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Abstract
Humans prioritize different semantic qualities of a complex stimulus depending on their behavioral goals. These semantic
features are encoded in distributed neural populations, yet it is unclear how attention might operate across these
distributed representations. To address this, we presented participants with naturalistic video clips of animals behaving
in their natural environments while the participants attended to either behavior or taxonomy. We used models of
representational geometry to investigate how attentional allocation affects the distributed neural representation of animal
behavior and taxonomy. Attending to animal behavior transiently increased the discriminability of distributed population
codes for observed actions in anterior intraparietal, pericentral, and ventral temporal cortices. Attending to animal
taxonomy while viewing the same stimuli increased the discriminability of distributed animal category representations in
ventral temporal cortex. For both tasks, attention selectively enhanced the discriminability of response patterns along
behaviorally relevant dimensions. These findings suggest that behavioral goals alter how the brain extracts semantic
features from the visual world. Attention effectively disentangles population responses for downstream read-out by
sculpting representational geometry in late-stage perceptual areas.
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Introduction
The brain’s information processing machinery operates dyna-
mically to accommodate diverse behavioral goals. Selective
attention reduces the complexity of information processing by
prioritizing representational content relevant to the task at
hand (Tsotsos 2011). The attention literature has focused
mostly on early vision, employing rudimentary visual stimuli
and simple tasks to probe task-related changes in the represen-
tation of low-level visual information, such as orientation and

motion direction (Carrasco 2011). Humans, however, perceive
and act on the world in terms of both semantically rich repre-
sentations and complex behavioral goals. Naturalistic stimuli,
although less controlled, serve to convey richer perceptual and
semantic information, and have been shown to reliably drive
neural responses (Hasson et al. 2004; Haxby et al. 2011; Huth
et al. 2012, 2016; Guntupalli et al. 2016).

The brain encodes this sort of complex information in high-
dimensional representational spaces grounded in the concerted
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activity of distributed populations of neurons (Averbeck et al.
2006; Kriegeskorte et al. 2008b; Haxby et al. 2014). Population
coding is an important motif in neural information processing
across species (Dayan and Abbott 2001), and has been well-
characterized in early vision (Chen et al. 2006; Miyawaki et al.
2008; Graf et al. 2011), face and object recognition (Rolls and
Tovee 1995; Hung et al. 2005; Kiani et al. 2007; Freiwald and Tsao
2010), and other sensorimotor and cognitive domains
(Georgopoulos et al. 1986; Lewis and Kristan 1998; Uchida et al.
2000; Rigotti et al. 2013). Multivariate decoding analyses of
human neuroimaging data have allowed us to leverage distrib-
uted patterns of cortical activation to provide a window into the
representation of high-level semantic information (Haxby et al.
2001, 2014; Kriegeskorte et al. 2008b; Mitchell et al. 2008b;
Oosterhof et al. 2010, 2012; Connolly et al. 2012, 2016; Huth et al.
2012; Sha et al. 2015), but these studies generally assume that
neural representations are relatively stable, rather than dynamic
or context-dependent.

Electrophysiological work on attentional modulation has typ-
ically been constrained to single neurons (Treue and Martínez
Trujillo 1999; Reynolds et al. 2000; Reynolds and Heeger 2009).
For example, attention shifts the balance between excitatory
and suppressive neural activity to accentuate the responses of
neurons tuned to task-relevant features (Reynolds and Heeger
2009), and object categorization training increases selectivity for
task-relevant stimulus features in macaque temporal cortex
neurons (Sigala and Logothetis 2002). More recent work has sug-
gested that task demands may alter population encoding to
sharpen attended representations (Cohen and Maunsell 2009;
Ruff and Cohen 2014; Downer et al. 2015). In line with this, a
handful of recent neuroimaging studies have examined how
task demands affect multivariate pattern classification (Serences
and Boynton 2007; Peelen et al. 2009; Jehee et al. 2011; Brouwer
and Heeger 2013; Sprague and Serences 2013; Harel et al. 2014;
Erez and Duncan 2015). In particular, Brouwer and Heeger (2013)
demonstrated that when participants perform a color naming
task, distributed neural representations of color in 2 early
visual areas become more categorical—that is, the neural
color space is altered such that within-category distances
decrease while between-category colors increase. In a related
approach, Çukur et al. (2013) used a natural vision paradigm
to demonstrate that performing a covert visual search task
for either humans or vehicles in natural scenes drives wide-
spread shifts in voxelwise semantic tuning, even when these
target objects are not present in the stimulus. With the excep-
tion of this study, most prior work has investigated only sim-
ple visual stimuli such as oriented gratings, moving dots,
colors, and static object images. The current study aims to
directly investigate task-related changes in the geometry of
distributed neural representation of high-level visual and
semantic information about animal taxonomy and behavior
conveyed by dynamic, naturalistic stimuli.

We hypothesized that, in order to interface with distributed
neural representations, attention may operate in a distributed
fashion as well—that is, by selectively reshaping representa-
tional geometry (Edelman 1998; Kriegeskorte and Kievit 2013).
This hypothesis was motivated by behavioral and theoretical
work suggesting that attention may facilitate categorization by
expanding psychological distances along task-relevant stimu-
lus dimensions and collapsing task-irrelevant distinctions
(Nosofsky 1986; Kruschke 1992). Here we aimed to provide neu-
ral evidence for this phenomenon by examining how task
demands affect the distributed neural representation of 2 types

of semantic information thought to rely on distributed popula-
tion codes: animal taxonomy (Connolly et al. 2012, 2016; Sha
et al. 2015) and behavior (Oosterhof et al. 2010, 2012, 2013). We
operationalize attention broadly in this context as the modula-
tory effect of top-down task demands on stimulus-evoked neu-
ral representation; at minimum, the 1-back task requires
participants to categorize stimuli, maintain the previously
observed category in working memory, compare the currently
observed category with the prior category, and execute (or
withhold) a motor response. To expand on previous work, we
used dynamic, naturalistic video clips of animals behaving in
their natural environments. These stimuli not only convey
information about animal form or category, but also behavior,
allowing us to examine how attention affects the neural repre-
sentation of observed actions (Oosterhof et al. 2013), which has
not previously been studied. Categorical models of representa-
tional geometry were employed to demonstrate that attention
selectively alters distances between neural representations of
both animal taxonomy and behavior along task-relevant
dimensions.

Materials and Methods
Participants

Twelve right-handed adults (7 females; mean age = 25.4 ±
2.6 SD years) with normal or corrected-to-normal vision partici-
pated in the attention experiment. Participants reported no
neurological conditions. Additionally, 19 adults, including the
12 from the attention experiment, participated in a separate
scanning session for the purposes of hyperalignment. All parti-
cipants gave written, informed consent prior to participating in
the study, and the study was approved by the Institutional
Review Board of Dartmouth College.

Stimuli and Design

Each of the 20 conditions in the fully crossed design comprised 2
unique exemplar clips of animals from 5 taxonomic categories
(primates, ungulates, birds, reptiles, and insects) performing
actions from 4 behavioral categories (eating, fighting, running,
and swimming) as well as their horizontally flipped counterparts,
for a total of 40 clips and 80 total exemplars (see Supplementary
Table 1, Supplementary Video 1). The 4 behavioral categories and
5 taxonomic categories roughly correspond to intermediate levels
of noun and verb category hierarchies (Rosch 1978; Fellbaum
1990). Note that although the taxonomy and behavior factors are
orthogonalized at the level of categorization relevant for the task,
orthogonalizing lower-level variables (e.g., the specific animal per-
forming each behavior) is not feasible in naturalistic contexts.
Each trial consisted of a 2 s video clip presented without sound
followed by a 2 s fixation period in a rapid event-related design.
Clips for the attention experiment were extracted from nature
documentaries (“Life”, “Life of Mammals”, “Microcosmos”, “Planet
Earth”) and YouTube videos matched for resolution. The clips
used in the attention experiment were not included in the seg-
ment of the documentary presented for the purpose of hypera-
lignment. All 80 stimuli, as well as 4 behavior repetition events, 4
taxon repetition events, and 4 null events were presented in
pseudorandom order in each of 10 runs, resulting in 92 events per
run, plus 12 s fixation before and after the events of interest, for a
total run length of 392 s (~6.5min). Ten unique runs were con-
structed for a total scan time of approximately 65min, and run
order was counterbalanced across participants. At the beginning
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of each run, participants were instructed to pay attention to
either taxonomy or behavior types and press the button only
when they observed a category repetition of that type. Prior to
scanning, participants were verbally familiarized with the catego-
ries and their constituents (e.g., the “ungulates” category includes
quadrupedal, hoofed, herbivorous mammals such as horses).
There were 5 behavior attention runs and 5 taxonomy attention
runs presented in counterbalanced order across participants.

For each run, a pseudorandom trial order was first con-
structed such that no taxonomic or behavioral categories were
repeated (adjacent in the trial order). Next, 4 taxonomic cate-
gory repetition events and 4 behavioral category repetition
events were inserted as sparse catch trials such that a repeti-
tion event of each type fell on a random trial within each quar-
ter of the run (without inducing unplanned repetitions). Each
repetition event repeated either the taxonomic or behavioral
category of the preceding stimulus and varied on the other
dimension. There were no repetitions of the same clip exem-
plar (or its horizontal mirror image). Four additional 2 s null
events consisting of only a fixation cross were inserted into
each run to effect temporal jittering.

The same button was pressed for repetitions of both types.
Button presses were only elicited by repetition events and were
therefore sparse. Participants were informed that repetition
events would be sparse and that they should not pay attention
to or press the button if they noticed repetitions of the unat-
tended type. Participants were only instructed to maintain fixa-
tion when the fixation cross was present, not during the
presentation of the clips.

In an independent scanning session, participants were pre-
sented with approximately 63min of the Life nature documen-
tary narrated by David Attenborough for the purpose of
hyperalignment. The documentary was presented in 4 runs of
similar duration, and included both the visual and auditory
tracks. In the movie session, participants were instructed to
remain still and watch the documentary as though they were
watching a movie at home. All stimuli were presented using
PsychoPy (Peirce 2007).

Image Acquisition

All functional and structural images were acquired using a
3 T Philips Intera Achieva MRI scanner (Philips Medical
Systems, Bothell, WA) with a 32-channel phased-array SENSE
(SENSitivity Encoding) head coil. For the attention experiment,
functional images were acquired in an interleaved fashion
using single-shot gradient-echo echo-planar imaging with a
SENSE reduction factor of 2 (TR/TE = 2000/35ms, flip angle =
90°, resolution = 3mm isotropic, matrix size = 80 × 80, FOV =
240 × 240mm2, 42 transverse slices with full brain coverage and
no gap). Each run began with 2 dummy scans to allow for signal
stabilization. For each participant 10 runs were collected, each
consisting of 196 dynamic scans totaling 392 s (~6.5min). At the
end of each scanning session, a structural scan was obtained
using a high-resolution T1-weighted 3D turbo field echo
sequence (TR/TE = 8.2/3.7ms, flip angle = 8°, resolution = 0.938 ×
0.938 × 1.0mm3, matrix size = 256 × 256 × 220, FOV = 240 × 240 ×
220mm3).

For the movie session, functional images also were acquired
in an interleaved order using single-shot gradient-echo echo-
planar imaging (TR/TE = 2500/35ms, flip angle = 90°, resolution =
3mm isotropic, matrix size = 80 × 80, and FOV = 240 × 240mm2;
42 transverse slices with full brain coverage and no gap). Four

runs were collected for each participant, consisting of 374, 346,
377, and 412 dynamic scans, totaling 935 s (~15.6min), 865 s
(~14.4min), 942.5 s (~15.7min), and 1030 s (~17.2min), respec-
tively. At the end of this session, a structural scan was obtained
using a high-resolution T1-weighted 3D turbo field echo
sequence (TR/TE = 8.2/3.7ms, flip angle = 8°, resolution = 0.938 ×
0.938 × 1.0mm3, matrix size = 256 × 256 × 220, and FOV = 240 ×
240 × 220mm3). For participants included in both the attention
experiment and the movie session, structural images were regis-
tered and averaged to increase signal-to-noise ratio.

Preprocessing

For each participant, functional time series data were despiked,
corrected for slice timing and head motion, normalized to the
ICBM 452 template in MNI space, and spatially smoothed with a
4mm FWHM Gaussian kernel using AFNI (Cox 1996). Functional
images were then motion-corrected in 2 passes: first, functional
images were initially motion corrected, then averaged across
time to create a high-contrast reference volume; motion correc-
tion parameters were then re-estimated in a second pass using
the reference volume as the target. Affine transformation para-
meters were then estimated to coregister the reference volume
and the participant’s averaged structural scans. Each partici-
pant’s averaged structural scan was then normalized to the
ICBM 452 template in MNI space. These transformation matrices
were concatenated and each participant’s data were motion-
corrected and normalized to the template via the participant’s
anatomical scan in a single interpolation step. All subsequent
analyses were performed in MNI space. Signal intensities were
normalized to percent signal change prior to applying the gen-
eral linear model (GLM).

Functional time series from the Life movie session were
analyzed using the same preprocessing pipeline. Prior to hyper-
alignment, time series data were bandpass filtered to remove
frequencies higher than 0.1 Hz and lower than 0.0067 Hz. Head
motion parameters and the mean time series derived from the
FreeSurfer segmentation of the ventricles were regressed out of
the signal.

Cortical surfaces were reconstructed from structural scans
using FreeSurfer, aligned according to curvature patterns on
the spherical surface projection (Fischl et al. 1999), and visual-
ized using SUMA (Saad et al. 2004).

General Linear Model

A GLM was used to estimate BOLD responses for each of the 20
conditions for each task using AFNI’s 3dREMLfit. Stimulus-
evoked BOLD responses to each event were modeled using a
simple hemodynamic response function (AFNI’s GAM response
model) adjusted for a 2 s stimulus duration. Nuisance regres-
sors accounting for repetition events, button presses, and head
motion were included in the model. For representational simi-
larity analyses, beta parameters were estimated over the 5 tax-
onomy attention runs, then separately over the 5 behavior
attention runs. Time points subtending abrupt head move-
ments greater than roughly 1mm of displacement or one
degree of rotation were censored when fitting the general linear
model. Response patterns were estimated from the 80 trials in
each run, excluding repetition trials. For each of the 2 attention
conditions, 4 trials per run from each of 5 runs contributed to
the stimulus-evoked response pattern for each taxonomic–
behavioral category condition, meaning that each pattern was
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estimated from 20 trials presented in pseudorandom order over
the course of 5 separate runs (interspersed with runs from the
other attention condition). Therefore we expect these response
patterns (and the subsequent neural representational geome-
tries) to be relatively robust to instrumental noise, temporal
autocorrelation, and intrinsic physiological correlations in the
preprocessed time series data (Henriksson et al. 2015). Betas for
each voxel were z-scored across the 20 conditions per feature
before and after hyperalignment, and prior to any multivariate
analysis. Note that constructing neural representational dis-
similarity matrices (RDMs) by computing the correlation dis-
tance between response pattern vectors (rather than, e.g.,
Euclidean distance) entails that the subsequent multivariate
analyses are invariant to differences in regional-average activ-
ity levels within a searchlight or region of interest (ROI)
(Kriegeskorte et al. 2008a). For searchlight classification analy-
ses (see Supplementary Fig. 2), beta parameters were estimated
separately for each run.

Whole-Brain Hyperalignment

Surface-based searchlight whole-brain hyperalignment (Haxby
et al. 2011; Guntupalli et al. 2016) was performed based on data
collected while participants viewed the Life nature documen-
tary. Each surface-based searchlight referenced the 200 nearest
voxels from the associated volume, selected based on their geo-
desic proximity to the searchlight center. The time series of
response patterns elicited by the movie stimulus was rotated
via the Procrustes transformation in order to achieve optimal
functional alignment across participants and the estimated
transformation matrices for each searchlight were aggregated
(see Supplementary Fig. 1A). Hyperalignment transformation
parameters estimated from the movie data were then applied
to the independent attention experiment data. Subsequent
analyses were applied to the hyperaligned data. All multivari-
ate pattern analyses were performed using the PyMVPA pack-
age (pymvpa.org; Hanke et al. 2009).

Searchlight Representational Similarity Regression

Representational similarity analysis (Kriegeskorte et al. 2008a)
was applied using 100-voxel surface-based searchlights
(Kriegeskorte et al. 2006; Oosterhof et al. 2011). Each surface-
based searchlight referenced the 100 nearest voxels to the
searchlight center based on geodesic distance on the cortical
surface. Pairwise correlation distances between stimulus-
evoked response patterns for the 20 conditions were computed
separately for each task. These pairwise distances were col-
lated into a RDM describing the representational geometry for a
patch of cortex (Kriegeskorte and Kievit 2013).

Two categorical target RDMs were constructed based on the
experimental design: one of these RDMs discriminated the ani-
mal taxa invariant to behavior, the other discriminated the
behaviors invariant to taxonomy. Least squares multiple
regression was then used to model the observed neural RDM as
a weighted sum of the 2 categorical target RDMs. For each
searchlight, both the observed neural RDM and the target RDMs
were ranked and standardized prior to regression (Saltelli et al.
2004). Since we suspect the neural representational space does
not respect the magnitude of dissimilarity specified by our
models, we relax the linear constraint and ensure only monoto-
nicity (analogous to Spearman correlation, keeping with
Kriegeskorte et al. 2008a). Although applying the rank trans-
form prior to least squares linear regression is relatively

common practice, this approach may emphasize main effects
at the expense of interaction effects; however, in the current
experiment, we have no a priori hypotheses corresponding to
interaction terms. Intercept terms in the estimated models
were negligible across all searchlights, task conditions, and par-
ticipants. The searchlight analysis was performed in the hyper-
aligned space, then the results were projected onto the cortical
surface reconstruction for the participant serving as the refer-
ence participant in the hyperalignment algorithm.

Statistical Assessment of Searchlight Analysis

To assess the statistical significance of searchlight maps across
participants, all maps were corrected for multiple comparisons
without choosing an arbitrary uncorrected threshold using
threshold-free cluster enhancement (TFCE) with the recom-
mended values (Smith and Nichols 2009). A Monte Carlo simu-
lation permuting condition labels was used to estimate a null
TFCE distribution (Oosterhof et al. 2012, 2016). To test the null
hypothesis that response patterns contain no information
about the 20 taxonomy–behavior conditions separately for each
task condition, we permuted the 20 condition labels. To test the
null hypothesis that task does not affect representational
geometry, we permuted the sign of the difference between
regression coefficients (following representational similarity
regression) for the 2 tasks. First, 100 null searchlight maps were
generated for each participant by randomly permuting the 20
condition labels within each observed searchlight RDM, then
computing the regression described above. Next, we randomly
sampled (with replacement) from these null searchlight maps,
computed the mean searchlight regression coefficient across
participants for each random sample of 12 data sets (one from
each participant), then computed TFCE. This resulted in a null
TFCE map. We then repeated this resampling procedure 10 000
times to construct a null distribution of TFCE maps (Stelzer
et al. 2013). The resulting group searchlight maps are thre-
sholded at cluster-level P = 0.05 corrected for familywise error
using TFCE, and the average regression coefficient across parti-
cipants is plotted for surviving searchlights.

In the case of searchlight classification (see Supplementary
Fig. 2), labels were shuffled within each run and each category
of the crossed factor (e.g., the 4 behavior labels were permuted
within each of the 5 taxa), then the full cross-validation scheme
was applied (Nastase et al. 2016). The resulting maps are simi-
larly thresholded, with the average classification accuracy
across participants plotted for surviving searchlights. For differ-
ence maps (see Supplementary Fig. 3), clusters surviving correc-
tion for multiple comparisons are indicated by white contours
and subthreshold searchlights are displayed transparently. This
method for multiple comparisons correction was implemented
using the CoSMoMVPA software package (cosmomvpa.org;
Oosterhof et al. 2016).

To assess more global effects, task-related differences in
regression coefficients across searchlights were computed sep-
arately for each categorical target RDM. We assessed whether
the attentional task altered mean regression coefficients for
both categorical target RDMs within searchlights containing
information about behavioral and taxonomic categories. For the
behavioral category target RDM, the mean regression coefficients
were computed across all searchlight regression coefficients sur-
viving statistical thresholding using TFCE (cluster-level P < 0.05)
in either attention condition. A nonparametric randomization
test was used to evaluate the significance of a task difference in
the regression coefficient across participants. The sign of the
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attentional difference in the mean regression coefficient across
searchlights was permuted across participants. This tests the
null hypothesis that there is no systematic attentional difference
in searchlight regression coefficients across participants. This
procedure was repeated for the taxonomic category target RDM
considering all searchlight regression coefficients that survived
TFCE in both tasks.

Identifying Regions of Interest

Cluster analysis was used to identify regions of the cortical sur-
face characterized by shared representational geometry in an
unsupervised manner (Connolly et al. 2012). Prior to cluster
analysis, the observed neural RDMs for each surface-based
searchlight were converted from correlation distances to
Fisher-transformed correlation values and averaged across par-
ticipants. Gaussian mixture models were used to cluster
searchlights according to their representational geometry at
varying values of k components (clusters). Gaussian mixture
modeling is a probabilistic generalization of the k-means algo-
rithm, and models the 20 484 searchlights as a mixture of k
overlapping Gaussian distributions in a 190-dimensional fea-
ture space defined by the upper triangular of the 20 × 20
observed neural RDM. The clustering algorithm was implemen-
ted using the scikit-learn machine learning library for Python
(Pedregosa et al. 2011).

We evaluated the reproducibility of parcellations across par-
ticipants at values of k from 2 to 30 using a split-half resam-
pling approach (100 iterations per k) that has previously been
applied to functional parcellations based on resting-state func-
tional connectivity (Yeo et al. 2011). For each of 100 resampling
iterations, half of the participants were randomly assigned to a
training set, while the other half were assigned to a test set
(Lange et al. 2004). Surface-based searchlight RDMs for each
participant were then averaged across participants within the
separate training and test sets. Gaussian mixture models were
estimated on the training set for each of k components ranging
from 2 to 30. Test data were then assigned to the nearest clus-
ter mean of the model estimated from the training data. A sep-
arate mixture model was then estimated for the test data, and
the predicted cluster labels (based on the training data) were
compared with the actual cluster labels using adjusted mutual
information (AMI) (Thirion et al. 2014). AMI compares cluster
solutions and assigns a value between 0 and 1, where 0 indi-
cates random labeling and 1 indicates identical cluster solu-
tions (robust to a permutation of labels, adjusted for greater fit
by chance at higher k). Note that, unlike previous applications
(Yeo et al. 2011), we cross-validated AMI at the participant level
rather than partitioning at the searchlight level.

Separate parcellations were obtained for each attention task
condition to ensure the clustering algorithm did not attenuate
task effects. The cluster analysis yielded qualitatively similar
surface parcellations for data from both the behavior attention
task and the taxonomy attention task, however the behavior
attention task tended toward more reproducible solutions at
higher k. Note that clustering cortical searchlights according to
the pairwise neural distances between a certain set of experi-
mental conditions should not be expected to yield a generally
valid parcellation for the entire brain. Furthermore, although
spatial smoothing, overlapping searchlights, and hyperalign-
ment induce spatial correlations, there is nothing intrinsic to
the clustering algorithm that ensures spatial contiguity (on the
cortical surface) or bilaterality in the resulting parcellation.

The reproducibility analysis indicated local maxima at k = 2,
4, 14, 19, and 23 (see Supplementary Fig. 4A), and these cluster
solutions can then be mapped back to the cortical surface (see
Supplementary Figs. 4B, 5). All subsequent analyses were per-
formed on ROIs derived from the parcellation at k = 19 based
on the behavior attention data. From these 19 areas tiling the
entire cortical surface, 10 ROIs were selected comprising early
visual areas, the ventral visual pathway, the dorsal visual path-
way, and somatomotor cortex. These 10 ROIs corresponded to
the areas of the brain with the highest interparticipant correla-
tion of RDMs for both tasks (see Supplementary Fig. 1D). Both
the clustering algorithm and the reproducibility analysis are
agnostic to any particular representational geometry or task
effect (Kriegeskorte et al. 2009). ROIs were large, including on
average 1980 voxels (SD = 1018 voxels; see Supplementary
Table 2 for individual ROI extents).

Correlations with Target RDMs

For each ROI, we used the stimulus-evoked patterns of activa-
tion across all referenced voxels to compute neural RDMs for
both attention conditions. We tested for task differences in
Spearman correlation between the observed neural RDM and
the target RDMs. To test this, we first constructed a linear
mixed-effects model to predict Spearman correlations with the
categorical target RDMs using Task, Target RDM, and ROI, and
their two- and three-way interactions as fixed effects, with
Participant modeled as a random effect (random intercepts).
The Task variable captured the 2 attentional task conditions,
Target RDM represented the behavioral and taxonomic cate-
gory target RDMs, and ROI represented the 10 ROIs. Mixed-
effects modeling was performed in R using lme4 (Bates et al.
2015). Statistical significance was assessed using a Type III
analysis of deviance.

To assess the statistical significance of differences in
Spearman correlation as a function of attention task for each
ROI, nonparametric randomization tests were performed in
which the mean difference in Spearman correlation (the test
statistic) was computed for all possible permutations of the
within-participants attention task assignments (212 = 4096 per-
mutations, two-sided exact test). This approach permutes the
signs of the within-participant task differences across partici-
pants. This tests the null hypothesis that there is no reliable
effect of the attentional task manipulation across participants
(task assignment is exchangeable within participants under
the null hypothesis), and approximates a paired t-test where
participant is modeled as a random effect. This nonparametric
significance test was used for all subsequent tests of the at-
tentional manipulation within ROIs. For visualization, mean
Spearman correlations are plotted with bootstrapped 95% confi-
dence intervals. Bootstrapping was performed at the partici-
pant level; that is, confidence intervals were constructed by
sampling (with replacement) from the within-participant task
differences in Spearman correlation to respect the within-
participants comparison (Loftus and Masson 1994). Note that
Spearman correlation accommodates ties in a way that can be
problematic when comparing RDMs with numerous ties (e.g.,
categorical RDMs, like those used here), particularly relative to
RDMs with more continuous dissimilarity values (i.e., fewer
ties; Nili et al. 2014). However, this does not negatively impact
the present analysis where we compute Spearman correlations
using the same RDM in different task contexts. To more directly
interface with the searchlight analysis, we used the same stan-
dardized rank regression to examine task-related differences in
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representational geometry. This approach models the neural
representational geometry of an ROI as a weighted sum of the
behavioral category and taxonomic category target RDMs.

To ensure that our findings were not biased by the unsuper-
vised functional parcellation method used to identify cortical
ROIs with consistent representational geometries, we repro-
duced the above analysis in anatomically defined ROIs. We
extracted rough analogues of 4 key ROIs using the FreeSurfer
cortical surface parcellation (Destrieux et al. 2010). The VT ROI
was defined bilaterally as the conjunction of the fusiform gyrus
(lateral occipitotemporal gyrus), collateral sulcus (medial occi-
pitotemporal sulcus) and lingual sulcus, and lateral occipitotem-
poral sulcus parcels. IPS comprised the bilateral intraparietal
sulci, transverse parietal sulci, and superior parietal lobules. PCS
was defined bilaterally to include the postcentral gyrus, postcen-
tral sulcus, and supramarginal gyrus, extending superiorly to
z = 50 on the inflated cortical surface of the reference participant
(in the hyperalignment algorithm) in MNI space. The vPC/PM
ROI comprised the bilateral precentral gyri, central sulci, and
subcentral gyri and sulci, similarly extending superiorly to z = 50.
This superior boundary is roughly coterminous with the exten-
sion of the upper bank of the intraparietal sulcus anteriorly and
was imposed on the PCS and vPC/PM ROIs to better match the
functionally defined ROIs reported above. Note hyperalignment
effectively projects all participants’ data into the reference partici-
pant’s anatomical space.

Recent work (Walther et al. 2015) suggests that neural
RDMs may be more reliably estimated by computing pairwise
distances between conditions in a cross-validated fashion
(i.e., across scanner runs). We re-computed the above analy-
ses using alternative distance metrics and cross-validation
schemes. We first estimated neural RDMs using Euclidean dis-
tance rather than correlation distance. Different distance
metrics have different theoretical interpretations, and each has
strengths and weaknesses. For example, correlation distance is
susceptible to baseline shifts and noise, while Euclidean dis-
tance (and related metrics, such as Mahalanobis distance) is
sensitive to regional-average differences in activation magni-
tude (Kriegeskorte et al. 2008a; Walther et al. 2015). Next, we
computed neural RDMs using leave-one-run-out cross-validation.
Response patterns were estimated for each scanning run.
Responses for 4 of the 5 runs for each attention task were aver-
aged and pairwise distances were computed between each con-
dition in the averaged runs and the left-out fifth run. This
results in a neural RDM with nonzero distances in the diagonal
cells. We then compared these neural RDMs with the categori-
cal target RDMs using Spearman correlation, as described
above. These analyses were performed post hoc, in an explor-
atory fashion.

Evaluating Model Fit

As evidenced by the searchlight analysis (Fig. 2), the target
RDMs for taxonomy and observed behavior representation may
differ in the extent to which they capture neural representa-
tional geometry. To address this, we evaluated differences in
the fit of these models. However, although the target RDMs
were sufficient to test our hypothesis, they cannot capture dif-
ferences in the distances between behavioral and taxonomic
categories; for example, the animacy continuum (Connolly et al.
2012; Sha et al. 2015). To accommodate this type of geometry
for behavior and taxonomy, we decomposed the categorical
target RDMs into separate regressors for each between-category

relationship. The number of regressors used was determined
by the number of pairwise relationships between categories.
The number of pairwise relationships between n categories is
(n × [n − 1])/2. Therefore, for the 4 action categories, there are
(4 × [4 − 1])/2 = 6 pairwise relationships. For the 5 animal catego-
ries, there are (5 × [5 − 1])/2 = 10 pairwise relationships. For
example, the taxonomy model consists of a separate regressor
for each within-category “box” along the diagonal of the taxo-
nomic category target RDM (Fig. 1).

To evaluate these 2 flexible behavior and taxonomy models,
in each ROI and each participant we computed the coefficient
of partial determination (partial R2), then averaged these model
fits over the 2 attention tasks (van den Berg et al. 2014). Partial
R2 can be interpreted as the proportion of variance accounted
for by one model controlling for any variance accounted for by
the other model, and was computed separately for each atten-
tion task and then averaged across tasks within participants.
We then computed the within-participants differences between
the 2 models per ROI, and submitted these differences to a non-
parametric randomization test to assess significance across
participants. In the nonparametric randomization test, we per-
muted the direction of the within-participant difference in
model fits across participants, testing the null hypothesis that
there is no reliable difference in model fits across participants.
The test statistic was the mean within-participants difference
in model fit between the decomposed taxonomic and behav-
ioral category models. Note, however, that partial R2 is biased
toward more complex models (in this case, the taxonomy
model), so we corroborated this analysis using the Akaike infor-
mation criterion (AIC), which penalizes more complex models.
We computed the difference in AIC for the 6- and 10-regressor
models for each attention task condition within each partici-
pant, then averaged across the attention tasks. These differ-
ences in AIC were assessed statistically using an exact test
permuting the sign of the difference.

Task-Related Differences in Representational Distances

Next, we probed for task-related differences in representational
distances directly. Note however that certain pairwise dis-
tances (e.g., the distance between neural representations of a
bird eating and an insect fighting) would not be hypothesized
to change in a meaningful way as a function of our task manip-
ulation (see, e.g., the diagonal distances in Fig. 4B). For this rea-
son, we constrained our analysis to only within-category
pairwise distances (cells of the RDM). Correlation distances
were converted to Fisher-transformed correlations prior to sta-
tistical testing. Rather than averaging the pairwise distances
across cells of the target RDM within each participant, cells cor-
responding to particular pairwise distances were included as a
random effect (as per an items analysis; Baayen et al. 2008). We
constructed a linear mixed-effects model to predict observed
correlation distances based on Task, Category, and ROI, and
their two- and three-way interactions as fixed effects, with
Participant and Cell as random effects (random intercepts).
Task represented the attentional task condition, Category
represented the category relationship (within-behavior or
within-taxon), ROI indicated the 10 ROIs reported above, and
Cell indicated particular cells (pairwise relationships) of the tar-
get RDM. Statistical significance was assessed using a Type III
analysis of deviance. Nonparametric randomization tests were
used to assess task-related differences in mean within-
category correlation distances within each ROI.
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Visualizing Neural Representational Space

To visualize task-related changes in representational geome-
try, we used multidimensional scaling (Kriegeskorte et al.
2008a). For a given ROI, we first computed 40 × 40 neural RDMs
based on the 20 conditions for both attention tasks and aver-
aged these across participants. Note that between-task differ-
ences in the 40 × 40 neural RDM may be difficult to interpret,
as the attentional task manipulation is confounded with scan-
ner runs (Henriksson et al. 2015). However, we would not
expect simple run differences to result in the observed atten-
tional differences in representational distances for both
behavior and taxonomy. To visualize task-related changes in
observed action representation, we computed an 8 × 8 dis-
tance matrix comprising the mean between-behavior dis-
tances within each taxonomic category (as in Fig. 4). For
taxonomy representation, we computed the average between-

taxon distances within each behavioral category to construct
a 10 × 10 matrix. Distances were computed between condi-
tions for both tasks (e.g., resulting in a single 8 × 8 distance
matrix rather than 2 separate 4 × 4 matrices for behavior
representation) to ensure that distances for both attention
tasks were on the same scale.

These distance matrices were then submitted to metric mul-
tidimensional scaling implemented in scikit-learn (Pedregosa
et al. 2011). In the case of behavior representation, for exam-
ple, this resulted in 8 positions in a 2-dimensional space.
However, because we were interested in the overall task-
related expansion between conditions (and less concerned
with, e.g., the distance between one condition in one attention
task and another condition in the other attention task), the
positions in the resulting 2-dimensional solution were then
split according to attention task, and the Procrustes transfor-
mation (without scaling) was used to best align the conditions

Figure 1. Experimental procedure and analytic approach. (A) Schematic of event-related design with naturalistic video clips of behaving animals (see Supplementary

Table 1, Supplementary Video 1). Participants performed a repetition detection task requiring them to attend to either animal taxonomy or behavior. (B) Stimulus-

evoked response patterns for the 20 conditions were estimated using a conventional general linear model. The pairwise correlation distances between these response

patterns describe the representational geometry (representational dissimilarity matrix; RDM) for a given brain area. (C) Whole-brain surface-based searchlight hypera-

lignment was used to rotate participants’ responses into functional alignment based on an independent scanning session (see Supplementary Fig. 1). Following

hyperalignment, the neural representational geometry in each searchlight was modeled as a weighted sum of models capturing the taxonomic and behavioral cate-

gories. Model RDMs were constructed by assigning correlation distances of 0 to identical conditions (the diagonal), correlation distances of 1 to within-category cate-

gory distances, and correlation distances of 2 to between-category distances. Note that absolute distances assigned to these model RDMs are unimportant as only the

ordinal relationships are preserved when using rank correlation metrics (e.g., Spearman correlation). Only the vectorized upper triangular of the RDMs (excluding the

diagonal) are used. The observed neural representational geometry of a searchlight in posterolateral fusiform gyrus in a representative participant is used as an

example. Supplementary Figure 2 provides more detailed examples of searchlight representational geometries.
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within one attention task to another. This transformation pre-
serves the relationships between conditions within each task
and captures the overall attentional expansion of between-
category distances.

Results
Behavioral Performance

Participants were highly accurate in detecting the sparse repeti-
tion events for both attention conditions (mean accuracy for
animal attention condition = 0.993, SD = 0.005; mean accuracy
for behavior attention condition = 0.994, SD = 0.005). There was
no significant task-related difference in either accuracy (t[11] =
0.469, P = 0.648), or signal detection theoretic measures of sen-
sitivity (t[11] = 0.116, P = 0.910) and bias (t[11] = 0.449, P = 0.662)
adjusted for logistic distributions (according to Kane et al. 2007,
p. 617). Response latencies for repetition trials where partici-
pants responded correctly did not significantly differ between
the behavior attention and taxonomy attention tasks (paired
t-test: t[11] = 0.015). However, the scanner protocol was not
designed to robustly measure response times, as there were
only 4 repetition events per run and participants did not
respond to nonrepetitions.

Searchlight Analysis

We applied representational similarity analysis using surface-
based searchlights to map areas of the brain encoding informa-
tion about animal taxonomy and behavior. Neural RDMs were
computed based on the pairwise correlation distances between

hyperaligned stimulus-evoked response patterns for the 20
conditions (Fig. 1B). We modeled the neural representational
geometry as a weighted sum of 2 categorical target RDMs
reflecting the experimental design: a behavioral category target
RDM and a taxonomic category target RDM (Fig. 1C).

We first identified clusters of searchlights where the neural
representational geometry reflected the categorical target
RDMs for both attention conditions. Regression coefficients for
the behavioral category target RDM were strongest in lateral
occipitotemporal cortex (LO), in the dorsal visual pathway sub-
suming posterior parietal, intraparietal sulcus (IPS), motor and
premotor areas, and in ventral temporal cortex (VT; Fig. 2A).
Regression coefficients for the animal taxonomy target RDM
were strongest in VT, LO, and posterior parietal cortices, as well
as left inferior and dorsolateral frontal cortices.

Based on previous work (Çukur et al. 2013), we hypothesized
that attending to a particular type of semantic information
would enhance task-relevant representational distinctions in
searchlights encoding taxonomic and behavioral category
information throughout the cortex. Globally, attending to
behavior or taxonomy increased the regression coefficients for
the target RDMs corresponding to the attended categories.
Attending to behavior increased the number of searchlights
with significant regression coefficients for the behavioral cate-
gory target RDM from 11 408 to 14 803 (corrected for multiple
comparisons). We next tested whether attentional allocation
increased the mean regression coefficient for the behavioral
category target RDM in searchlights containing information
about the behavioral categories. When considering regression
coefficients for the behavioral category target RDM in all

Figure 2. Mapping representations of animal behavior and taxonomy for both tasks. Significant searchlight regression coefficients for the behavioral category target

RDM (left) and the taxonomic category target RDM (right) are mapped onto the cortical surface for both attention conditions. Cluster-level significance was assessed

at the group level using TFCE and maps are thresholded at cluster-level P < 0.05 (nonparametric one-sided test, corrected for multiple comparisons). For searchlights

surviving cluster-level significance testing, the mean regression coefficient across participants is plotted. All colored searchlights exceed the cluster-level threshold of

statistical significance across participants, corrected for multiple comparisons using TFCE; searchlights not surviving cluster-level significance testing are not colored.

Note that regression coefficients for behavior representation and taxonomy representation are plotted with different color scales to better visualize the distribution of

coefficients. Regression coefficients less than 0.10 for the behavioral category target RDM and less than 0.07 for the taxonomic category target RDM are plotted as red.

See Supplementary Figure 2 for qualitatively similar searchlight classification maps, and Supplementary Figure 3 for difference maps.
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searchlights surviving multiple comparisons correction for
either attention task, attending to animal behavior significantly
increased the mean regression coefficient from 0.100 to 0.129
(P = 0.007, nonparametric randomization test). Attending to
taxonomy increased the number of searchlights with signifi-
cant regression coefficients for the taxonomic category target
RDM from 1691 to 3401. For searchlights surviving multiple
comparisons correction for either task, regression coefficients
for the taxonomic category RDM increased significantly from
0.049 to 0.071 (P = 0.017, nonparametric randomization test).
A linear SVM searchlight classification analysis, in which we
used leave-one-category-out data folding for cross-validation
(see Supplementary Fig. 2), resulted in qualitatively similar
maps, suggesting the results presented in Figure 2 are not
driven solely by low-level visual properties of particular stimuli
(although low-level visual properties may still covary with
condition).

Regions of Interest

We hypothesized that task demands may alter representational
geometry across larger cortical fields than captured by the rela-
tively small searchlights. We tested our hypothesis in large
ROIs defined by shared searchlight representational geometry.
We applied an unsupervised clustering algorithm to the search-
light representational geometries to parcellate cortex into ROIs
and used a relatively reproducible parcellation with 19 areas

(see Supplementary Fig. 4). We interrogated 10 ROIs with high
interparticipant similarity of searchlight representational
geometry subtending the dorsal and ventral visual pathways
(Fig. 3B, see Supplementary Fig. 1). The 10 ROIs were labeled as
follows: posterior early visual cortex (pEV), inferior early visual
cortex (iEV), superior early visual cortex (sEV), anterior early
visual cortex (aEV), lateral occipitotemporal cortex (LO), ventral
temporal cortex (VT), occipitoparietal and posterior parietal cor-
tex (OP), intraparietal sulcus (IPS), left postcentral sulcus (left
PCS), and ventral pericentral and premotor cortex (vPC/PM).

For each ROI, we measured the Spearman correlation
between the observed neural RDM and the 2 categorical target
RDMs for each task, to test whether task demands altered neu-
ral representational geometry (Fig. 3A). A linear mixed-effects
model yielded significant main effects for ROI (χ2[9] = 115.690,
P < 0.001) and Target RDM (χ2[9] = 69.640, P < 0.001), and a sig-
nificant Target RDM × ROI interaction (χ2[9] = 112.442, P <
0.001). The Task × ROI interaction was also significant (χ2[9] =
23.301, P = 0.006), suggesting that the task manipulation more
strongly affected correlations in certain ROIs than others. Note
however that differences due to the task manipulation across
ROIs could be driven by different noise levels in different ROIs
(Diedrichsen et al. 2011). Finally, the three-way Task × Target
RDM × ROI interaction was significant (χ2[9] = 22.034, P = 0.009),
motivating the following within-ROI tests. Nonparametric ran-
domization tests revealed that attending to animal behavior
increased correlations between the observed neural RDM and

Figure 3. Attention alters representational geometry in functionally defined ROIs. (A) Task differences in Spearman correlation between neural RDMs and the behav-

ioral and taxonomic category target RDMs (see Supplementary Table 2 for results for all 19 clusters). Participants were bootstrap resampled to construct 95% confi-

dence intervals for within-participant effects. Supplementary Figure 7 presents key findings reproduced in anatomically defined ROIs. Supplementary Figure 8 depicts

qualitatively similar results using standardized rank regression rather than Spearman correlation. See Supplementary Figure 9 for similar analyses computed using

alternative pairwise distance metrics and cross-validation schemes. (B) Ten functional ROIs identified by parcellating the cerebral cortex based on representational

geometry. (C) Comparison of model fit for the 6-regressor behavior model and 10-regressor taxonomy model. *P < 0.05, **P < 0.01, ***P < 0.001, two-sided nonparametric

randomization test.
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the behavioral category target RDM in vPC/PM (P = 0.026), left
PCS (P = 0.005), IPS (P = 0.011), and VT (P = 0.020). A decrease in
the categoricity of behavior representation was observed in sEV
when participants attended to behavior (P = 0.032). Attending
to animal taxonomy increased correlations between the
observed neural RDM and the taxonomic category target RDM
in VT (P = 0.010) and left PCS (P = 0.036). The effect in left PCS
was driven by a negative correlation in the behavior attention
task that was abolished when attention was directed at taxon-
omy. To ensure that these effects were not biased by the func-
tional parcellation technique used to define functional ROIs, we
reproduced key findings in anatomically defined ROIs (see
Supplementary Fig. 7). To better interface with the searchlight
results, we reproduced qualitatively similar findings using the
standardized rank regression technique used in the searchlight
analysis (see Supplementary Fig. 8). Unlike computing Spearman
correlation separately per RDM, this approach allocates variance
in neural representational geometry to both RDMs. This analysis
yielded generally greater regression coefficients for the taxo-
nomic category RDM, suggesting that the low and negative cor-
relations observed using Spearman correlation with the
taxonomic category RDM (e.g., in left PCS) may be due to vari-
ance in representational geometry related to the behavioral

categories. Attending to behavior significantly enhanced behav-
ioral category representation in anatomically defined vPC/PM,
bilateral PCS, and VT ROIs, while attending to taxonomy strongly
enhanced taxonomic category representation in VT and weakly
in vPC/PM. We also reproduced qualitatively similar findings
using Euclidean distance rather than correlation distance and
using leave-one-run-out cross-validation in constructing the
neural RDMs (see Supplementary Fig. 9). Supplementary Tables 2
and 3 present task differences in Spearman correlation for all 19
parcels returned by the cluster analysis and all anatomically dis-
contiguous parcels, respectively.

Unexpectedly, behavioral category representation was
found to be considerably stronger and more prevalent than tax-
onomic category representation. To test this formally, we next
evaluated how well full representational models of animal tax-
onomy and behavior fit the neural representational geometry
in each ROI. The model RDMs used above tested our experi-
mental hypothesis but do not capture the geometry of distances
between behavioral or taxonomic categories; for example, the
animacy continuum (Connolly et al. 2012; Sha et al. 2015). To
accommodate this type of geometry for behavior and taxonomy,
we decomposed the categorical target RDMs into separate
regressors for each pairwise between-category similarity

Figure 4. Attention enhances the categoricity of neural responses patterns. (A) Enhancement of within-category distances for both behavioral and taxonomic catego-

ries based on the attention task (see Supplementary Table 3 for results for all 19 clusters). Error bars indicate bootstrapped 95% confidence intervals for within-

participants task differences (bootstrapped at the participant level). (B) Schematic illustrating how neural distances are expanded along the behaviorally relevant

dimensions while task-irrelevant distances are collapsed (Nosofsky 1986; Kruschke 1992). (C) Multidimensional scaling (MDS) solutions for left PCS and VT depict the

attentional expansion of between-category distances. *P < 0.05, **P < 0.01, two-sided nonparametric randomization test.
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(6 regressors for behavior model, 10 for the taxonomy model). To
evaluate these 2 flexible behavior and taxonomy models, in each
ROI we estimated the coefficient of partial determination (partial
R2) and AIC separately for each model and attention task within
each participant, then averaged these model fits over the 2
attention tasks. The 6-regressor behavior model captured on
average over 2 times more variance (adjusted R2) than the
single-regressor behavioral category target RDM in LO, VT, OP,
IPS, left PCS, and vPC/PM, suggesting that some behaviors are
more similar to each other than are others. The 10-regressor tax-
onomy model accounted for well over 4 times more variance
than the single-regressor taxonomic category target RDM in pEV,
iEV, and VT. Based on nonparametric randomization tests, par-
tial R2 for the behavior model significantly exceeded that of the
animal taxonomy model in sEV, LO, VT, OP, IPS, left PCS, and
vPC/PM (Fig. 3C), and AIC for the behavior model was signifi-
cantly lower for all 10 ROIs. Surprisingly, the behavior model
accounted for over 2.5 times more variance in VT neural repre-
sentational geometry than did the taxonomy model (behavior
model: 23.8% of variance; taxonomy model: 8.8% of variance).

Although the initial ROI analysis demonstrated that the
attention task alters overall neural representational geometry
to more closely resemble the categorical target RDMs, it does
not directly quantify changes in representational distances. To
test task-related changes in representational distances more
explicitly, we isolated cells of the neural RDM capturing dis-
tances between 2 conditions that differed on one dimension
and were matched on the other; that is, different behaviors per-
formed by animals from the same taxonomic category, or ani-
mals of different taxonomic categories performing the same
behavior (Fig. 4A). Although we hypothesized that attention
enhances task-relevant representational distinctions as depicted
in Figure 4B (Nosofsky 1986; Kruschke 1992), note that diagonal
distances do not change; that is, the effect of attention on dis-
tances between conditions that differ on both dimensions is
ambiguous. Thus, focusing on the correlation distances between
pairs of conditions that differ on only one dimension affords a
less confounded examination of the effects of attention. A signifi-
cant increase in, for example, between-taxon correlation dis-
tances within each behavior (Fig. 4A, red) when attending to
behavior can also be interpreted as a decrease in within-taxon
distances when attending to taxonomy; therefore, we refer to this
effect as enhancing task-relevant representational distinctions. A
linear mixed-effects model yielded significant main effects for ROI
(χ2[9] = 66.850, P < 0.001) and Category (within-behavior or
within-taxon category relationship; χ2[9] = 13.047, P < 0.001), as
well as a significant ROI × Category interaction (χ2[9] = 165.725,
P < 0.001). Most importantly, this analysis revealed a significant
three-way Task × Category × ROI interaction (χ2[9] = 33.322, P <
0.001), motivating the following within-ROI tests. Nonparametric
randomization tests indicated that attention significantly
enhanced task-relevant representational distinctions for both
groups of distances in left PCS (between-taxon, within-behavior
distances: P = 0.002; between-behavior, within-taxon distances:
P = 0.010) and VT (between-taxon, within-behavior distances:
P = 0.028; between-behavior, within-taxon distances: P = 0.009).
Attention significantly enhanced task-relevant between-taxon
distances within behaviors in vPC/PM (P = 0.007), effectively col-
lapsing taxonomic distinctions when attending to behavior. An
inverted task effect was observed in sEV (between-taxon, within-
behavior distances: P = 0.028). Supplementary Tables 4 and 5 pres-
ent the task enhancement of representational distances for all 19
parcels returned by cluster analysis and all anatomically discontig-
uous parcels, respectively. The expansion of distances between

attended category representations is illustrated with multidimen-
sional scaling of the representational geometries in left PCS and VT
(Fig. 4C).

Discussion
The present study was motivated by the following question:
How does attention prioritize certain semantic features of a
complex stimulus in service of behavioral goals? We hypothe-
sized that attention may enhance certain features of semantic
information encoded in distributed neural populations by tran-
siently altering representational geometry (Kriegeskorte and
Kievit 2013). Our findings provide neural evidence for psycho-
logical theories of attentional deployment in categorization
(Shepard 1964; Tversky 1977; Nosofsky 1986; Kruschke 1992) by
demonstrating that attention selectively increases distances
between stimulus-evoked neural representations along behav-
iorally relevant dimensions. To expand on prior work examin-
ing early visual (e.g., orientation, contrast, color, motion
direction; Serences and Boynton 2007; Jehee et al. 2011;
Brouwer and Heeger 2013; Sprague and Serences 2013) and
object category (Peelen et al. 2009; Çukur et al. 2013; Harel et al.
2014; Erez and Duncan 2015) representation, we used dynamic,
naturalistic stimuli to demonstrate that attention alters the
representation of both animal taxonomy and behavior accord-
ing to a similar principle.

The neural representation of animal taxonomy and behavior
changed significantly with task. When participants attended
explicitly to animal behavior, the categoricity of observed
action representation increased most dramatically in premotor,
pericentral, and postcentral somatomotor areas supporting
action and goal recognition (Oosterhof et al. 2010, 2012, 2013;
Rizzolatti and Sinigaglia 2010), intraparietal areas implicated in
executive control (Petersen and Posner 2012), and VT. The left-
lateralization of this effect is consistent with generally left-
lateralized representation of action concepts in the brain
(Noppeney 2008; Watson et al. 2013). In the current study, we
cannot rule out the possibility that attending to behavior
enhances the representation of low-level motion-related fea-
tures of the stimulus more so than higher-level semantic repre-
sentations. However, we note that retinotopic visual areas
driven primarily by motion energy (Nishimoto et al. 2011; Huth
et al. 2012) and early areas exhibiting robust representation of
animal behavior (e.g., LO and OP) were not strongly modulated
by the task manipulation. Attending to animal taxonomy
increased the categoricity of animal representation in VT, con-
sistent with accounts of neural representation of animals and
objects (Connolly et al. 2012; Grill-Spector and Weiner 2014; Sha
et al. 2015), as well as left PCS, but not in lateral occipitotem-
poral or early visual areas. Note that attending to behavior
induced a negative correlation for the taxonomic category tar-
get RDM in left PCS, while attending to taxonomy abolished
this effect. This negative correlation when attending to behav-
ior could be driven by increased distances between behavior
representations within each animal taxon. Behavior and taxon-
omy representation observed in unexpected regions such as
anterior prefrontal cortex using the searchlight approach may
be due to both the richness of the information conveyed by nat-
uralistic stimuli and the categorization and working-memory
components of the task. The relative magnitudes of task-related
and stimulus-driven contributions to representational geometry
varied across cortical areas. Overall, attending to animal behav-
ior, as compared to when participants attended to animal taxon-
omy, increased correlations with the behavioral category RDM
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from 0.25 to 0.33 on average in the 3 frontoparietal ROIs, with
increases in correlation ranging from 0.06 to 0.11 or 23% to 42%.
Significant correlation between the taxonomic category RDM
and the VT neural RDMs was observed only when participants
attended to animal taxonomy.

Performing a categorization task requiring attention to either
animal taxonomy or behavior enhances the categoricity of neural
representations by accentuating task-relevant representational
distinctions. Our results demonstrate that attentional allocation
sculpts representational geometry in late-stage sensorimotor
areas; this effect was not observed in early perceptual areas. This
is in line with electrophysiological work in macaques demon-
strating that object categorization training increases the preci-
sion of response selectivity for task-relevant stimulus features in
cortical areas thought to support perceptual processing (i.e., tem-
poral cortex; Sigala and Logothetis 2002). In a related series of
reports, Peelen et al. (2009, 2011, 2014) have suggested that visual
search (for objects such as humans and vehicles) is facilitated by
the activation of task-relevant representational templates in
late-stage visual areas. Our findings support this hypothesis in
the context of a finer-grained taxonomic categorization task and
suggest that this framework may extend beyond object detection
to more abstract representational templates of observed actions.
More generally, our results demonstrate that the representa-
tional geometry of semantic information in systems such as VT
and somatomotor cortex is dynamic and actively tuned to behav-
ioral goals, rather than being solely a reflection of static concep-
tual knowledge.

Behavioral performance was effectively at ceiling for both
attention tasks, suggesting that although participants were
compliant, the task may not have elicited strong attentional
deployment. Furthermore, to reduce the impact of behavioral
responses on the MRI data, participants were not required to
respond to nonrepetitions, and therefore submitted very few
(e.g., 4) behavioral responses per run. These limitations prevent
us from making claims relating the magnitude of attentional
deployment to the size of changes in representational geome-
try and examining trial-by-trial relationships between behavior
and representational geometry. A more demanding attentional
task may further enhance changes in representational geome-
try and reveal a more extensive cortical system that is modu-
lated by attention. Parametric variation of attentional demand
may allow quantification of the effect of attention on represen-
tational geometry. The magnitude of attentional deployment
in naturalistic paradigms with more complex goals is difficult
to vary systematically and may be relatively low compared
with psychophysical paradigms employing controlled stimuli.
Furthermore, we did not include a “baseline” or “no attention”
task condition in the present study, as it is not clear what
would constitute an appropriate “baseline” task in natural
vision paradigms given the difficulty of controlling spontane-
ous allocation of attention to meaningful, dynamic stimuli.
Because of these considerations, the significance of our findings
rests on the relative differences between the behavior and tax-
onomy attention tasks.

Numerous visual areas coded for both taxonomy and behav-
ior, suggesting these 2 types of information are encoded in dis-
tributed population codes in a superimposed or multiplexed
fashion (Grill-Spector and Weiner 2014; Haxby et al. 2014).
However, the behavior model accounted for notably more vari-
ance in neural representation throughout the cortex than the
taxonomy model—even in areas typically associated with ani-
mal category representation, such as VT (Connolly et al. 2012;
Sha et al. 2015). The dominance of behavior in the

representational geometry of behaving animals may be related
to the prevalence of biological motion energy information
when viewing naturalistic video stimuli (Huth et al. 2012; Russ
and Leopold 2015). Work by others shows that lateral fusiform
cortex responds strongly to dynamic stimuli that depict agentic
behavior with no biological form (Grossman and Blake 2002;
Gobbini et al. 2007), and biological motion and social behaviors
drive responses in face-selective temporal areas in the macaque
(Russ and Leopold 2015). Future work can use eye-tracking
and neurally inspired motion-energy models (Nishimoto
et al. 2011) to examine how viewing time, gaze patterns, and
motion information contribute to observed action represen-
tation and how low-level stimulus properties, such as simple
and biological motion energy, interact with endogenous
attention.

By design, there was considerable heterogeneity both in the
exemplar animals within each taxonomic category and the
exemplar actions within each behavioral category. For example,
the primate category included different species, with stimuli
depicting a chimpanzee eating a fruit and a macaque swim-
ming in a hot spring. However, behavioral categories were simi-
larly heterogeneous, grouping, for example, the bonobo eating
a fruit with stimuli depicting a hummingbird feeding from a
flower and a caterpillar eating its own eggshell. The visual het-
erogeneity of the category exemplars attests to the top-down
category structure imposed on the stimuli by the task
demands. There is some behavioral evidence that actions (or
verbs), similarly to objects (typically nouns; Rosch 1978), adhere
to a hierarchical category structure with a “basic” (or most fre-
quent, prototypical) intermediate level (Abbott et al. 1985;
Rifkin 1985; Fellbaum 1990; Morris and Murphy 1990). The
behavioral and taxonomic categories used here are at an inter-
mediate level but may not be at a putative basic level of the
semantic category hierarchy. Verb hierarchies, however, are
qualitatively different from noun hierarchies, with a “more
shallow, bushy structure” and fewer hierarchical levels
(Fellbaum 1990), making it difficult to match the level of taxo-
nomic and behavioral categories across their respective seman-
tic hierarchies. Moreover, it is unclear to what extent neural
representation (as accessible using fMRI) reflects the primacy of
basic-level categories reported behaviorally (cf. Connolly et al.
2012).

The neural representation of observed animal behaviors
(and observed actions more generally) may differ qualitatively
from the neural representation of animal taxonomy. The
stronger correlation of neural representational geometry with
models of behavioral categories may be due to stronger neu-
ral responses to biological motion energy than to biological
form (Huth et al. 2012; Russ and Leopold 2015). Furthermore,
whereas taxonomic category can be ascertained quickly and
does not change with time, observed behaviors evolve over
time. The semantic content conveyed by behavior also differs
considerably from that conveyed by taxonomy. For example,
observed actions convey motor goals (Rizzolatti and Sinigaglia
2010; Oosterhof et al. 2013) and vary considerably in affective
content. The rich, multidimensional information conveyed by
dynamic stimuli depicting behaving animals in their natural
environments may evoke responses in a variety of neural sys-
tems. Along these lines, the representation of taxonomy is
also driven by semantic features such as animacy (Connolly
et al. 2012; Sha et al. 2015) and perceived threat (Connolly
et al. 2016). The neural representation of these features may
rely on systems supporting affective and social cognition
(Saxe 2006; Connolly et al. 2016).
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The present study expands on work by (Brouwer and Heeger
2013) demonstrating that the neural color space in early visual
areas becomes more categorical when participants perform a
color naming task. Here, we use rich, naturalistic stimuli to
demonstrate that task demands affect neural representations
of animal taxonomy and behavior in a similar fashion in per-
ceptual and somatomotor areas. The current findings also com-
plement a recent study by Çukur et al. (2013) demonstrating
that attending to a particular object category (humans or vehi-
cles) shifts the semantic tuning of widely distributed cortical
voxels toward that category, even when exemplars of that cate-
gory are not present in the stimulus. Although the tuning shifts
observed by Çukur et al. (2013) are consistent with a selective
expansion of representational space, they may not be the
exclusive underlying mechanism. For example, increased
response gain, sharper tuning (Brouwer and Heeger 2013), and
changes in the correlation structure among voxels (Chen et al.
2006; Miyawaki et al. 2008) may also contribute to the task-
related differences we observe in distributed representation.
Further work is needed to investigate the relative roles played
by each of these candidate mechanisms in task-related
changes of representational geometry measured from distrib-
uted response patterns. Nonetheless, our findings provide a
direct demonstration of the task-related expansion of represen-
tational space hypothesized by Çukur et al. (2013) and extend
the domain of attentional modulation from object categories to
observed actions.

Scaling up the effects of attention on single neurons to pop-
ulation responses and multivoxel patterns of activity is an out-
standing challenge. Top-down signals (Desimone and Duncan
1995; Baldauf and Desimone 2014) may bias how information is
encoded by single neurons (Treue and Martínez Trujillo 1999;
Sigala and Logothetis 2002) and at the population level by altering
neuronal gain, tuning, and interneuronal correlations (Averbeck
et al. 2006; Cohen and Maunsell 2009; Ruff and Cohen 2014;
Downer et al. 2015) in order to optimize representational discrimi-
nability for downstream read-out systems. Our findings suggest a
model whereby attention alters population encoding in late-stage
perception so as to enhance the discriminability of task-relevant
representational content. At an algorithmic level (Marr 2010), atten-
tion may tune a feature space of arbitrary dimensionality by
dynamically altering population encoding. This mechanism could
enhance behavioral performance by temporarily disentangling
(DiCarlo et al. 2012) task-relevant representations and collapsing
task-irrelevant content.
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