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Abstract

Infection by large dsDNA viruses can lead to a profound alteration of host transcriptome and

metabolome in order to provide essential building blocks to support the high metabolic

demand for viral assembly and egress. Host response to viral infection can typically lead to

diverse phenotypic outcome that include shift in host life cycle and activation of anti-viral

defense response. Nevertheless, there is a major bottleneck to discern between viral hijack-

ing strategies and host defense responses when averaging bulk population response. Here

we study the interaction between Emiliania huxleyi, a bloom-forming alga, and its specific

virus (EhV), an ecologically important host-virus model system in the ocean. We quantified

host and virus gene expression on a single-cell resolution during the course of infection,

using automatic microfluidic setup that captures individual algal cells and multiplex quanti-

tate PCR. We revealed high heterogeneity in viral gene expression among individual cells.

Simultaneous measurements of expression profiles of host and virus genes at a single-cell

level allowed mapping of infected cells into newly defined infection states and allowed detec-

tion specific host response in a subpopulation of infected cell which otherwise masked by

the majority of the infected population. Intriguingly, resistant cells emerged during viral infec-

tion, showed unique expression profiles of metabolic genes which can provide the basis for

discerning between viral resistant and susceptible cells within heterogeneous populations in

the marine environment. We propose that resolving host-virus arms race at a single-cell

level will provide important mechanistic insights into viral life cycles and will uncover host

defense strategies.

Author summary

Almost all of our current understanding of the molecular mechanisms that govern host-

pathogen interactions in the ocean is derived from experiments carried out at the
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population level, neglecting any heterogeneity. Here we used a single cell approach to

unmask the phenotypic heterogeneity produced within infected populations of the cos-

mopolitan bloom-forming alga Emiliania huxleyi by its specific lytic virus. We found high

variability in expression of viral genes among individual cells. This heterogeneity was used

to map cells into their infection state and allowed to uncover a yet unrecognized host

response. We also provide evidence that variability in host metabolic states provided a

sensitive tool to decipher between susceptible and resistant cells.

Introduction

Marine viruses are recognized as major ecological and evolutionary drivers and have immense

impact on the community structure and the flow of nutrients through marine microbial food

webs [1–5]. The cosmopolitan coccolithophore Emiliania huxleyi (Prymnesiophyceae, Hapto-

phyta) is a widespread unicellular eukaryotic alga, responsible for large oceanic blooms [6, 7].

Its intricate calcite exoskeleton accounts for ~1/3 of the total marine CaCO3 production [8].

E. huxleyi is also a key producer of dimethyl sulfide [9], a bioactive gas with a significant cli-

mate-regulating role that seemingly enhances cloud formation [10]. Therefore, the fate of

these blooms may have a critical impact on carbon and sulfur biogeochemical cycles. E. huxleyi
spring blooms are frequently terminated as a consequence of infection by a specific large

dsDNA virus (E. huxleyi virus, EhV) [11, 12]. The availability of genomic and transcriptomic

data and a suite of host isolates with a range of susceptibilities to various EhV strains, makes

the E. huxleyi-EhV a trackable host-pathogen model system with important ecological signifi-

cance [13–20].

Recent studies demonstrated that viruses significantly alter the cellular metabolism of their

host either by rewiring of host-encoded metabolic networks, or by introducing virus-encoded

auxiliary metabolic genes (vAMG) which convert the infected host cell into an alternate cellu-

lar entity (the virocell [21]) with novel metabolic capabilities [22–27]. A combined transcrip-

tomic and metabolomic approach taken during E. huxleyi-EhV interaction revealed major and

rapid transcriptome remodeling targeted towards de novo fatty acid synthesis [18] fueled by

glycolytic fluxes, to support viral assembly and the high demand for viral internal lipid mem-

branes [28, 29]. Lipidomic analysis of infected E. huxleyi host and purified EhV virions further

revealed a large fraction of highly saturated triacylglycerols (TAGs) that accumulated uniquely

within distinct lipid droplets as a result of virus-induced lipid remodeling [27]. The EhV

genome encodes for a unique vAMG pathway for sphingolipid biosynthesis, never detected

before in any other viral genome. Biochemical characterization of EhV-encoded serine palmi-

toyl-CoA transferase (SPT), a key enzyme in the sphingolipid biosynthetic pathway, revealed

its unique substrate specificity which resulted in the production of virus-specific glycosphingo-

lipids (vGSLs) composed of unusual hydroxylated C17 sphingoid-bases [30]. These viral-

specific sphingolipids are essential for viral assembly and infectivity and can induce host pro-

grammed cell death (PCD) during the lytic phase of infection [14, 31]. Indeed, EhV can trigger

hallmarks of PCD, including production of reactive oxygen species (ROS), induction of cas-

pase activity, metacaspase expression, changes in ultrastructure features and compromised

membrane integrity [32–34].

The high metabolic demand for building blocks required to support synthesis, replication

and assembly of large viruses with high burst size as EhV [34–36] point to high dependence of

viruses on their host metabolic state for optimal replication [21, 37]. Consequently, heteroge-

neity in host metabolic states as a result of complex interactions between nutrient availability
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and stress conditions may affect the infection dynamics. However, almost all of our current

understanding of the molecular mechanisms that govern host-virus interactions in the ocean,

is derived from experiments carried out at the population level, assuming synchrony and uni-

formity of the cell populations and neglecting any heterogeneity. Additionally, averaging the

phenotypes of a whole population hinders the investigation of essential life cycle strategies to

evade viral infection that can be induced only by rare subpopulations [38]. Understanding

microbial interactions at a single-cell resolution is an emerging theme in microbiology. It

enables the detection of complex heterogeneity within microbial populations and has been

instrumental to identify novel strategies for acclimation to stress [39–41]. The recent advance-

ment of sensitive technologies to detect gene expression from low input-RNA allows quantifi-

cation of heterogeneity among cells by analyzing gene expression at the single cell level [42,

43]. High-throughput profiling of single-cell gene expression patterns in mammalians and

plant cells led to the discovery of new cell types, detection of rare cell subtypes, and provides

better definition and cataloging of developmental phases in high resolution [44–48]. Impor-

tantly, the role of cell-to-cell communication and variability in controlling infection outcomes

has only been recently demonstrated in cells of the mammalian immune system in response to

bacterial pathogens [49–52]. Cell-to-cell variability in host response to viral infection was

observed in several mammalian viruses and was attributed to several factors, including intrin-

sic noise (e.g. stochasticity of biochemical interactions involved in the infection process), the

number of viral genomes initiating the infection process and the specific cell-state before the

infection [52–58]. The existence of cell-to-cell variability during infection suggests that key

events in host response are masked by conventional bulk cell expression profiling and that

detection of gene expression on single cell resolution may uncover hidden host responses.

Recently, simultaneous detection of host and pathogen gene expression profile was suggested

as a powerful tool used to gain a better understanding of the molecular mechanisms underly-

ing the infection process and to identify host defense responses [21, 59–61].

Here, we used multiplex single cell qPCR to quantify the dynamics of host and virus gene

expression profiles of individual cells during infection of E. huxleyi populations. We provide

strong evidence for heterogeneity within the population and discern between cells at different

infection states based on their viral gene expression signatures. We unravel an unrecognized

phase of early host response that preceded viral gene expression within infected cells. We sug-

gest that examining host and virus gene expression profiles at the single cell resolution allows

to infer the temporal dynamic of the infection process, thereby it serves as an attractive

approach to decipher the molecular mechanism underlying host-virus interaction.

Results and discussion

To examine the variability within infected E. huxleyi cells, we measured the expression levels

of selected host and viral genes over the course of infection at a single-cell resolution. Cells

were isolated during infection of E. huxleyi CCMP2090 at different phases, at 0, 2, 4, 24 hours

post infection (hpi) (Fig 1, Fig A in S1 Text). We used the C1 single-cell Auto Prep System to

sort and extract RNA from single E. huxleyi cells during viral infection by EhV201. The pres-

ence of a single cell captured in an individual isolation chamber was confirmed by microscopic

inspection of emitted chlorophyll auto-fluorescence (Fig 2A). In order to detect variability in

viral infection states, we conducted simultaneous measurements of expression profiles of host

and virus genes at a single-cell level by using multiplexed qPCR. We selected viral genes encod-

ing for sphingolipid biosynthesis as well as gene markers for early and late infection [18, 62].

Selected genes involved in host metabolic pathways were targeted based on previous reports

which demonstrated their functional role during infection, including primary metabolism
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(glycolysis, fatty acid biosynthesis), sphingolipid and terpenoid metabolism, autophagy and

antioxidant genes [18, 27, 33, 34]. In addition, we examined the expression of host genes asso-

ciated with life cycle [63], meiosis and PCD [32] that exhibited induction during infection. (In

total expression of 107 host genes and 10 viral genes was measured, see S1 Table for primers

list).

To test for the sensitivity in detection of gene expression on a single cell level, we spiked-in,

to each C1 well, a set of External RNA Controls Consortium (ERCC) molecules that span a

wide range of RNA concentrations (from ~0.5 to ~100 molecules per well). We subsequently

quantified their concentration using similar qPCR amplification setup as used for the host and

virus genes. Pairwise correlation between spike concentrations and Et (Et = 30-Ct) values

obtained from the qPCR was >0.98 (Pearson correlation coefficient, p-value = 4.2_10−12, Fig

2B). We found a highly sensitive level of detection with 40% probability to detect an RNA

spike that is at a level of 1 molecule per sample (Fig 2C), similar to the detection level reported

for mammalian cells [64]. Mean expression of viral and host genes in all examined cells were

found to be 11.8 ± 4.0 and 6.96 ± 2.5 (Et values ± SD), respectively (Fig 2D).

We detected a high variability in viral expression profiles among individual cells within the

same infected population. For example, heterogeneity in the expression levels of virus-encoded

ceramide synthase (vCerS, EPVG_00014), a key enzyme in sphingolipid biosynthesis [18, 30]

was detected during early phase of infection (2 and 4 hpi of CCMP2090, Fig 3A). Similar

results were obtained for the average expression of 10 viral genes (Fig 3B). At the onset of viral

Fig 1. Infection dynamics of E. huxleyi by its specific virus EhV. E. huxleyi CCMP2090 culture was infected by the EhV201 lytic virus and compared with

uninfected control cells. Host cell abundance and production of extracellular viruses were monitored using flow-cytometry. (mean ± SD, n = 3, at least 6000

cells were measured at each time point).

https://doi.org/10.1371/journal.ppat.1007708.g001
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Fig 2. Host and virus gene expression profiling at a single cell level. (A) Automated microfluidic capture of a single E. huxleyi cell in the C1 chip (red:

chlorophyll autoflouresence, indicated by a black arrow), the image on the right is a zoom into the image of a single cell. (B,C) Examination of detection

level of single-cell gene expression analysis. A set of ERCC RNA molecules were spiked to each C1 well and their level was determined using multiplex

qPCR. (B) The fraction of wells with positive qPCR reaction (Ct< 30) for each examined spike. (C) The correlation between the average level of

expression (Et = 30-Ct) value and the number of spike molecule. (D) Distribution of host and virus genes expression among individual cells. The average

expression values of host and viral genes among isolated single cells was calculated and the distribution is presented.

https://doi.org/10.1371/journal.ppat.1007708.g002
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lytic phase (24 hpi), all of the examined cells showed high viral gene expression (Fig 3A and

3B), suggesting that viruses eventually infected all of the examined host cells. Nevertheless, we

cannot exclude the existence of a rare subpopulation that did not express viral genes. The

observed heterogeneity in viral expression is probably not a result of infection with defective

viruses since no viral expression was detected using UV-inactivated virions (Fig B in S1 Text).

A possible source of the observed heterogeneity is the asynchronous state of cells in the initial

culture resulting in a difference in cell cycle phase and metabolic state between individual cells.

Principal component analysis (PCA) of viral gene expression among individual host cells

showed that infected cells are distributed across distinct states of viral expression levels (Fig

3C). All viral genes had positive and similar coefficients for the PC1 component which cap-

tures>90% of the variability of viral gene expression and found to be highly correlated to the

average viral infection level (r = 0.99, Pearson linear correlation). These results demonstrate

that PC1 reflected the intensity of viral infection. Accordingly, we used the score value of PC1

Fig 3. Single-cell analysis of infected population unmasks heterogeneity in viral gene expression profiles. (A) Violin plots of the expression value (Et) of viral

ceramide synthase (vCerS, EPVG_14, Gene bank: AET97902.1) at different hours post infection (hpi) of CCMP2090 cells infected by EhV201. (B) Violin plots of the

mean expression value of 10 viral genes at different times post infection of CCMP2090 cells with EhV201. (C) Principal component analysis (PCA) plots of gene

expression profiles of 10 viral genes derived from 323 individual E. huxleyi cells that were isolated from infected CCMP2090 cultures at different hpi.

https://doi.org/10.1371/journal.ppat.1007708.g003
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as an index for the level of expression of viral genes in each individual cell and termed it “infec-

tion index”.

We further realized that averaging host gene expression over the course of infection might

hinder our ability to observe the initial response of the host to viral infection and that single-

cell analysis could significantly increase the resolution for sensitive detection of host response

at this early stage of infection. We therefore re-ordered infected cells based on their viral infec-

tion index (PC1), rather than the actual time of infection (i.e. hpi), resulting in “pseudotem-

poral” hierarchy of single cells (Fig 4). Intriguingly, we unmasked a fraction of cells that were

exposed to the virus but did not exhibit any detectable expression of viral genes. These cells

had similar infection index values as control cells, with PC1 values< -10 (Fig 4A). We found

that 33/179 (17%) of infected cells of CCMP2090 were at this distinct “lag phase” of viral infec-

tion. These individual cells were analyzed for their respective host gene expression levels based

on a sliding window approach (Fig 4B and 4C), as it is less sensitive to technical noise, often

observed in single cell data. We also used a statistical model to test for genes that are differen-

tially expressed at these early stages of viral infection. This model incorporates the two types of

heterogeneity that usually appear in single cell data, namely, the percentage of cells expressing

a gene in a given population (e.g. Et value > 0) and the variability in expression levels in cells

exhibiting positive expression values [65]. Up-regulation of several host genes in infected cells

was detected in this subpopulation (Fig 4C and S2 Table). An intriguing example is themeta-
caspase-2 gene (p = 0.0000027) which was previously suggested to be induced and recruited

during EhV lytic phase and activation of E. huxleyi PCD [32]. We also found early induction

of triosephosphate isomerase (TPI, p = 0.00063) and phospholipid:diacylglycerol acyltransfer-

ase (PDAT, p = 0.0018) which are involved in glycolysis and TAG biosynthesis respectively. In

addition, genes involve in autophagy [34] and de novo sphingolipid biosynthesis [18, 30] were

detected in this unique early phase of host response. Since major alteration in these specific

metabolic pathways were recently shown to be essential for EhV infection [14, 18, 20, 21, 27,

30, 31, 33, 34], early induction of these pathways may serve as an effective viral strategy to

prime optimal infection. Alternatively, this phase of early host response prior to viral gene

expression may represent a newly unrecognized phase of immediate host anti-viral defense

response. At the late stages of infection (infection index>10), we observed induction of several

meiosis-related genes, including HOP1 andMND, two SPO11 homologues andMYB in

CCMP2090 (Fig 4B). These results are in agreement with previous studies that suggested a

phenotype switch of E. huxleyi to evade viral infection [38] and propose the induction of meio-

sis-related genes as part of transcriptomic reprogramming of during infection [63].

Further inspection of the PCA analysis showed the cells exhibiting low to moderate level of

PC1 were highly variable in their PC2 level (Fig 3C). To identify the viral genes that contribute

to this variability, we further examined the correlation coefficients between the viral gene

expression and principal components 2 (PC2). Interestingly, this analysis revealed a positive

correlation (r = 0.53) between PC2 and the expression level of viral RNA polymerase gene

(EPVG_00062) which was previously reported to be expressed at early-mid phases of infection

[18, 62], while a negative correlation (r = -0.44) was found for a viral gene (EPVG_00010) that

is known to be expressed at late phases of infection. Accordingly, cells with low PC2 levels

expressed EPVG_00010 and not EPVG_00062, while cells with high PC2 values exhibited the

opposite trend (as compared with Fig 5A and 5B).

To further characterize host gene expression during different phases of infection, we

manually clustered CCMP2090 cells according to their infection index (PC1) and the expres-

sion of either early or late viral genes (PC2) (Fig 5C) and examined the expression of host met-

abolic genes in these clusters (Fig 5D). This analysis showed that induction of most of host

metabolic genes occurred in cells that expressed predominantly late viral genes (Fig 5D, CL5,

Alga-virus interactions at single-cell resolution
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Fig 4. Host-virus co-expression patterns across viral infection states. Cells were re-ordered based on their infection

index (PC1 from Fig 3C) to reconstruct pseudotemporal separation of the infection process. (A, B) Clustogram

representation of the average expression value of viral (A) and host (B) genes across the infection dynamics of

CCMP2090 using a sliding window approach (window size = 20 cells). (C) Expression profile of selected host genes

along the viral infection index (PC1) in the sliding windows of 20 cells reveals early induction of host genes prior to

Alga-virus interactions at single-cell resolution
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viral gene expression. Solid line represents the border between uninfected cells and infected cells which were analyzed

separately. The dotted line represents the separation between cell expressing viral genes and cells that do not express

viral genes in the population of infected culture.

https://doi.org/10.1371/journal.ppat.1007708.g004

Fig 5. Viral expression is associated with induction of host metabolic genes at distinct phases of infection. (A, B) The same PCA plots as in Fig 3C were colored

based on the expression level of specific viral genes (Et values) that are associated with early-mid (A) and late (B) phases of viral infection (EPVG_00062 and

EPVG_00010, respectively). (C) The same PCA plots as in Fig 3C were colored based on newly defined clusters. Cells were clustered manually based on their infection

index (PC1) and PC2 scores. (D) Clustorgam representation of expression values of 107 host metabolic genes across the different clusters as defined in (C).

https://doi.org/10.1371/journal.ppat.1007708.g005
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-10<PC1<10, PC2>-5) and in cells with moderate expression of viral genes (Fig 5D, CL6,

10<PC1<36). Down-regulation of many host genes was found in cells exhibiting high viral

expression (Fig 5D, CL7, PC1>37), suggesting that these cells were at the final stages of

infection.

In order to further explore the link between optimal host metabolic state and efficient viral

infection, we infected CCMP2090 stationary culture and subjected single cells to dual gene

expression analysis at 2 hpi (Fig 6A). While most of the exponential growing cells exhibited

Fig 6. Low viral gene expression in E. huxleyi cells at stationary phase is associated with down-regulation of host

metabolic genes. (A) Violin plots of the mean expression of viral genes in individual exponential and stationary cells at

2 hpi and in uninfected cells (Control). (B) Clustorgam representation of the average expression values of 109 host

metabolic genes in individual exponential and stationary cells at 2 hpi and in uninfected cells.

https://doi.org/10.1371/journal.ppat.1007708.g006
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viral expression, we detected only moderate viral expression in 3/27 (11%) of the stationary

phase cells (Fig 6A), while the rest of the cells had viral expression patterns similar to unin-

fected cells (control). In parallel, stationary phase cells (either control or infected) exhibited

down-regulation of most of the examined host metabolic genes, in contrast to their general

up-regulation in infected exponential phase cells (Fig 6B). These data suggest that the cell-to-

cell variability in host metabolic state may play important role in determining susceptibility to

infection by large viruses with high metabolic demand. “Kill the Winner” is a key theory in

microbial ecology which suggests that viruses shape diversity of microbial populations by

infecting the most dominant proliferative host [66]. We propose that “Kill the Winner” may

even act within isogenic populations based on the variability in the metabolic state, which will

lead to differential susceptibility to viral infection, forming continuous host-virus co-existence

[67]. It is possible that cell-to-cell heterogeneity in the metabolic activity is shaped by the trade-

off between complex abiotic stress conditions (e.g. nutrient availability [68–70] and light

regime [71]) and biotic interactions (e.g. bacterial pathogenicity [72]), and may result in differ-

ential susceptibility to viral infection in the marine environment.

We further investigated whether uninfected susceptible and resistant E. huxleyi cells exhib-

ited altered expression profiles in the host metabolic genes that showed variable expression

during infection (S3 Table). We exposed E. huxleyi cultures to viral infection and isolated cells

that acquired resistance to subsequent viral infection of diverse EhV isolates (Fig 7A, [63]). We

compared the expression profiles of recovered resistant cells (n = 18) to their mother cells that

were highly susceptible to viral infection (n = 76). The tendency of resistant cells to aggregate

make it difficult to isolate single cells, therefore for these analysis also included doublet cells.

Intriguingly, resistant and susceptible cells tend to cluster distinctively along the PC2 dimen-

sion (Fig 7B). Among the genes that drive the separation along the PC2 dimension and were

differentially expressed in resistant and susceptible cells were TPI, diphosphomevalonate

decarboxylase (MVD1) and ceramidase-3 (Fig 7C) which are key enzymes in glycolysis, terpe-

noid and sphingolipid metabolism, respectively. Since de novo ceramide biosynthesis is

uniquely encoded in the EhV genome, activation of ceramidase may serve as an anti-viral host

response [18, 30]. Interestingly resistant cells also exhibited high expression ofmetacaspase2
which was also highly expressed in cells with no viral expression in early phase of infection

(Fig 7C). This data suggests that susceptibility to viral infection has a clear signature in expres-

sion profiles of host genes detected on a single-cell level.

Although the mechanism for resistance of E. huxleyi to viral infection requires further

investigations, the differential regulation of host metabolic genes suggests a unique specialized

metabolism that differs from that of susceptible cells [73–75]. Future single-cell RNA-seq tran-

scriptomic studies will provide high throughput identification of gene markers that are specific

for resistant strains as well as new mechanistic insights into the molecular basis for resistance

mechanisms.

Tracking host-virus dynamics at the single cell resolution provides a novel approach to

characterize the continuum viral infection states and host responses which is commonly

masked in whole population analysis [76]. By applying dual gene expression profiling during

algal host-virus interactions, we uncovered an early host transcriptional responses. This newly

defined phase can result in different scenarios including, resistant cells, cells infected by defec-

tive virions, cells exposed to chemical cues released during infection and cells at the very early

stage of infection. The new ability to define distinct “infection states” on a pseudo-temporal

manner can provide valuable information regarding the dynamics of active viral infection in

“real time” in the natural environment. Clustering of individual cells based on their specific

transcriptomic signatures will uncover the relationship between host metabolic states and spe-

cific phenotypes associated with differential levels of viral infection or modes of resistance in

Alga-virus interactions at single-cell resolution
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Fig 7. Differential expression of host genes on a single-cell level in virus-susceptible and virus-resistant cells. (A) Virus-resistant cells

were isolated from infected CCMP2090 cells. (B) PCA plot of gene expression profiles of 93 host metabolic genes in 94 individual E.

huxleyi cells that were isolated from the sensitive CCMP2090 and resistant CCMP2090 culture (CCMP2090-R). Doublet cells are

visualized by slightly bigger dots.(C) Violin plots of selected host genes that highly contributed to the separation of cells along PC2. The

SingleCellAssay R package [62] was used to test significant changes in gene expression and all presented genes had p-value< 0.05 of

hurdle test (See S3 Table).

https://doi.org/10.1371/journal.ppat.1007708.g007
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natural populations. In situ quantification of the fraction of infected cells, their infection and

metabolic states and the fraction of resistant cells will provide important insights into the

infection dynamics and may provide fundamental understating of host-virus co-existence

strategies in the ocean. Resolving host-virus interaction on a single cell will promote discover-

ing of novel sensitive biomarkers to assess the ecological impact of marine viruses and their

role in regulating the fate of algal blooms in the ocean.

Methods

Culture growth and viral infection dynamics

Cells of the non- calcified CCMP2090 E. huxleyi strain were cultured in K/2 medium [77] and

incubated at 18˚C with a 16:8 h light– dark illumination cycle. A light intensity of 100 μM

photons�m-2�s-1 was provided by cool white LED lights. Experiments were performed with

exponential phase (5�105–1�106 cells�ml-1) or stationary phase (5�106 cells�ml-1) cultures.

E. huxleyi virus EhV201 (lytic) used for this study was isolated originally in [12]. E. huxleyi was

infected with a 1:50 volumetric ratio of viral lysate to culture. By using plaque assay we counted

the infectious particles of EhV lysate commonly use in our lab and found that the concentra-

tion of infectious particles is around 2.5�107–5�107 �ml-1 (which is around 20% of particles

counted by flow-cytometry). Thus, at the time of infection, there is about one infectious parti-

cle per cell.

For virus deactivation, 15 ml of 0.45 μm filtered viral lysate was placed in a Petri plate and

radiated on uvitec (Cambridge, UK) ultra-violate light table, with 312 nm light for 15 min. To

evaluate the infectivity of the deactivated viral lysate plaque assay was performed indicating a

reduction of 8 fold in the number of infective particle per mL in the deactivated (~20 infective

particles per mL) in comparison to the active viral lysate (108 infective particles per mL). For

single-cell analysis, E. huxleyi cells were concentrated to 2.5�106 cells�ml-1 by gentle centrifuga-

tion (3000 RPM, 3 min) prior to single-cell isolation. To compare between viral infection in

exponential and stationary phases, stationary phase cells were diluted to similar concentration

of exponential phases cells using stationary conditioned medium (5�105–1�106 cells�ml-1) and

then infected by EhV. The growth dynamics of E. huxleyi CCMP2090 were monitored in sea-

water-based K/2 medium in control conditions and in the presence of the lytic viral strain

EhV201. Resistant single cells were isolated after infection by mouth-pippetting over multiple

passages through fresh medium under an inverted microscope as described in [63]. Single iso-

lates were maintained in K/2 medium.

Enumeration of cell and virus abundance

Cells were monitored and quantified using a Multisizer 4 Coulter counter (Beckman Coulter,

Nyon, Switzerland). For extracellular viral production, samples were filtered using 0.45 μM

PVDF filters (Millex-HV, Millipore). Filtrate was fixed with a final concentration of 0.5% glu-

taraldehyde for 30 min at 4˚C, then plunged into liquid nitrogen, and stored at -80˚C until

analysis. After thawing, 2:75 ratio of fixed sample was stained with SYBER gold (Invitrogen)

prepared in Tris–EDTA buffer as instructed by the manufacturer (5 μl SYBER gold in 50 mL

Tris–EDTA), then incubated for 20 min at 80˚C and cooled down to room temperature. Flow

cytometric analysis was performed with excitation at 488 nm and emission at 525 nm.

Calculation of infectious particles during infection (Fig C in S1 Text) was done by using the

most probable number (MPN) method as described in [20]. Briefly, medium was of infected

culture was subjected to a series of fivefold dilutions for each sample. Each dilution (10 μl) was

then added, in six technical replicates, to 100 μl of exponentially growing E. huxleyi cultures in

multiwell plates over four or five days. MPN was calculated using the MPNcalc software.
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Single-cell Quantitative RT-PCR

Single cells were captured on a C1 STA microfluidic array (5–10 μm cells) using the Fluidigm

C1 and imaged on IX71S1F-3-5 motorized inverted Olympus microscope (Tokyo, Japan) to

examine chlorophyll autofluorescence (ex:500/20 nm, em:650 nm LP). Only wells that exhib-

ited chlorophyll autofluorescence signal emitted from single cells were further analyzed.

External RNA Controls Consortium (ERCC) spikes were added to each well in a final dilu-

tion of 1:40,000. Cells were lysed and pre-amplified cDNA was generated from each cell

using the Single Cells-to-CT Kit (Life Technologies). Pooled qPCR primers and Fluidigm

STA reagents were added according to manufacturer’s recommendations. Preamplified

cDNA was then used for high-throughput qPCR measurement of each amplicon using a Bio-

Mark HD system. Briefly, a 2.7 μl aliquot of each amplified cDNA was mixed with 3 μl of 2X

SsoFast EvaGreen Supermix with Low ROX (Bio-Rad) and 0.3 μl of 20X DNA Binding Dye

Sample Loading Reagent (Fluidigm), and 5 μl of each sample mix was then pipetted into one

sample inlet in a

96.96 Dynamic Array IFC chip (Fluidigm). Individual qPCR primer pairs (50 μM, S1

Table) in a 1.08 μl volume were mixed with 3 μl Assay Loading Reagent (Fluidigm) and 1.92 μl

Low TE, and 5 μl of each mix was pipetted into one assay inlet in the same Dynamic Array IFC

chip. Subsequent sample/assay loading was performed with an IFC Controller HX (Fluidigm)

and qPCR was performed on the BioMark HD real- time PCR reader (Fluidigm) following

manufacturer’s instructions using standard fast cycling conditions and melt-curve analysis,

generating an amplification curve for each gene of interest in each sample (cell). Data was ana-

lyzed using Real-time PCR Analysis software (Fluidugm) with the following settings: 0.65

curve quality threshold, linear derivative baseline correction, automatic thresholding by assay

(gene), and manual melt curve exclusion. Cycle threshold (Ct) values for each reaction were

exported. As seen in other applications of this technology [65], the data had a bimodal distri-

bution with some cells ranging from 2.5 Ct to 30 Ct, and another set of cells with Ct>40. Simi-

lar bimodal distribution was also observed for the ERCC spikes. Accordingly, we set the

minimal threshold level of detection to 30 Ct and calculated expression threshold values (Et)

by linear transformation of the data so that minimal Et was zero (30 Ct). For heat map visuali-

zation, expression data was normalized by subtracting the mean of each gene and dividing it

with its standard deviation across cells. Single-cell PCR data was analyzed and displayed using

MATLAB (MathWorks). Additional statistical analyses were performed using The SingleCel-

lAssay R package [65]. Calculation of number of spike molecule per Fluidigm C1 well was per-

formed according to [64].

Supporting information

S1 Table. List of host and viral genes which their expression level was examined.

(XLSX)

S2 Table. Statistical analysis of single cell gene expression data by the SingleCellAssay R

package [62]. Genes with significant altered expression in different viral infection states

(p-values <0.05 of hurdle test) are presented.

(XLSX)

S3 Table. Statistical analysis of single cell gene expression data by the SingleCellAssay R

package [62]. Genes with significant altered expression in susceptible versus resistant strains

(p-values <0.05 of hurdle test) are presented.

(XLSX)
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