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ABSTRACT
Objective  The first ever genome-wide association 
study (GWAS) of clinically defined gout cases and 
asymptomatic hyperuricaemia (AHUA) controls was 
performed to identify novel gout loci that aggravate 
AHUA into gout.
Methods  We carried out a GWAS of 945 clinically 
defined gout cases and 1003 AHUA controls followed 
by 2 replication studies. In total, 2860 gout cases and 
3149 AHUA controls (all Japanese men) were analysed. 
We also compared the ORs for each locus in the present 
GWAS (gout vs AHUA) with those in the previous GWAS 
(gout vs normouricaemia).
Results  This new approach enabled us to identify two 
novel gout loci (rs7927466 of CNTN5 and rs9952962 
of MIR302F) and one suggestive locus (rs12980365 
of ZNF724) at the genome-wide significance level 
(p<5.0×10–8). The present study also identified the loci 
of ABCG2, ALDH2 and SLC2A9. One of them, rs671 
of ALDH2, was identified as a gout locus by GWAS 
for the first time. Comparing ORs for each locus in the 
present versus the previous GWAS revealed three ’gout 
vs AHUA GWAS’-specific loci (CNTN5, MIR302F and 
ZNF724) to be clearly associated with mechanisms 
of gout development which distinctly differ from the 
known gout risk loci that basically elevate serum uric 
acid level.
Conclusions  This meta-analysis is the first to reveal 
the loci associated with crystal-induced inflammation, 
the last step in gout development that aggravates 
AHUA into gout. Our findings should help to elucidate 
the molecular mechanisms of gout development and 
assist the prevention of gout attacks in high-risk AHUA 
individuals.

Introduction
Gout is one of the the most common forms of 
inflammatory arthritis. It is induced by monoso-
dium urate (MSU) crystals that result from elevated 
serum uric acid (SUA) level.1 The SUA level is deter-
mined by the excretion of uric acid via the urate 
transporters in the kidney and intestine,2 3 and the 

Key messeages

What is already known about this subject?
►► We and others, in past genome-wide 
association studies (GWASs) of gout cases 
and normouricaemia controls, have identified 
multiple gout risk loci that elevate serum uric 
acid.

What does this study add?
►► We performed the first GWAS of clinically 
defined gout cases and asymptomatic 
hyperuricaemia (AHUA) controls.

►► This new approach identified two novel gout 
loci and one suggestive locus that aggravate 
AHUA into gout.

How might this impact on clinical practice or 
future developments?

►► This first discovery of ‘AHUA to gout’ loci 
using a new GWAS strategy will lead to an 
understanding of why only a proportion of 
hyperuricaemia cases develop gout.

►► These findings will assist physicians to identify, 
based on individual genetic differences, AHUA 
cases who need individually tailored pre-
emptive medicine for gout.
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Figure 1  Two steps in the development of gout. We performed, for the first time, a GWAS using clinically defined gout cases and AHUA controls to 
identify gout loci that influence the progression from hyperuricaemia to gout (the second step). Previous GWASs on gout were performed with gout 
cases and normouricaemics of which both SUA elevation (the first step) and the second step consisted; however, most of their identified loci were 
associated with the first step. Because only a proportion of AHUA individuals are known to develop gout, we hypothesised that the genetic effects at 
the second step would play important roles in crystal-induced inflammation as gout attack. AHUA, asymptomatic hyperuricaemia; GWAS, genome-
wide association study; SUA, serum uric acid.

production of uric acid in the liver.2 While both genetic and 
environmental factors are known to cause hyperuricaemia and 
gout,4–9 these diseases are reported to have stronger genetic 
factors than many other common diseases.10 11 Thus far, a 
number of genes associated with SUA have been identified by 
genome-wide association studies (GWASs) of SUA,12–23 such as 
the urate transporter genes ABCG2 (also known as BCRP) and 
SLC2A9 (also known as GLUT9). We and others have performed 
GWASs of gout by comparing the genetic differences between 
gout cases and normouricaemia controls24–26 and have identi-
fied gout risk loci such as ABCG2 and SLC2A9: these are similar 
results to those from GWASs of SUA. Not all hyperuricaemia 
cases develop gout: the reason, we consider, is that there are 
at least two steps by which normouricaemic individuals develop 
gout. In the first step, the SUA of normouricaemic individuals 
elevates, creating asymptomatic hyperuricaemia (AHUA); and 
in the second step, MSU crystal-induced inflammation is expe-
rienced as a gout attack (figure  1). Urate transporters such as 
ABCG2,4 5 27 SLC2A9,28 SLC22A1229 30 and SLC17A131 naturally 
play important roles in the first step, but there must be other loci 
for the second step that aggravates AHUA into a gout attack. In 
this study, for the first time, we performed a gout GWAS using 
clinically defined gout cases and AHUA controls to identify risk 
loci that uniquely influence the progression from AHUA to gout, 
as distinct from causing SUA elevation.

Methods
Study subjects
In the present study, we avoided the use of self-reported gout 
cases and AHUA controls and collected only clinically defined 
individuals.

All gout cases were clinically diagnosed with primary gout 
according to the criteria established by the American College of 
Rheumatology.32 All patients were assigned from Japanese male 
outpatients at the gout clinics of Midorigaoka Hospital (Osaka, 
Japan), Kyoto Industrial Health Association (Kyoto, Japan), 
Ryougoku East Gate Clinic (Tokyo, Japan), Nagase Clinic 
(Tokyo, Japan), Akasaka Central Clinic (Tokyo, Japan) and 
Jikei University Hospital (Tokyo, Japan). Patients with inherited 
metabolic disorders, including Lesch-Nyhan syndrome, were 

excluded. Finally, 2860 Japanese male gout cases were registered 
as valid case participants. Of these, 945 cases for GWAS stage 
were the same patients as reported previously.24 25

As AHUA controls, 3149 individuals were assigned from 
among Japanese men with a high SUA level (>7.0 mg/dL) without 
a history of gout, who were obtained from BioBank Japan18 33 
and the Shizuoka, Daiko, Fukuoka, Saga and Kagoshima areas 
in the Japan Multi-Institutional Collaborative Cohort Study.34 35 
The details of participants in this study are shown in the online 
supplementary table S1.

Genotyping and quality control
Genome-wide genotyping was performed using Illumina 
HumanOmniExpress V.1.0 (Illumina) in 1948 individuals (945 
cases and 1003 AHUA controls). The data sets were filtered 
individually on the basis of single nucleotide polymorphism 
(SNP) genotype missing call rates (>1%) and the Hardy-Wein-
berg equilibrium (HWE) in AHUA controls (p<1.0 × 10–6). 
We confirmed that all the subjects showed high genotype call 
rates (>98%). Pairwise identity by state was evaluated to iden-
tify pairs of individuals with cryptic relatedness.36 We confirmed 
that there was no pair showing cryptic relatedness greater than 
expected for second-degree relatives. We performed principal 
component analysis including our GWAS data set together with 
HapMap phase II samples37 38 as shown in the online supplemen-
tary figure S1, indicating that there are no outliers in our GWAS 
data. Finally, 569 200 SNPs passed filters for 1948 individuals 
(945 cases and 1003 controls).

At the first replication (REP1) stage, 1246 gout cases and 
1186 AHUA controls were genotyped with a custom genotype 
platform using iSelect HD Custom Genotyping BeadChips 
(Illumina) on 897 SNPs, and another 253 gout cases were geno-
typed with Illumina HumanOmniExpress-24 V.1.0 (Illumina). 
Selected were 897 SNPs using the following criteria: (1) 1000 
SNPs were selected as they showed an association (p<0.001 
with Fisher’s exact test) in the GWAS stage with gout cases 
and AHUA controls. (2) After 103 undesignable SNPs had been 
eliminated, 897 SNPs were selected as the custom genotype 
platform. For quality control, the data set was filtered individ-
ually on the basis of SNP genotype missing call rates (>1%). 
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Figure 2  Study design of GWAS of gout cases and asymptomatic hyperuricaemia controls. We performed a GWAS followed by two replication 
studies (REP1 and REP2 stages) with 2860 Japanese male gout cases and 3149 AHUA controls. Meta-analysis identified two novel loci (CNTN5 
and MIR302F) and a suggestive locus (ZNF724) at the genome-wide significance level. AHUA, asymptomatic hyperuricaemia; GWAS, genome-wide 
association study; REP1, the first replication; REP2, the second replication.

We excluded subjects with low genotype call rates (<98%). 
Quality controls for 253 gout cases genotyped with Illumina 
HumanOmniExpress-24 V.1.0 (Illumina) were performed as 
described previously.24 For REP1 stage, 885 SNPs passed filters 
for 2685 individuals (1499 cases and 1186 controls) as shown 
in figure 2.

As the criteria at the second replication (REP2) stage, 68 
SNPs passing the significance threshold at p<1.0×10–4 in the 
meta-analysis among the GWAS and REP1 stages were used for 
the subsequent analyses. In addition to SNPs which had already 
been reported for gout-associated loci (ABCG2, ALDH2 and 
SLC2A9), we detected top-ranked SNPs among closely located 
SNPs. We then examined the pairwise linkage disequilibrium 
(LD) between SNP showing the most significant association 
and other SNPs. As shown in figure 2, in addition to 3 SNPs of 
ABCG2, ALDH2 and SLC2A9, we finally selected 12 SNPs that 
were independent of each other at r2<0.3 (see online supple-
mentary table S2) for the REP2 stage.

The genotyping for 12 SNPs was performed using an allelic 
discrimination assay (Custom TaqMan Assay and By-Design, 
Thermo Fisher Scientific, Waltham, Massachusetts) with a 
LightCycler 480 (Roche Diagnostics, Mannheim, Germany).39 
We confirmed that all 12 SNPs were of high call rate (>98%) 
and HWE in AHUA controls (p>0.001). After quality control, 
a statistical analysis was performed with 1376 individuals (416 
gout cases and 960 AHUA controls). The details of participants 
in this study are shown in online supplementary table S1.

Comparison with previous GWAS
The ORs and 95% CIs of gout GWAS with AHUA controls were 
calculated by meta-analysis with GWAS and REP1 stages in this 
study, and those of gout GWAS with normouricaemic controls 
were obtained from our previous study.25

Statistical analysis
We conducted an association analysis using a 2×2 contin-
gency table based on the allele frequency. For each of the 
filtered SNPs, the p value of association was assessed using 
Fisher’s exact test, and the OR and 95% CI were calculated. 
The quantile-quantile plot and the genomic inflation factor 
(λ) were used to test for the presence of systematic bias in the 
test statistics due to potential population stratification. The 
genomic inflation factor (λ) was 1.013, indicating a subtle 
inflation of p values (see online supplementary figure S2). The 
results from GWAS, in the first and second replication stages, 
were combined by meta-analysis.40 Inverse-variance fixed-ef-
fects model meta-analysis was used for estimating summary 
OR. Cochran’s Q test41 and the I2 statistic42 43 were exam-
ined to assess heterogeneity in ORs among the three studies. 
If heterogeneity was revealed by statistical testing (phet<0.05) 
or measurement (I2 >50%), we implemented a DerSimonian 
and Laird random-effects model meta-analysis.44 All statistical 
analyses were performed using PLINK V.1.07 and the software 
R V.3.1.145 with GenABEL and meta packages. The genome-
wide significance threshold was set at α=5.0×10–8 to reveal 
any evidence of a significant association.

Results
Association analyses
The participants for the GWAS stage were genotyped using 
HumanOmniExpress V.1.0 (Illumina). Nine hundred forty-five 
clinically defined gout cases and 1003 AHUA controls passed 
rigorous quality control filtering (figure  2 and online supple-
mentary figures S1 and S2).

The REP1 stage was then carried out by genotyping 885 SNPs, 
which showed associations at p<1.0×10–3 in the GWAS stage, 
using a custom genotype platform that employed iSelect HD 
Custom Genotyping BeadChips (Illumina) in a further 1499 

https://dx.doi.org/10.1136/annrheumdis-2019-215521
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Figure 3  Manhattan plots of the present GWAS (Gout vs AHUA). 
The x-axis shows chromosomal positions and the y-axis shows −log10 
p values. The upper purple horizontal line represents the genome-wide 
significance threshold (p=5.0×10–8). The lower blue line indicates 
the cut-off level for selecting SNPs for REP1 stage (p=1.0×10–3). The 
gene names of identified loci are also shown in the figure. AHUA, 
asymptomatic hyperuricaemia; GWAS, genome-wide association study; 
REP1, the first replication; SUA, serum uric acid.

gout cases and 1186 AHUA controls. A meta-analysis was also 
conducted among the GWAS and REP1 stages (figure 2).

As a result, we identified three loci showing the associa-
tions at the genome-wide significance level (p<5.0×10–8): 
rs2728125 of ABCG2 (p=6.58×10–20; OR=0.67), rs671 of 
ALDH2 (p=4.44×10–14; OR=0.68) and rs1014290 of SLC2A9 
(p=2.29×10–9; OR=1.30; figures 3 and 4, table 1). Of these, the 
loci of ABCG2 and SLC2A9 were also detected in the previous 
GWAS of gout cases and normouricaemia controls.24 rs671 of 
ALDH2 was identified as a gout-associated SNP in a subsequent 
fine mapping study.46 The present study therefore identified 
rs671 of ALDH2 as a gout locus by GWAS for the first time.

To identify additional risk loci, we recruited independent 
participants comprising 416 gout cases and 960 AHUA controls. 
Twelve SNPs were selected for the REP2 stage by considering 
LD among 68 SNPs showing associations at p<1.0×10–4 in 
the meta-analysis among the GWAS and REP1 stages. Geno-
typing of these 12 SNPs was performed by TaqMan assay, and 
the meta-analysis was conducted among the GWAS, REP1 and 
REP2 stages (figure  2). Online supplementary tables S2A and 
S2B summarise the GWAS and replication study of three SNPs 
which have been reported to have gout-associated loci (ABCG2, 
ALDH2 and SLC2A9) and the 12 SNPs selected for the REP2 
stage.

Finally, two novel loci achieved genome-wide significance 
in the meta-analysis of three stages (figures 3 and 4, table 1): 
an intronic SNP of CNTN5, rs7927466 (pmeta=5.33×10–9; 
OR=1.85) and an intergenic SNP located on near MIR302F, 
rs9952962 (pmeta=1.67×10–8; OR=0.81). In addition, an inter-
genic SNP nearing ZNF724 (rs12980365) showed a suggestive 
level of association (pmeta=9.76×10–8; OR=1.77).

Comparison with previous GWASs
We investigated whether or not these identified risk loci are 
associated with gout susceptibility via SUA elevation (the first 
step in figure 1). We compared the ORs for each locus in the 

present GWAS (gout vs AHUA) with those in the previous 
GWAS25 (gout vs normouricaemia): that is, the 3 loci identi-
fied in this study (‘AHUA to gout’ loci; CNTN5, MIR302F and 
ZNF724) and 10 previously identified risk loci25 (‘normouri-
caemia to gout’ loci; ABCG2, SLC2A9, CUX2, SLC22A12, 
GCKR, SLC17A1, HIST1H2BF-HIST1H4E, CNIH-2, NIPAL1 
and FAM35A) (figure  5 and online supplementary table S3). 
Interestingly, when plotted, the ‘AHUA to gout’ loci and 
‘normouricaemia to gout’ loci appeared as distinct patterns 
(figure 5). The ‘normouricaemia to gout’ loci trended under the 
oblique line, whereas all three ‘AHUA to gout’ loci were located 
above the oblique line, clearly indicating that these novel loci 
are associated with distinct mechanisms of gout development 
that differs from those of 10 known gout loci (see online supple-
mentary table S3).25 It is consistent with the finding that ‘the 
ratio of the two ORs’ of each locus in the present GWAS (gout 
vs AHUA) is >1, whereas that of each locus in the previous 
GWAS (gout vs normouricaemia) is <1 (see online supplemen-
tary table S3).25 We also investigated the effect of each locus on 
SUA using the results from our recent GWAS meta-analysis of 
SUA with a total of 121 745 Japanese subjects47 and the results 
from GWAS meta-analysis of SUA with a total of 110 347 indi-
viduals of European ancestry within the Global Urate Genetics 
Consortium (GUGC).22 The association results for each locus 
are shown in online supplementary table S4. Both results are 
consistent with those of the present study (shown in figure 5). 
Furthermore, we also investigated the association results for 
three gout locus identified in the present GWAS from the result 
of the gout GWAS (gout vs non-gout) using a total of 69 374 
individuals (2115 gout cases and 67 259 controls) of European 
ancestry within GUGC (see online supplementary table S5).22 
The two SNPs that were polymorphic in European popula-
tions were evaluated. After Bonferroni correction (p<2.5×10–

2=0.05/2), rs12980365 of ZNF724 showed a significant 
association with gout in persons of European ancestry (p=8.54 
× 10–3, online supplementary table S5).

Discussion
It is well known that gout has stronger genetic contributors than 
other common diseases, and that only a proportion of AHUA 
individuals develop gout, but no studies have hitherto reported 
the differences in genetic background between gout and AHUA. 
Through the present study, we first performed GWAS with gout 
cases and AHUA controls and identified two novel loci that have 
a stronger effect on the second step (AHUA to gout) in the devel-
opment of gout. The present study detected the loci of ABCG2, 
SLC2A9 and ALDH2. One of them, rs671 of ALDH2, was iden-
tified as a gout locus by GWAS for the first time.

We have also discovered that rs7927466 of CNTN5 is a gout 
susceptibility locus. CNTN5 is a member of the contactin family, 
which mediates cell surface interactions during the development 
of the nervous system.48 49 There are several reports that CNTN5 
is associated with neuropsychiatric disorders, such as autism 
spectrum disorder,50 51 attention deficit hyperactivity disorder52 
and anorexia nervosa.53 Interestingly, CNTN5 has also been 
reported to be associated with inflammatory diseases including 
ankylosing spondylitis54 and Behçet disease.55 It has also been 
reported that another intronic SNP of CNTN5 (rs1813445) 
is associated with the response to anti-tumour necrosis factor 
therapy in rheumatoid arthritis56 and Crohn's disease.57 Since 
the present findings indicate that the SNPs of CNTN5 could be 
involved in the second step of gout development, it is assumed 
that CNTN5 polymorphisms could also cause inflammation at 
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Figure 4  Regional association plots for the six loci identified in the present GWAS (gout vs AHUA). The vertical axis represents -log10 (p value) for 
assessment of the association of each SNP with gout. The highest association signal in each panel is located on (A) CNTN5, (B) MIR302F as novel loci 
and (C) ZNF724 as a suggestive locus and (D) ABCG2, (E) ALDH2 and (F) SLC2A9 as known loci. The region within 250 kb from the SNP indicating the 
lowest p value is shown. Top panel: plots of −log10 p values for the test of SNP association with gout in the GWAS stage. The SNP showing the lowest 
p value in the meta-analysis is depicted as a pink diamond. Other SNPs are colour coded according to the extent of linkage disequilibrium (measured 
in r2) with the SNP showing the lowest p value. Middle panel: recombination rates (centimorgans per MB) estimated from HapMap phase II data are 
plotted. Bottom panel: RefSeq genes. Genomic coordinates are based on NCBI human genome reference sequence build 37. Details of the results 
for the six loci are also shown in table 1. AHUA, asymptomatic hyperuricaemia; GWAS, genome-wide association study; NCBI, National Center for 
Biotechnology Information; SNP, single nucleotide polymorphism.

the joints where MSU crystals are deposited resulting from high 
SUA.

We also identified rs9952962, an SNP near MIR302F as a 
novel gout locus. MicroRNAs (miRNAs) were discovered in 
199358: they are small non-coding RNA molecules which play 
an important role in regulating gene expression.59 It is reported 
that miR-302f is deregulated in gastric cancer60 and that chemo-
therapy modifies miR-302f expression in esophageal cancer.61 
As several miRNAs have been identified as being involved in 
the pathogenesis of other non-infectious forms of inflamma-
tory arthritis, including rheumatoid arthritis,62 63 some reports 
have also shown a relationship between miRNA and gouty 
arthritis.64–66 Our results might suggest that miR-302f affects the 
inflammation seen in gouty arthritis by modulating gene expres-
sion, although further analysis will be needed to elucidate the 
relationship between them.

We also identified rs12980365, an SNP of ZNF724, as a 
potential gout locus. However, there are no reports so far on 
ZNF724. It is of course possible that the identified loci in the 
present study are just surrogate markers and that other genes 
including ZNF730 and IPO5P1 near these SNPs are the true risk 
loci for gout development. The limitation is the lack of impu-
tation because we applied the study design shown in figure 2. 
Further analysis of larger samples with imputation will be the 
key to identifying more gout loci.

The unique finding in the present study is that the novel loci 
for ‘AHUA to gout’ and known loci for ‘normouricaemia to 
gout’ appear to relate to different molecular mechanisms of gout 
development (figure 5 and online supplementary table S3). The 
‘AHUA to gout’ loci identified in the present study appear to be 
involved in the second step of development from AHUA to gouty 
arthritis rather than the ‘normouricaemia to gout’ loci (figure 1). 
Since only a proportion of hyperuricaemia cases develop gout 
and most hyperuricaemia cases remain as AHUA cases, the 
molecules involved in this step are likely to play important roles 
in innate immunity and/or inflammation in response to MSU 
deposition.

The frequency of female gout cases is low (1.15% in our data) 
in Japan, which shows that analysing only male gout patients 
in the present study should be more appropriate for detecting 
genetic factors of gout. Because each locus identified in the 
present GWAS did not show a significant association with SUA 
in persons of European ancestry or in Japanese individuals (see 
online supplementary table S4), our findings show that they are 
not likely to be a locus that is associated with AHUA suscep-
tibility. Interestingly, the present study also demonstrated that 
rs12980365 of ZNF724 showed a significant association with 
gout in persons of European ancestry within GUGC, which 
compared gout and non-gout individuals. This finding suggests 
that ZNF724 is a novel gout locus that aggravates AHUA into 
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Figure 5  Comparison ORs for three gout loci by the present GWAS 
(gout vs AHUA) with ORs for 10 gout loci by the previous GWAS (gout 
vs normouricaemia). Dots represent ORs and lines represent 95% CIs. 
The horizontal axis shows ORs for gout compared with normouricaemia, 
and the vertical axis shows ORs for gout compared with AHUA, whereas 
10 ’normouricaemia to gout’ loci are located under the oblique line, 
three novel ‘AHUA to gout’ loci are above it. AHUA, asymptomatic 
hyperuricaemia; GWAS, genome-wide association study.

gout, also in individuals of European ancestry. However, since 
the GWAS within the GUGC was a study using non-gout indi-
viduals as controls, it is necessary to perform replication studies 
using AHUA as controls. Thus, further analyses of independent 
populations using AHUA controls will be required in the future 
(see online supplementary table S5).

This first discovery of ‘AHUA to gout’ loci using a new GWAS 
strategy will lead to elucidation of the molecular mechanism of 
the last step of gout development, which will clarify the indi-
vidual genetic differences that explain why only a proportion of 
hyperuricaemia cases develop gout and to the prevention of gout 
attacks in high-risk AHUA individuals. These findings will assist 
physicians to identify AHUA cases who need adequate preemp-
tive medicine for gout based on individual genetic ​differences.​
http://​dx.​doi.​org/​10.​1136/​annrheumdis-​2019-​215521
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