses. To study the contribution of
peak intensity to TF binding conservation, we calculated average
binding intensity for each gene for each TF. This metric was cal-
culated on a gene-specific basis for peaks as follows:

summed peak intensity for all peaks in region=

number of peaks in region:

The set of formulas for defining multiple linear regression
models are detailed below. For each species i:

gene expression level;HNF4A binding intensityi
3CEBPA binding intensityi 3 FOXA1binding intensityi

gene expression rate of change

;HNF4A binding intensity rate of change

3CEBPA binding intensity rate of change

3 FOXA1binding intensity rate of change

HNF4A binding intensity rate of change

;HNF4A binding intensityi 3CEBPA binding intensityi
3 FOXA1binding intensityi

gene expression rate of change;HNF4A binding intensityi
3CEBPA binding intensityi 3 FOXA1binding intensityi

Evolutionary rate comparison

Wemodeled the evolution of binding intensity and gene expression
using a one-dimensional Brownian motion model with constant

rate (Felsenstein 1985). The model simulates a stable continuous
trait evolving under neutral drift with the degree of shared trait
between species proportional to their shared ancestry.We defined
the evolutionary tree as: (CAR: 3, (SPRET: 1.5, (BL6: 0.5, CAST:
0.5): 1): 1.5) (Dejager et al. 2009). The Brownianmodel, Ornstein-
Uhlenbeck model, and maximum likelihood fitting procedure
used are implemented in the R package Geiger (Harmon et al.
2008). Rates were log-transformed prior to analysis.

Data access
All novel data sets from this study have been submitted to the
ArrayExpress database (https://www.ebi.ac.uk/arrayexpress) under
accession numbers E-MTAB-2483 and E-MTAB-2484. Processed
data and R code can be found in the Supplemental Material and
online at http://www.ebi.ac.uk/research/flicek/publications/FOG13/.

Acknowledgments
We thank John Marioni for a critical reading of the manuscript;
Margus Lukk and Tim Rayner for technical assistance; the EBI’s
systems team for management of computational resources; and the
CRUK CI Genomics Core and BRU for technical assistance. This re-
searchwas supported by the EuropeanMolecular Biology Laboratory
(E.S.W., D.T., P.F.), CRUK Cambridge Institute (K.S., B.S., D.T.O.), the
Wellcome Trust (WT095908 [P.F.] and WT098051 [P.F., D.T.O.]), the
European Research Council and EMBO Young Investigator Pro-
gramme (D.T.O.), and the EMBO Long-term Fellowship program
(ALTF 1518-2012) (E.S.W.).

Author contributions: E.S.W., P.F., and D.T.O. designed the ex-
periments; K.S. and B.S. performed wet-lab experiments; E.S.W.
analyzed the data andwrote themanuscript; D.T. provided species-
specific genome sequences; and P.F. and D.T.O. oversaw the work
and edited the manuscript.

References

Altschul SF,Madden TL, Sch€affer AA, Zhang J, Zhang Z,MillerW, LipmanDJ.
1997. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 25: 3389–3402.

Anders S, Huber W. 2010. Differential expression analysis for sequence
count data. Genome Biol 11: R106.

Anders S, Pyl PT, HuberW. 2014. HTSeq—a Python framework to work with
high-throughput sequencing data. bioRxiv. http://biorxiv.org/content/
early/2014/02/20/002824.

Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M,
Chen Y, Zhao X, Schmidl C, Suzuki T, et al. 2014. An atlas of active
enhancers across human cell types and tissues. Nature 507: 455–461.

Benjamini Y, Hochberg Y. 1995. A practical and powerful approach to
multiple testing. J R Stat Soc Ser B Methodol 57: 289–300.

Bernardo GM, Keri RA. 2012. FOXA1: a transcription factor with parallel
functions in development and cancer. Biosci Rep 32: 113–130.

Biggin MD. 2011. Animal transcription networks as highly connected,
quantitative continua. Dev Cell 21: 611–626.

Bochkis IM, Schug J, Ye DZ, Kurinna S, Stratton SA, Barton MC, Kaestner KH.
2012. Genome-wide location analysis reveals distinct transcriptional
circuitrybyparalogous regulators Foxa1 andFoxa2.PLoSGenet8: e1002770.

Bonzo JA, Ferry CH, Matsubara T, Kim JH, Gonzalez FJ. 2012. Suppression of
hepatocyte proliferation by hepatocyte nuclear factor 4a in adult mice.
J Biol Chem 287: 7345–7356.

Borneman AR, Gianoulis TA, Zhang ZD, Yu H, Rozowsky J, Seringhaus
MR, Wang LY, Gerstein M, Snyder M. 2007. Divergence of
transcription factor binding sites across related yeast species. Science
317: 815–819.

Bradley RK, Li XY, Trapnell C, Davidson S, Pachter L, Chu HC, Tonkin LA,
Biggin MD, Eisen MB. 2010. Binding site turnover produces pervasive
quantitative changes in transcription factor binding between closely
related Drosophila species. PLoS Biol 8: e1000343.

Caravaca JM, Donahue G, Becker JS, He X, Vinson C, Zaret KS. 2013.
Bookmarking by specific and nonspecific binding of FoxA1 pioneer
factor to mitotic chromosomes. Genes Dev 27: 251–260.

Transcription factor binding and gene expression

Genome Research 177
www.genome.org

https://www.ebi.ac.uk/arrayexpress
http://www.ebi.ac.uk/research/flicek/publications/FOG13/
http://biorxiv.org/content/early/2014/02/20/002824
http://biorxiv.org/content/early/2014/02/20/002824


Cusanovich DA, Pavlovic B, Pritchard JK, Gilad Y. 2014. The functional
consequences of variation in transcription factor binding. PLoS Genet
10: e1004226.

Dejager L, Libert C, Montagutelli X. 2009. Thirty years of Mus spretus:
a promising future. Trends Genet 25: 234–241.

Felsenstein J. 1985. Phylogenies and the comparative method. AmNat 125:
1–15.

Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D,
Clapham P, Coates G, Fairley S, et al. 2013. Ensembl 2013. Nucleic Acids
Res 41: D48–D55.

Goncalves A, Leigh-Brown S, Thybert D, Stefflova K, Turro E, Flicek P,
Brazma A, Odom DT, Marioni JC. 2012. Extensive compensatory cis-
trans regulation in the evolution of mouse gene expression. Genome Res
22: 2376–2384.

Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2008. GEIGER:
investigating evolutionary radiations. Bioinformatics 24: 129–131.

Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. 2001. Hepatocyte
nuclear factor 4a (nuclear receptor 2A1) is essential for maintenance of
hepatic gene expression and lipid homeostasis. Mol Cell Biol 21: 1393–
1403.

He Q, Bardet AF, Patton B, Purvis J, Johnston J, Paulson A, Gogol M, Stark A,
Zeitlinger J. 2011. High conservation of transcription factor binding and
evidence for combinatorial regulation across six Drosophila species. Nat
Genet 43: 414–420.

Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A,
AgamA, Slater G, GoodsonM, et al. 2011. Mouse genomic variation and
its effect on phenotypes and gene regulation. Nature 477: 289–294.

Kutter C, Watt S, Stefflova K, Wilson MD, Goncalves A, Ponting CP, Odom
DT,Marques AC. 2012. Rapid turnover of long noncoding RNAs and the
evolution of gene expression. PLoS Genet 8: e1002841.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754–1760.

Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B. 2012.
RobiNA: a user-friendly, integrated software solution for RNA-seq-based
transcriptomics. Nucleic Acids Res 40: W622–W627.

Lynch M. 2007. The frailty of adaptive hypotheses for the origins of
organismal complexity. Proc Natl Acad Sci 104: 8597–8604.

MacArthur S, Li XY, Li J, Brown JB, Chu HC, Zeng L, Grondona BP, Hechmer
A, Simirenko L, Ker€anen SVE, et al. 2009. Developmental roles of 21
Drosophila transcription factors are determined by quantitative
differences in binding to an overlapping set of thousands of genomic
regions. Genome Biol 10: R80.

Ouyang Z, Zhou Q, Wong WH. 2009. ChIP-Seq of transcription factors
predicts absolute and differential gene expression in embryonic stem
cells. Proc Natl Acad Sci 106: 21521–21526.

Paris M, Kaplan T, Li XY, Villalta JE, Lott SE, Eisen MB. 2013. Extensive
divergence of transcription factor binding in Drosophila embryos with
highly conserved gene expression. PLoS Genet 9: e1003748.

Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch
S, Lehrach H, Soldatov A. 2009. Transcriptome analysis by strand-specific
sequencing of complementary DNA. Nucleic Acids Res 37: e123.

R Core Team. 2014. R: a language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. http://www.R-
project.org/.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression
data. Bioinformatics 26: 139–140.

Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A,
Kutter C, Watt S, Martinez-Jimenez CP, Mackay S, et al. 2010. Five-
vertebrate ChIP-seq reveals the evolutionary dynamics of transcription
factor binding. Science 328: 1036–1040.

S�erandour AA, Avner S, Percevault F, Demay F, Bizot M, Lucchetti-Miganeh
C, Barloy-Hubler F, Brown M, Lupien M, M�etivier R, et al. 2011.
Epigenetic switch involved in activation of pioneer factor FOXA1-
dependent enhancers. Genome Res 21: 555–565.

Si-Tayeb K, Lemaigre FP, Duncan SA. 2010. Organogenesis and development
of the liver. Dev Cell 18: 175–189.

Smyth GK. 2005. Limma: linear models for microarray data. In
Bioinformatics and computational biology solutions using R and Bioconductor
(ed. Gentleman R, et al.), pp. 397–420. Springer, New York.

Stefflova K, Thybert D,WilsonMD, Streeter I, Aleksic J, Karagianni P, Brazma
A, Adams DJ, Talianidis I, Marioni JC, et al. 2013. Cooperativity and
rapid evolution of cobound transcription factors in closely related
mammals. Cell 154: 530–540.

Sun W, Hu X, Lim MHK, Ng CKL, Choo SH, Castro DS, Drechsel D,
Guillemot F, Kolatkar PR, Jauch R, et al. 2013. TherMos: estimating
protein-DNA binding energies from in vivo binding profiles. Nucleic
Acids Res 41: 5555–5568.

Tannour-Louet M, Porteu A, Vaulont S, Kahn A, Vasseur-Cognet M. 2002. A
tamoxifen-inducible chimeric Cre recombinase specifically effective in
the fetal and adult mouse liver. Hepatology 35: 1072–1081.

Tirosh I, Weinberger A, Bezalel D, Kaganovich M, Barkai N. 2008. On the
relation between promoter divergence and gene expression evolution.
Mol Syst Biol 4: 159.

Wu TD, Nacu S. 2010. Fast and SNP-tolerant detection of complex variants
and splicing in short reads. Bioinformatics 26: 873–881.

Received May 1, 2014; accepted in revised form November 12, 2014.

Wong et al.

178 Genome Research
www.genome.org

http://www.R-project.org/
http://www.R-project.org/

