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Abstract: In this study, vibration sensors were used to measure blast-induced ground vibration (PPV).
Different evolutionary algorithms were assessed for predicting PPV, including the particle swarm
optimization (PSO) algorithm, genetic algorithm (GA), imperialist competitive algorithm (ICA), and
artificial bee colony (ABC). These evolutionary algorithms were used to optimize the support vector
regression (SVR) model. They were abbreviated as the PSO-SVR, GA-SVR, ICA-SVR, and ABC-SVR
models. For each evolutionary algorithm, three forms of kernel function, linear (L), radial basis
function (RBF), and polynomial (P), were investigated and developed. In total, 12 new hybrid models
were developed for predicting PPV in this study, named ABC-SVR-P, ABC-SVR-L, ABC-SVR-RBF,
PSO-SVR-P, PSO-SVR-L, PSO-SVR-RBF, ICA-SVR-P, ICA-SVR-L, ICA-SVR-RBF, GA-SVR-P, GA-SVR-L
and GA-SVR-RBF. There were 125 blasting results gathered and analyzed at a limestone quarry
in Vietnam. Statistical criteria like R2, RMSE, and MAE were used to compare and evaluate the
developed models. Ranking and color intensity methods were also applied to enable a more complete
evaluation. The results revealed that GA was the most dominant evolutionary algorithm for the
current problem when combined with the SVR model. The RBF was confirmed as the best kernel
function for the GA-SVR model. The GA-SVR-RBF model was proposed as the best technique for
PPV estimation.

Keywords: peak particle velocity; vibration sensor; soft computing; evolutionary algorithm; hybrid
model; open-pit mine

1. Introduction

Construction materials and energy are in great demand in every country, especially developing
ones. As a result of this demand, opencast mines and quarries are flourishing and displaying high
levels of productivity to meet market requirements. Owing to this, ultimate pit boundaries are
reached quickly, and this significantly affects neighboring residential areas and surrounding structures.
Among the activities conducted in opencast mines, blasting is a necessary step which leads to serious
environmental impacts, such as air and ground vibrations, fly-rock, noise pollution, back-break,
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and release of gases [1]. Of these harmful effects, ground vibration is considered to be the most
dangerous phenomenon. It can make vibrations of buildings, instability of slopes and benches,
and cause bewilderment for the residentials surrounding the mine.

To measure ground vibration induced by blasting operations in open-pit mine, peak particle
velocity (PPV) is considered a standard criterion for evaluating the intensity of the ground vibration.
More than 80% of the energy of explosives is released by generating ground vibrations that spread
through the rock and soil to surrounding structures [2,3]. With a large oscillation amplitude over a short
period, blast-induced PPV significantly affects these surrounding structures. More specifically, in the
case of blast-induced PPV oscillations that concur with the natural vibrations of the building, resonance
phenomena happen, which can cause substantial structural damage, crashes or cracks, and instability of
the bench and slope in opencast mines [4,5]. Many households around blasting areas feel disconcerted
by the effects of blast-induced ground vibrations. Complaints and litigation related to blast-induced
PPV are serious issues, causing many opencast mines to stop production. Therefore, accurate prediction
of blast-induced PPV and control of harmful effects caused by the blasting operations are significant
challenges for open-pit mines. Precise forecast models of blast-induced PPV are necessary to minimize
unwanted injuries in the surrounding environment.

In this regard, artificial intelligence (AI) applications are considered useful, not only as robust
techniques in the mining field but also in many other areas (e.g., civil engineering, fuel, and energy,
and environment) [2,4,6–24]. An overview of the literature related to PPV prediction showed that
many AI models have been developed and proposed, as listed in Table 1. The reports in Table 1 showed
that the ANN (artificial neural network) seem to be the most common approach for predicting ground
vibration. The enhance algorithm of ANN (i.e., Levenberg–Marquardt algorithm) was also applied to
improve the accuracy of the ANN model in predicting ground vibration. Besides, the hybrid of ANN
and optimization algorithms (e.g., the particle swarm optimization (PSO), imperialist competitive
algorithm (ICA), artificial bee colony (ABC)) was also studied and proposed—aiming to provide high
reliability in predicting blast-induced ground vibration. Although the proposed models by the previous
researchers are outstanding, they were not applied in other areas/regions/countries. Furthermore,
new hybrid models with better accuracy are always the goal of researchers, especially benchmark
models-based approach. Of those, support vector machine for regression problems (SVR) is considered
as one of the common benchmark models, which was applied in many fields [25–31]. Our best review
of the related works showed that hybrid models based on SVR and evolutionary algorithms were
rare. The SVR model does not seem to be considered for optimization by evolutionary algorithms in
predicting PPV. Only the PSO-SVR model has been developed to predict blasting issues, although the
expected object is air over-pressure [32]. Moreover, kernel functions have been recommended that
significantly affect the performance of SVR models, and these have been reviewed by Nguyen [33].
However, they have not been considered and evaluated when combined with evolutionary algorithms.
Therefore, this study aims to assess the overall performance of different evolutionary algorithms such
as PSO algorithm, GA, ICA, and ABC when they are combined with the SVR model using linear
(L), radial basis function (RBF), and polynomial (P) kernel functions. 12 new hybrid models were
developed, named the ABC-SVR-P, ABC-SVR-L, ABC-SVR-RBF, PSO-SVR-P, PSO-SVR-L, PSO-SVR-RBF,
ICA-SVR-P, ICA-SVR-L, ICA-SVR-RBF, GA-SVR-P, GA-SVR-L, GA-SVR-RBF models. A comprehensive
comparison and assessment of these models will be presented in this study.
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Table 1. Some works and their results in predicting blast-induced peak particle velocity (PPV).

Reference Method Results

Khandelwal, Singh [34] ANN R2 = 0.986; MAE = 0.196
Khandelwal et al. [35] SVM R2 = 0.955; MAE = 0.226
Saadat et al. [36] ANN-LM R2 = 0.957; MSE = 0.000722
Hajihassani et al. [37] ICA-ANN R2 = 0.976
Hajihassani et al. [38] PSO-ANN R2 = 0.89; MSE = 0.038
Amiri et al. [39] ANN-KNN R2 = 0.88; RMSE = 0.54; VAF = 87.84
Hasanipanah et al. [40] CART R2 = 0.95; RMSE = 0.17; NS = 0.948
Hasanipanah et al. [41] PSO-power R2 = 0.938; RMSE = 0.24; VARE = 0.13; NS = 0.94
Taheri et al. [42] ABC-ANN R2 = 0.92; RMSE = 0.22; MAPE = 4.26
Faradonbeh, Monjezi [43] GEP-COA R2 = 0.874; RMSE = 6.732; MAE = 5.164

Behzadafshar et al. [44] ICA-linear R2 = 0.939; RMSE = 0.320; VAF = 92.18%; MBE = 0.22;
MAPE = 0.038

Tian et al. [45] GA-power R2 = 0.977; RMSE = 0.285
Hasanipanah et al. [46] FS-ICA R2 = 0.942; RMSE = 0.22; VAF = 94.2%
Nguyen et al. [12] HKM-ANN R2 = 0.983; RMSE = 0.554; VAF = 97.488%
Nguyen et al. [11] HKM-CA R2 = 0.995; RMSE = 0.475; MAE = 0.373
Zhang et al. [8] PSO-XGBoost R2 = 0.968; RMSE = 0.583; MAE = 0.346, VAF = 96.083

2. Proposing the Framework of SVR-based Evolution Algorithms

As introduced above, this study aims to investigate and developed several hybrid models based
on SVR and evolution algorithms, such as PSO, ICA, GA and ABC. Due to the details of PSO, ICA, GA,
ABC, and SVR being introduced in many previous papers [47–60]; therefore, they were not introduced
in this study. This study focuses on proposing novel hybrid framework of evolution algorithms (EAs)
and SVR, called EAs-SVR framework. For the development of the SVR model herein, three forms of
kernel functions were applied, including linear function (L), polynomial function (P), and radial basis
function (RBF). They can be formulated as follow:

- Linear:
G(x, xi) = x · xi (1)

- Polynomial:
G(x, xi) = [(x · xi) + 1]d ; d = (1, 2, . . .) (2)

- Radial basis function:

G(x, xi) = exp[
−‖x− xi‖

2

σ2 ] (3)

For each kernel function, there will be one or more hyper-parameters(s) adjusted to get the highest
performance for the models. In this study, the hyper-parameter(s) of the SVR models was searched
and selected by the EAs (i.e., PSO, ICA, ABC, GA) with the aim to establish optimal performance.

In this part, the framework of the EAs-SVR models is proposed and described. As stated above,
PSO, ICA, ABC, and GA were applied to optimize the SVR’s parameters. So, the EAs-SVR models
consist of PSO-SVR, ABC-SVR, ICA-SVR, and GA-SVR models. During the development of the
EAs-SVR models, L, P, and RBF kernel function were applied. The SVR’s parameters with different
functions of the kernel are shown in Table 2. Based on the initial parameters in Table 2, the ABC, ICA,
PSO, and GA algorithms perform a searching procedure for the optimal values of SVR’s parameters.
Root-mean-squared error (RMSE) was used as a fitness function for all EAs-SVR models during the
development of the models, and it was calculated using Equation (4). For each best hybrid model
obtained, the RMSE value is lowest respectively to the best-obtained SVR’s parameters. The loops for
the optimization process are used to find the optimal hyper-parameters. Eventually, the final EAs-SVR
models (i.e., ABC-SVR, ICA-SVR, PSO-SVR, GA-SVR) are defined. The framework of the EAs-SVR
models for predicting PPV is proposed in Figure 1.
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Figure 1. Framework of the support vector regression (SVR)-optimized by the four evolutionary algorithms for predicting peak particle velocity (PPV). 

Figure 1. Framework of the support vector regression (SVR)-optimized by the four evolutionary algorithms for predicting peak particle velocity (PPV).
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Table 2. Support vector regression (SVR’s) parameters based on the kernel functions used.

Kernel Function C µ κ σ

L x - - -
P x x x -

RBF x - - x

3. Statistical Criteria

For evaluating the quality, as well as the reliability level of the mentioned models, three indicators
of performance were used, including RMSE, MAE, and R2.

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2 (4)

R2 = 1−

∑
i
(yi − ŷi)

2

∑
i
(yi − y)2 (5)

MAE =
1
n

n∑
i=1

∣∣∣∣∣∣∣yi − ŷi
∣∣∣ (6)

where n is the total number of data, yi is measured PPV, ŷi is predicted PPV and y is mean of
measured PPVs.

4. Vibration Sensors and Experimental Datasets

A quarry in Vietnam was selected as a typical case. It is located within latitudes
20◦25′40” N–20◦26′20” N and longitudes 105◦53′10” E–105◦54′00” E (Figure 2). The area of the
mine is ~0.86 Km2 with the production ~6 million tons/year. The geological conditions of this site were
presented in [11]. Figure 3 shows the structure of geological of this site study.
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Its structure consists of two parts: a magnet and a coil of wire. The magnet is suspended by a wire 
coil, as shown in Figure 4. A blast-induced ground vibration reading is shown in Figure 5. Finally, 
125 PPV events were recorded by a Micromate vibration sensor (Instatel, Canada). Figure 6 illustrates 
the process of data collection and vibration sensor used in this study. 

 
Figure 4. Structure of the geophone sensor for measuring vibration. 

Figure 3. Structure of geology of the site study.

For measuring the intensity of vibration at this mine, Micromate geophone sensors were utilized.
Its structure consists of two parts: a magnet and a coil of wire. The magnet is suspended by a wire
coil, as shown in Figure 4. A blast-induced ground vibration reading is shown in Figure 5. Finally,
125 PPV events were recorded by a Micromate vibration sensor (Instatel, Canada). Figure 6 illustrates
the process of data collection and vibration sensor used in this study.
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Figure 6. Data collection and a result of the PPV.

A review of literature showed that many factors affect PPV. However, it is zoned into two
main groups, including a controllable parameters group and a uncontrollable parameters group [61].
The controllable parameters group is used by scientists to popularize predicting PPV due to the
ability to collect data directly and accurately, including W (explosive charge per delay), R (monitoring
distance), T (stemming), P (powder factor), the number of boreholes, B (burden), H (bench high),
S (spacing) and time delay [4]. In this study, four controllable parameters were used as the input
variables, namely W, R, B, and S, whereas, PPV was considered as the output factor. A hand-held GPS
was used to measure R, namely X91B GPS receiver, as shown in Figure 7. It can achieve an accuracy
in centimeter-level based on landmark coordinates built and adjusted in the local [2]. The other
parameters (W, B, S) were exported from 125 blast patterns. Table 3 summarizes the database used in
this research. The structure and distribution of the data are illustrated through the histogram of the
datasets as shown in Figure 8.

Table 3. Summary of PPV database in this study.

Parameter Min. Mean Max. Standard Deviation

W 39.200 54.620 77.900 6.846
R 100.000 202.800 380.000 55.751
B 2.400 3.312 4.500 0.437
S 3.000 3.302 3.600 0.208

PPV 0.300 4.804 15.170 2.928
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5. Results and Discussion

Before developing the models, the dataset is needed to divide into two phases, including training
and test phases. Accordingly, 80% of the whole dataset (101 blasting operations) was selected randomly
as the training phase for the models’ development. The remaining 20% (24 blasting operations) was
used to check the accuracy, as well as the reliability of the models developed based on the training
dataset. To avoid over-fitting or under-fitting of the models, the dataset was scaled in the range of
[−1, 1]. Besides, the Box-Cox transformation method [62] and 10-fold cross-validation technique [63]
were also applied to transfer data and improve the accuracy of the models.
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5.1. ABC-SVR Models

For the ABC-SVR models, the training dataset was used to develop the PPV predictive
models. Three kernel functions were involved in developing the ABC-SVR models with various
hyper-parameters, as shown in Table 2. The ABC algorithm implemented a global search procedure
to define the optimal values of the SVR models through the framework in Figure 1. In the ABC
algorithm, a trial and error procedure for the number of bees was conducted for the parameters to be
optimized over, with the number of bees set equal to 100, 200, 300, 400, 500, respectively; RMSE was
used as a fitness function to be minimized; The number of food sources to exploit for the bees was
set to 50 and the limit of a food source to 100; The boundary of the parameters to be optimized was
set as [–10;10]. The optimization process was repeated 1000 times to find the optimal RMSE value.
After setting parameters for the ABC algorithm, the bee finds the optimal values for the SVR models
with the corresponding parameters. The performance of the optimization process was illustrated in
Figures 9–11. The optimal results for the ABC-SVR models are shown in Table 4.
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Table 4. Optimal values of the artificial bee colony (ABC)-SVR model for predicting PPV.

Model C µ κ σ

ABC-SVR-L 0.544 - -
ABC-SVR-P 0.146 0.729 2

ABC-SVR-RBF 70.067 - - 0.016

5.2. PSO-SVR Models

As in the ABC-SVR models, an initial SVR model was generated with different kernel functions.
Subsequently, the SVR’s parameters were searched and optimized by the PSO algorithm. The best
values of SVR’s parameters (after discovery by the PSO algorithm) were evaluated through RMSE as
those used for the ABC-SVR models. The lowest RMSE is the optimal PSO-SVR model. To employ the
global search procedure by the PSO algorithm, its parameters needed to be set up first, including:

- The number of particle swarms (p);
- The maximum particle’s velocity (Vmax);
- The individual cognitive (φ1);
- The group cognitive (φ2);
- The inertia weight (w);
- The maximum number of iteration (mi).

For this study, the PSO’s parameters were set as follow: p = 100, 150, 200, 250, 300; Vmax = 1.9;
φ1 = φ2 = 1.6; w = 1.8, and mi = 1000. Once the PSO’s parameters were established, the particles
searched in a constrained space to find out the best place (under lowest RMSE). The lowest RMSE,
the optimal PSO-SVR model was defined, and its hyper-parameters were extracted to build the optimal
model. Figures 12–14 show the performance of the PSO-SVR models while searching optimal values.
Table 5 lists the optimal parameters of the PSO-SVR models.
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Table 5. Optimal parameters of the PSO-SVR models.

Model C µ κ σ

PSO-SVR-L 0.119 - -
PSO-SVR-P 4.995 0.022 2

PSO-SVR-RBF 40.901 - - 0.036

5.3. ICA-SVR Models

For optimization of the SVR model by the ICA, the ICA’s parameters were established as the first
step. A trial and error procedure for the number of initial countries (Ncountry) and initial imperialists
(Nimper) was applied with Ncountry was set equal to 100, 150, 200, 250, 300, respectively; Nimper was set
equal to 10, 20, 30, respectively. The maximum number of iterations (Ni) was set equal to 1000 to ensure
the stability of the model; the lower-upper limit of the optimization region (L) was placed in the range
of –10 to 10; the assimilation coefficient (As) was set equal to 3; the revolution of each country (r) was
set equal to 0.5. After the parameters of the ICA were established, empires perform a competition
to find out the most substantial empire where the SVR’s parameters are optimized. The ICA-SVR’s
performances are shown in Figures 15–17. Finally, the ICA-SVR’s parameters were listed in Table 6.
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Table 6. Obtained values of the SVR models by imperialist competitive algorithm (ICA) optimization.

Model C µ κ σ

ICA-SVR-L 0.101 - -
ICA-SVR-P 128.596 0.002 3

ICA-SVR-RBF 2.461 - - 0.079

5.4. GA-SVR Models

Concerning the GA-SVR models, the similar steps as those conducted for the previous models
was applied. An initial SVR model with kernel functions was established as the first step; then,
the parameters of GA were set up as the second step (e.g., mutation probability (Pm), crossover
probability (Pc), and the number variable (n), the number of populations (p)). In this study, Pm was set
equal to 0.1; Pc was set equal to 0.9; n = 4, and p was set equal to 100, 150, 200, 250, 300, respectively.
RMSE was used as the fitness function according to Equation (4). The maximum iteration number was
repeated 1000 times to ensure finding out the best values of the GA-SVR models. Figures 18–20 report
the GA-SVR’s performances through the RMSE. Eventually, the optimal GA-SVR’s parameters were
extracted in Table 7.
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Table 7. Genetic algorithm (GA)-SVR models with the optimal parameters.

Model C µ κ σ

GA-SVR-L 0.178 - -
GA-SVR-P 12.730 0.018 2

GA-SVR-RBF 7.938 - - 0.030

5.5. Evaluating the Developed Models

Once the optimal parameters of the 12 hybrid models were achieved, 24 blasting events in the set
of testing data were used to confirm the developed models’ accuracy. Table 8 presents the results of the
12 hybrid models on the sets of data.

Observing the statistical criteria on both the sets of training and testing data, the performance
of the proposed hybrid models was very good. The developed models seem to be very stable, and
the differences between the training dataset and the testing dataset are limited. However, if one
only looks at the numbers in Table 8, it is tough to evaluate which model is the best in the present
study. Therefore, a ranking method and intensity of color was used for assessing the efficiency
of the developed models. Whereas, the green color represents the highest performance, the white
color represents the lowest performance. The highlight of the GA-SVR-RBF indicated that it was
the best model. Next are the ABC-SVR-RBF, ABC-SVR-P, ICA-SVR-RBF, PSO-SVR-RBF, GA-SVR-P,
PSO-SVR-P, ICA-SVR-P, GA-SVR-L, ABC-SVR-L, PSO-SVR-L, and the last is ICA-SVR-L. It is of interest
to consider the accuracy of the ABC-SVR-RBF, ABC-SVR-P, and ICA-SVR-RBF models. Although the
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ABC-SVR-RBF model provided lower accuracy than the ABC-SVR-P and ICA-SVR-RBF models on the
testing dataset, the total ranking of the ABC-SVR-RBF model was higher than these two above models.
The main reason is due to the fact that ABC-SVR-RBF’s performance was higher than the ABC-SVR-P
and ICA-SVR-RBF models on the training dataset. In other words, the ABC-SVR-RBF model yielded
more stable results than the ABC-SVR-P and ICA-SVR-RBF models in terms of the PPV prediction
in the present study. Remarkably, the RBF kernel function seems to bring higher levels of accuracy
over the linear and polynomial kernel functions. In contrast, the linear kernel function provided the
lowest performance for the models in predicting PPV. As per the results of this study, the non-linear
relationship of the variables was clarified. Figure 21 interprets the accuracy of the 12 proposed hybrid
models. Note that, the intensity of the green color represents for the accuracy of the models. Greater
intensity of green color, greater performance.

Table 8. Statistical criteria of the PSO-SVR, ICA-SVR, ABC-SVR, and GA-SVR models.

Model

Training Dataset Testing Dataset
Total
RankRMSE R2 MAE

Rank
for

RMSE

Rank
for
R2

Rank
for

MAE
RMSE R2 MAE

Rank
for

RMSE

Rank
for
R2

Rank
for

MAE

ABC-SVR-P 0.977 0.265 7 9 8 0.317 0.989 0.226 11 11 9 55
ABC-SVR-L 0.754 0.943 0.493 4 3 4 1.107 0.907 0.578 1 3 2 17

ABC-SVR-RBF 0.362 0.981 0.227 11 11 12 0.345 0.986 0.222 9 9 10 62
PSO-SVR-P 0.417 0.976 0.276 8 7 6 0.413 0.980 0.286 6 7 5 39
PSO-SVR-L 0.833 0.941 0.526 2 2 2 1.044 0.904 0.574 4 2 4 16

PSO-SVR-RBF 0.411 0.978 0.256 9 10 10 0.410 0.979 0.245 7 6 8 50
ICA-SVR-P 0.434 0.974 0.286 5 5 5 0.471 0.977 0.272 5 5 6 31
ICA-SVR-L 0.843 0.940 0.530 1 1 1 1.045 0.901 0.580 3 1 1 8

ICA-SVR-RBF 0.428 0.975 0.274 6 6 7 0.335 0.987 0.205 10 10 11 50
GA-SVR-P 0.403 0.976 0.264 10 7 9 0.379 0.983 0.263 8 8 7 49
GA-SVR-L 0.789 0.945 0.510 3 4 3 1.090 0.907 0.577 2 3 3 18

GA-SVR-RBF 0.351 0.983 0.238 12 12 11 0.267 0.991 0.182 12 12 12 71Sensors 2019, 19, x FOR PEER REVIEW 13 of 19 
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5.6. Sensitivity Analysis

In this study, four evolutionary algorithms (i.e., ABC, ICA, PSO, and GA) have played an essential
role in optimizing the SVR models. Of those developed hybrid models, the GA-SVR-RBF model
provided the highest level of accuracy as well as performance. As stated above, the RBF model was
considered as the most useful function for the development of the SVR-based models using four
evolutionary algorithms. However, determining which input factor(s) are the most important with
the GA-SVR-RBF model, is a complicated problem; therefore, a procedure to assess the importance
of input variables has been carried out in this study based on the selected GA-SVR-RBF model.
The Hilbert-Schmidt Independence Criterion (HSIC) method was employed to analyze the input
variables importance [64,65]. The results showed that R and W are the most important factors for
estimating PPV, as illustrated in Figure 22.
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6. Conclusions

AI has become more common in all fields, especially in technical fields. Applications of AI have
helped to improve technical issues, especially in the mining industry. In this study, 12 hybrid models
based on four evolutionary algorithms and SVR model were developed and comprehensively assessed.
Some conclusions were drawn as follow:

(1) Evolutionary algorithms are of great value in improving the accuracy of traditional models for
PPV estimation, particular the SVR model.

(2) Kernel functions have a great effect on SVR’s accuracy, especially the RBF. By means of evolutionary
algorithms, kernel functions can reach optimal values for the SVR model.

(3) GA is the most dominant evolutionary algorithm when combined with the SVR model and RBF
(i.e., GA-SVR-RBF model) for predicting PPV. It should be approved as a robust technique to
accurately predict PPV.

(4) Monitoring distance and explosive charge (per delay) are the most critical factors in predicting
PPV. They should be given special attention and carefully collected to improve the models’
accuracy in practice.
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