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Machine-learning approaches are becoming commonplace in the neuroimaging literature
as potential diagnostic and prognostic tools for the study of clinical populations. However,
very few studies provide clinically informative measures to aid in decision-making and
resource allocation. Head-to-head comparison of neuroimaging-based multivariate classi-
fiers is an essential first step to promote translation of these tools to clinical practice. We
systematically evaluated the classifier performance using back-to-back structural MRI in
two field strengths (3- and 7-T) to discriminate patients with schizophrenia (n=19) from
healthy controls (n=20). Gray matter (GM) and white matter images were used as inputs
into a support vector machine to classify patients and control subjects. Seven Tesla clas-
sifiers outperformed the 3-T classifiers with accuracy reaching as high as 77% for the
7-T GM classifier compared to 66.6% for the 3-T GM classifier. Furthermore, diagnostic
odds ratio (a measure that is not affected by variations in sample characteristics) and num-
ber needed to predict (a measure based on Bayesian certainty of a test result) indicated
superior performance of the 7-T classifiers, whereby for each correct diagnosis made, the
number of patients that need to be examined using the 7-T GM classifier was one less
than the number that need to be examined if a different classifier was used. Using a hypo-
thetical example, we highlight how these findings could have significant implications for
clinical decision-making. We encourage the reporting of measures proposed here in future
studies utilizing machine-learning approaches. This will not only promote the search for an
optimum diagnostic tool but also aid in the translation of neuroimaging to clinical use.

Keywords: gray matter, machine learning, schizophrenia, structural MRI, support vector machine, white matter,
diagnosis

INTRODUCTION
Several years of neuroimaging research has established a convinc-
ing association between psychotic disorders such as schizophrenia
and the presence of structural and functional alterations in the
brain. Of late, the advent of refined statistical approaches such
as machine-learning algorithms for pattern classification has pro-
vided a means to use neuroimaging as a clinical diagnostic or
prognostic tool. Consequently, neuroimaging has been brought
under the spotlight of translational research in psychosis. System-
atic estimation of the clinical utility of various neuroimaging tools
is a relevant necessity, more than ever before.

Conventionally, a diagnosis for a psychotic disorder relies on
information gathered during clinical interviews. However, a num-
ber of neuroimaging studies using machine-learning approach
on both functional (1–6) and structural (3, 4, 7–23) data, have
attempted to provide diagnostic information applicable to indi-
vidual patients albeit with varying degrees of success. Pattern
classification methods used in these studies differ from the more
conventional imaging methods that use general linear models
[e.g., voxel based morphometry (VBM)] by utilizing a multivari-
ate approach to identify discriminating features. Mass univariate

analyses such as VBM look for differences in localized regions of
the brain that are extracted from group differences. Pattern classi-
fication on the other hand, seeks out subtle differences in patterns
across the brain that best discriminates diagnostic groups. As a
result, univariate approaches often yield effects sizes that are too
small to allow useful conclusions to be drawn in individual cases,
whereas multivariate analyses offer a greater prospect of diagnos-
ing (i.e., correctly identifying the group membership) individual
cases.

A validated set of multivariate features (classifier) that provides
the best discrimination between two diagnostic groups can be
applied to a “new” individual to identify the diagnostic category to
which he/she may belong. This applicability at the level of the sin-
gle individual makes pattern classification approach a potentially
valuable diagnostic and/or prognostic tool.

A major challenge with the wider use of machine-learning
approaches is the lack of consistency in test performance (mea-
sured using Accuracy, Specificity, and Sensitivity) even across
studies distinguishing patients from healthy controls, a discrimi-
nation that is often reliably done in clinical practice. In part this can
be attributed to the varied selection of neuroimaging modalities
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[resting state or task based functional MRI, white matter (WM)
or gray matter (GM) morphometry, diffusion tensor imaging] in
classification studies. But discrepancies are observed even amongst
studies using the same imaging modality. For example, Borgwardt
et al. (8) and Pettersson-Yeo et al. (4) used highly similar patient
groups with similar sample size and employed a non-linear sup-
port vector machine (SVM) for a GM classifier. However, results
were very different; Borgwardt et al.’s (8) classifiers separated
controls and first-episode psychosis patients with a high rate of
accuracy (86.7%), while Pettersson-Yeo et al. (4) study failed to
discriminate these two groups. Inconsistencies such as these may
be due to a variety of factors such as severity of disease in patient
groups, and image acquisition specifications (e.g., varying scanner
strengths, scanning durations). Higher variation in performance
has been previously noted when different field strengths (1.5 vs.
3 T) were used to classify patients with Alzheimer’s dementia from
healthy controls (24). In addition, the most commonly reported
test performance measure Diagnostic Accuracy is prone to vary
with prevalence of the disease in the study population (25). For
neuroimaging to be promoted as an aspect of routine clinical care
in psychosis, it is important to compare various modalities and
data acquisition strategies preferably using measures that are not
affected by sample characteristics and establish the best perform-
ing methods. In addition, to enable clinicians to utilize these tools
in the “real-world” of clinical practice, it is important that we
report appropriate indices that emphasize the clinical significance
of various classification approaches.

The current study aims to explore whether SVM classifiers
intended to distinguish patients with schizophrenia from healthy
controls perform differently when based on two modalities (GM
and WM morphometry) of structural magnetic resonance imag-
ing (sMRI) data acquired in a back-to-back fashion in the same
sample at two different scanner strengths (3 and 7 T MR scanners).
Given the superior signal-to-noise ratio (SNR) for 7 T MRI, and
the predominance of GM changes in schizophrenia, we expected
7 T and GM based classifiers to outperform 3 T and WM based
classifiers. In addition to demonstrating statistically significant
changes among the classifiers, our major interest was to estimate
the extent of any incremental gain in a clinically meaningful man-
ner. To this end, for the first time in pattern classification studies
we have estimated the number of patients required to be tested
in order to correctly predict diagnosis in one person (number
needed to predict, NNP) using a Bayesian measure of diagnos-
tic certainty (26). Further, in addition to sensitivity, specificity,
and diagnostic accuracy, we report diagnostic odds ratio (DOR), a
composite indicator of test performance that summarizes sensitiv-
ity and specificity without being affected by variations in disease
prevalence (27).

MATERIALS AND METHODS
PARTICIPANTS
Twenty patients with schizophrenia and 21 healthy controls were
recruited for the study, of which 19 patients and 20 healthy controls
with scans of adequate quality are included in the current analyses.
Patients were aged between 18 and 55 years and were diagnosed
with schizophrenia according to the DSM-IV. A consensus pro-
cedure after reviewing clinical notes, collecting information from

the psychiatrists providing clinical care and a structured clini-
cal interview [Signs and Symptoms in Psychotic Illness (28)] was
conducted with each patient. All patients were in a stable phase
of illness [defined as a change of no more than 10 points in their
Global Assessment of Function (GAF, DSM-IV) score, assessed
6 weeks prior and immediately prior to study participation]. The
mean duration of illness was 7.7 years (SD= 8.3). Subjects with
age <18 or >55, subjects with neurological disorders, current
substance dependence, or IQ < 70 using Quick Test (29) were
excluded. Healthy controls group-matched for age, gender, and
parental socio-economic status with the patients were recruited
from the local communities through advertisements. In addi-
tion to the exclusion criteria specified for patients, controls were
excluded if there was a personal or family history of psychosis. All
subjects were recruited from Nottinghamshire, UK. Permission for
the study was obtained from National Research Ethics Committee,
Nottingham, UK. All participants gave written informed consent.

MRI DATA ACQUISITION
Scanning was performed on a 3 and 7-T Philips Achieva sys-
tem with 32-channel receive coil. Three Tesla magnetization-
prepared rapid acquisition gradient echo (MPRAGE) images
were obtained with 1 mm isotropic resolution, 256× 256× 160
matrix, Repetition Time (TR)= 8.1 ms, Echo Time (TE)= 3.7 ms,
shot interval 3 s, flip angle 8°was acquired for each partic-
ipant. Seven Tesla T1 weighted images were acquired using
a 3D Magnetization Prepared – Turbo Field Echo (IR-TFE)
with 0.6 mm isotropic resolution, 192 mm× 180 mm× 140 mm
matrix, TR= 15 ms, TE= 5.6 ms, shot interval= 3 s, flip angle 8°.
An optimized inversion pulse (adiabatic pulse) was used at 7 T
to reduce bias field inhomogeneity. The 3- and 7-T scans were
acquired one after the other in the same order (3 T followed by
7 T) on the same day for all subjects, with 5–10 min of time interval
between the scans for transferring the patients between two scan-
ners located in the same building. One patient and one control
were excluded due to significant movement artifacts that pre-
cluded analysis. Clinical and demographic features of the sample
are presented in Table 1.

IMAGE PROCESSING AND SVM CLASSIFICATION
T1 images were resliced (1 mm isotropic) and segmented into gray,
white, and CSF tissue using the SPM8 Diffeomorphic Anatomical
Registration Through Exponentiated Lie algebra (DARTEL) algo-
rithm (30). GM and WM images were separately warped onto a
group average template and normalized to MNI space. To cor-
rect for variation due to field inhomogeneity, the images were
bias field corrected using 60 mm FWHM setting using SPM8 (31).
To confirm that the higher inhomogeneity in the ultra-high field
(7 T) did not affect the integrity of tissue segmentation process,
we compared the total GM tissue volume from the 3- to 7-T
scans. There was no significant difference [paired t (38)= 0.18,
p= 0.9] in the GM volume. Furthermore, the total GM tissue vol-
umes obtained from 3 to 7 T scans were very highly correlated
(r = 0.93, p < 0.001), indicating that there were no systematic
differences in the tissue segmentation between the 3- and 7-T
scans (Figure 1). The normalized, modulated, unsmoothed WM,
and GM images for the 3- and 7-T datasets were then used as
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Table 1 | Clinical and demographic features.

Features Patients (N = 19)

mean (SD)

Controls (N = 20)

mean (SD)

Gender (male/female) 14/5 15/5

Handedness (right/left) 17/2 18/2

Age 33.2 (9.8) 32 (8.2)

Parental NS-SEC 2.6 (1.7) 2.5 (1.6)

SSPI total score* 11.1 (10) 0.6 (0.8)

Reality distortion* 2.4 (2.9) 0 (0)

Disorganization* 0.2 (0.7) 0.1 (0.3)

Psychomotor poverty* 2.3 (3.7) 0 (0)

Illness duration 7.7 (8.3) –

DDD of antipsychotics 0.8 (0.7) –

GAF score* 47.3 (10.7) 88.1 (7.4)

SD, standard deviation; NS-SEC, national statistics socio-economic classifica-

tion; SSPI, signs and symptoms of psychotic illness; DDD, defined daily dose;

GAF, global assessment of functioning. *Significantly different between the two

groups using Mann–Whitney U test (p < 0.05).

FIGURE 1 | Scatterplot showing a strong correlation between 3 and 7T
gray matter volumes after segmentation using SPM8 DARTEL
algorithm for the entire sample (both patients and controls).

inputs to the separate linear SVM classifiers. In this approach,
each subject’s input image is considered as a datapoint in a high-
dimensional space of anatomical information (defined by GM
or WM volumes). A hyperplane producing the greatest margin
between the datapoints of the opposite groups (controls and
patients) was identified using the multivariate information from
the input images. A linear rather than non-linear kernel matrix
was computed as input into the SVM classifier, as this allows the
extraction of weight vectors of the high-dimensional data and also
reduces the likelihood of overfitting (32). The SVM analysis was
carried out using Pattern Recognition for Neuroimaging Tool-
box (PRoNTo), following the standard manualized descriptions
(http://www.mlnl.cs.ucl.ac.uk/pronto).

Kernel-based approaches such as the one used here utilize a sim-
ilarity matrix derived from all datapoints when developing classi-
fiers; this obviates the need for explicit dimensionality reduction

and optimizes computation efficiency (33). To measure the test
performance and to validate the classifier, a leave-one-subject-out
(LOSO) cross validation approach was employed, where the classi-
fier is trained on all subjects except one, which is used as test data.
Balanced accuracy, specificity, sensitivity, and predictive values for
each classifier were obtained and statistical significance of these
measures was determined by way of permutation testing (n= 1000
permutations with random assignment of patient/control labels to
the training data).

DISCRIMINATION MAPS
Each voxel carries a certain weight value signifying its contribution
toward the classification function. This value can be positive or
negative, where a positive value would represent a higher weighted
average for class one (controls group), while a negative value
would mean the weighted average was higher for class two (patient
group). Since classifiers use a multivariate approach, and therefore
discriminations are based on the global spatial pattern, local infer-
ences should never be made in regards to the weights. For each
classifier, in line with Mourao-Miranda et al. (16), we set a thresh-
old of 30% of the maximum positive and negative weight values
to generate a spatial representation of the regions that most con-
tributed to the group discrimination. These maps are illustrated
in Figure 2.

STATISTICAL ANALYSIS
We used four different measures – SVM based decision values,
DOR, NNP, and Cohen’s Kappa – to compare the 7- and 3-T GM
and WM classifiers.

Support vector machines use decision values (the distance of
a data point from the hyperplane) when computing the optimal
margin between groups. Decision values represent the confidence
an SVM classifier has in its decision regarding the group (or class)
membership of a datapoint. Higher absolute value for a data point
suggests that the classifier has a high degree of confidence in its
decision. Comparison of decision values provides a quantitative
evaluation of the confidence of each classification made by the
classifier (24). We quantified the variation in the performance of
classifiers in patients by comparing decision values across differ-
ent field strengths (3/7 T) and tissue types (GM/WM) using paired
t -tests.

Diagnostic odds ratio and NNP were calculated as measures
of diagnostic utility for GM and WM classifiers at both 7 and 3 T
strength. DOR provides a ratio of the odds of positivity relative
to negativity in disease relative to the odds of positivity relative to
negativity in the non-diseased, written as:

DOR =
TP

FN

/
FP

TN
=

sensitivity

(1− sensitivity)

/
(1− specificity)

specificity

where TP, FP, FN, and TN represent true positive, false posi-
tive, false negative, and true negative respectively (27). A value of
one indicates inability for the classifier to discriminate between
patients with a disease and healthy controls. The higher the
value, the more superior is the discriminatory performance.
The NNP is derived from the predictive summary index (PSI),
which provides a measure of gain in certainty when a diagnos-
tic tool is used in a target population (26). PSI is computed as
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Iwabuchi et al. Machine learning in schizophrenia

FIGURE 2 | Discrimination maps for each classifier at a threshold of
30% of the maximum positive and negative weight values,
superimposed onto a standard brain template provided by

MRICron. (A) 3T GM, (B) 3T WM, (C) 7T GM, and (D) 7T WM. Color
bar represents the minimum and maximum thresholded weights for
each classifier.

PSI= (PPV+NPV− 1), where PPV refers to positive predictive
value (or post-test probability of the diagnosis= the proportion
of positive results that are correct) and NPV refers to negative

predictive value (or post-test probability of the absence of diagno-
sis= the proportion of negative results that are correct). PPV and
NPV are Bayesian measures of gain in conditional certainty.
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For the test positive condition, the gain in the certainty for the
diagnosis is the difference between the post-test probability for the
diagnosis (the PPV) and the prior probability (the prevalence). In
other words, prevalence (PPV) gives the gain in certainty for posi-
tive test. For the test negative condition, the gain in the certainty for
the absence of diagnosis is the difference between post-test proba-
bility of absent diagnosis (the NPV) and the prior probability of no
disease, i.e. (1−PPV). In other words, [NPV− (1− prevalence)]
gives the gain in certainty for a negative test. The total gain in
certainty (termed as PSI) then is the addition of these two.

PSI = PPV− prevalence+
[
NPV−

(
1− prevalence

)]
.

This can be rewritten as

PSI = PPV+NPV− 1

The NNP is an estimate of the number of patients that need
to be examined in order to correctly predict diagnosis in one per-
son. This can be calculated using Linn and Grunau (26) formula:
NNP= (1/PSI).

Two distinct classifiers need not always classify the same indi-
viduals as patients, despite both having a high overall diagnostic
accuracy. We quantified the degree of agreement between the
classifiers using Cohen’s kappa (K ).

RESULTS
CLASSIFIER PERFORMANCE
The 3-T classifier discriminated schizophrenia cases and controls
with 66.6% accuracy (70% specificity; 63.2% sensitivity) for GM
and 63.9% accuracy (70% specificity; 57.9% sensitivity) for WM.
The 7-T classifier performed at a slightly higher accuracy rate of
77% (75% specificity, 78.9 sensitivity) for GM and 69.1% (75%
specificity, 63.2% sensitivity) for WM. These results are shown in
Table 2 and all test performances were significantly better than
chance.

A paired t -test of the decision values of the patients showed
a significant difference between the 3- and 7-T GM classifiers
[t (18)= 2.435, p= 0.026] and also between the 3- and 7-T WM
classifiers [t (18)= 2.137, p= 0.047]. No significant differences
were seen between tissue type for either 3 or 7 T classifiers. Results
are displayed in Table 3.

The DOR demonstrated superiority of both the 7-T classifiers
relative the respective 3 T classifiers. In addition, the scores for
both 3 and 7 T classifiers indicate GM to be superior to WM for

classifying controls from patients. The 3-T classifier scored 4.004
and 3.211 for GM and WM respectively, while the 7-T classifier
scored 11.23 and 6.005 for GM and WM respectively. The PSI
and NNP suggested better performance for the 7-T GM classifier,
whereby two (1.855) patients would be required to be examined
to correctly diagnose an individual with disease using the 7-T GM
analysis, compared to three or more patients required for any other
classifier (3 T GM: 2.994; 3 T WM: 3.53; 7 T WM: 2.577).

Cohen’s kappa resulted in agreement of 0.59 between 3 and
7 T classifiers for both GM and 0.49 for WM, indicating mod-
erate agreement in classification. The 7-T model (both GM and
WM) correctly classified an additional six individuals that were
incorrectly classified by the 3-T classifier. There was high level of
agreement between tissue type for both the 3- and 7-T (K = 0.74
and 0.85, respectively) classifiers.

DISCUSSION
We have demonstrated that the magnetic field strength of a scan-
ner and the tissue type chosen for morphometric analysis can
have a substantial impact on the performance of neuroanatomi-
cal pattern classifiers discriminating patients with schizophrenia
from healthy controls. Accuracy, specificity, and sensitivity were
all improved by the use of a higher magnetic field strength. The
incremental benefit from the superior diagnostic ability of the 7-T
GM “test” can obviate the need for 1 additional test for each cor-
rect diagnosis when compared to “tests” at lower scanner strength
or employing WM features.

We have shown that the pathological changes observed in both
the WM and GM tissues are of significant discriminatory value for
separating patients with schizophrenia from healthy controls. The
accuracy levels observed in the present study are comparable to
several previous studies [(14, 16, 17); e.g., Ref. (4, 23)], while oth-
ers have achieved better performance [(15); e.g., Ref. (8, 20, 21)].
Most of the pattern classification studies in psychosis have focused
on GM features. Relatively few studies that consider WM fea-
tures in addition to GM highlight the presence of discriminatory
features in WM as well (14, 23). For the first time we have com-
pared head-to-head the incremental benefits of the two tissues in
SVM analysis. Our results suggest that tissue type chosen for mor-
phometry alone is unlikely to have a significant influence on the
classification accuracy when identifying patients with schizophre-
nia from healthy controls. This is also apparent when considering
Cohen’s kappa measures between GM and WM classifiers. This is
not surprising, given that diffuse abnormalities affecting both GM
and WM define the neuroanatomical landscape of schizophrenia.

Table 2 | Results of the 3- and 7-T classifiers (p values in parentheses).

Balanced

accuracy (p)

Specificity

(p)

Sensitivity

(p)

Positive predictive

value (PPV)

Negative predictive

value (NPV)

Mean decision value

(patients only) (SD)

PSI NNP DOR

3T

GM 66.6 (0.018) 70 (0.026) 63.2 (0.017) 66.7 66.7 −0.004 (0.249) 0.334 2.994 4.004

WM 63.9 (0.022) 70 (0.024) 57.9 (0.036) 64.7 63.6 0.006 (0.247) 0.283 3.53 3.211

7T

GM 77 (0.001) 75 (0.005) 78.9 (0.001) 75 78.9 −0.24 (0.447) 0.539 1.855 11.23

WM 69.1 (0.013) 75 (0.011) 63.2 (0.028) 70.6 68.2 −0.211 (0.465) 0.388 2.577 6.005
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On the other hand, combining the diagnostic information from
the two modalities may offer specific advantages. For example,
if both 7 T GM and WM classifiers are administered simultane-
ously to a target population (with 70% PPV of schizophrenia) and
if only those subjects who are classified to belong to the patient
group by both classifiers are offered the diagnosis of schizophre-
nia, the post-test probability of the “combined” positive test in this
scenario will rise to 94.9% (assuming that GM and WM are truly
“independent” tests). It is imperative that future studies test such
assumptions and scenarios in real-world practice to guide clinical
protocols.

For the first time in SVM studies in psychosis, we report the
DOR, a single indicator of test performance that is not influenced
by variations in disease PPV. This index facilitates meta-analysis
of diagnostic studies and will greatly aid in consolidation of evi-
dence from various SVM studies published so far. Being invariant
to the variations in the population characteristics such as the PPV,
DOR offers a useful index for comparing classifier performance
reported in a variety of clinical settings. Routine reporting of this
index will allow an unbiased estimation of the classification and
enable the process of selecting an optimum test for specific clinical
applications.

Whilst odds ratios are intuitive and allow a clinician to com-
pare various tests, they do not provide an immediate assessment of
the impact of a test on health-care costs. Estimating the number

Table 3 | Results of paired t -test of decision values of schizophrenia

patients (N =19).

Paired t -test

T score Significance

3T GM vs. 3T WM 0.528 p=0.604

7T GM vs. 7T WM 1.086 p=0.292

7T GM vs. 3T GM 2.435 p=0.026

7T WM vs. 3T WM 2.137 p=0.047

Bold p values significant at p < 0.05.

need to predict (NNP) reflects the collective benefit to patients
when a test enters routine clinical use. NNP is comparable to
measures such as number needed to treat (NNT) and number
needed to harm (NNH) that are commonly used in clinical set-
tings to provide easily understood measures of relative efficacy
of different treatments. Such measures are widely used in clinical
decision-making, and in evidence based clinical practice. They
also facilitate meaningful cost-effectiveness analysis for health
economic evaluation.

Cohen’s kappa measures used in the present study indicated
only moderate levels of agreement among the 7- and 3-T classifiers.
For example, the 7-T GM classifier was able to correctly classify six
individuals who could not be correctly classified by the 3-T GM
classifier. This finding is of crucial importance for SVM studies in
psychosis. So far, most individual classifiers have been observed to
achieve accuracy levels of 70–80%, which is well below the 90%
mark that may be required for routine clinical use of MRI (14).
The presence of a moderate rather than a high degree of agree-
ment between two tests suggests that the results are not entirely
dependent, and additional information could be gained by com-
bining the two tests. Bayesian approaches to combine diagnostic
tests have been applied in other fields of medicine where gold-
standard diagnostic procedures are lacking (34), and have a high
degree of appeal in translational neuroimaging in psychosis. If we
consider a priori probability of 70% confidence for true diagnosis
of psychosis (35) and apply Bayesian theorem, the use of the 7-
T GM SVM classifier to identify schizophrenia would increase the
likelihood for a positive diagnosis to 89%, whereas a negative find-
ing would reduce the likelihood to 42% (Figure 3). Hypothetically,
these probabilities may be used as thresholds to determine whether
an individual undergoes treatment or be discharged. For example,
medication would be initiated in those that reached probability
of 80%, while those with probability of 45% would be discharged.
Therefore, SVM can provide useful additional information toward
diagnostic decisions, especially for inconclusive cases. This war-
rants similar Bayesian approaches across various modalities in
order to determine the variables that would enable maximal addi-
tional certainty toward diagnosis. In terms of the current study, we
acknowledge that sequential 7 and 3 T scans may not have a place

FIGURE 3 | Hypothetical changes in clinical practice that can be expected
if the 7-T gray matter classifier reported in this study enters clinical use.
Given the prevalence of a diagnosable psychotic disorder to be 70% in an
early intervention service, a classification outcome favoring the presence of
diagnosis can tilt the balance toward antipsychotic prescription, while an

outcome favoring the absence of diagnosis can aid in making a decision of
discharge from services. This example assumes two hypothetical decision
thresholds: one at 85% diagnostic confidence for antipsychotic prescription
and the other at 45% diagnostic confidence to discharge a patient from early
intervention services.
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FIGURE 4 | Areas of reduced gray and white matter volume in patients
with schizophrenia compared to controls at two different field strengths
(3 and 7T). Top panel (A,B) represents gray matter morphometry. Bottom
panel (C,D) represents white matter morphometry. All contrasts are based on
unsmoothed tissue segmentations, reported with uncorrected p=0.1
threshold to enable visualization of localized morphometric changes. (A) Three
Tesla GM contrasts showing reduced bilateral insula, parahippocampal, and

thalamic volume reduction. (B) Seven Tesla GM contrasts showing more
widespread volume reduction involving bilateral insula, parahippocampal
region, thalamus, anterior cingulate cortex, and superior temporal regions. (C)
Three Tesla WM revealing widespread WM changes, spatially coinciding albeit
less pronounced in intensity when compared to 7T WM changes shown in
(D). Color bars represent T values for GM and WM contrasts in both 3 and 7T
field strengths.

in routine clinical care. However it is important that future studies
investigate the degree of covariance (or conditional dependence)
between neuroimaging modalities that can be obtained in a single
session (e.g., resting fMRI and structural MRI, or DTI and WM
morphometry), with a view to investigate the degree of additional
certainty that might be gained by using automated classification
algorithms.

A number of previous VBM studies consistently reveal GM
reduction in the insula, anterior cingulate cortex, thalamus and
parahippocampal gyrus (36–39), and volumetric (40) or structural

integrity changes measured using anisotropy (41) in the WM in
several fronto-temporal regions in schizophrenia. Although we
cannot make localized inferences regarding the brain regions con-
tributing to classification using a SVM approach (32), undertaking
a VBM analysis in the same dataset can reveal the brain regions
showing maximal changes in patients compared to controls. Given
the modest power of our sample to detect VBM differences in
the unsmoothed data that entered SVM analysis, we generated
controls vs. patients GM contrast at an uncorrected threshold of
p= 0.1 to compare the consistency between 3 and 7 T in detecting
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regional differences. We observed GM reduction in bilateral insula,
anterior cingulate cortex, thalamus, superior temporal cortex, and
parahippocampal gyrus at both 3 and 7 T. But these differences
were far more pronounced at 7 T than 3 T. A similar pattern
of more pronounced findings at 7 T compared to 3 T was also
observed for voxel based WM deficits (Figure 4).

There are several limitations to be considered when interpreting
current findings. We had a relatively small sample with back-to-
back scans in the current study. As the discriminatory ability of
the classifiers may depend, to some extent, on the size of the
training dataset, it is possible that the difference between 7 and
3 T classifiers may become weaker (or stronger) in larger sam-
ples. Abdulkadir et al. (24), investigated this issue in Alzheimer’s
disease and reported that contrary to expectations, smaller train-
ing sets are not more vulnerable to changes in the MR hardware.
Importantly, the use of a larger training set did not decrease deci-
sion errors. This suggests that the incremental gain observed for
7 T GM classifier should persist in larger samples as well. In the
current study, we were limited to the comparison of two features
used in SVM studies of psychosis – WM and GM morphometric
measures from structural MRI. We did not have data to compare
other commonly used modalities such diffusion tensor imaging
of WM which appear promising (7, 12) or functional MRI. A
comprehensive evaluation to establish both the incremental valid-
ity and combinatorial utility of the various imaging modalities
is crucial for further progress of translational neuroimaging in
psychosis. Such approaches should not be limited to the compar-
ison of patients and highly selected healthy controls, but must be
extended to epidemiological neuroimaging data involving a wider
spectrum of individuals including high-risk subjects and patients
with different prognostic outcomes. The acceptability of a diag-
nostic procedure is a central feature contributing to its clinical
effectiveness. Seven Tesla MR scanner has a higher likelihood of
producing transient light-headedness and dizziness due to the
higher strength of the magnetic field (42). In the current study,

we did not have any subjects discontinuing the study due to side
effects. Nevertheless, the possibility of poor tolerance in some sub-
jects must be borne in mind when considering wider use of 7 T.
We also note that 7 T scanners are not widely available; this calls
for further studies to systematically evaluate the utility of pat-
tern classification framework using more widely available imaging
approaches. Such studies will be essential to determine the most
pragmatic high performance tool (or tools) for clinical use.

In summary, the present study has highlighted the need for
systematic assessment of factors influencing the performance of
pattern classification approaches in psychiatric neuroimaging. We
have also evaluated clinically intuitive measures that can be used
in the comparison of various classifiers. DOR provides a mean for
synthesizing SVM based findings in a meta-analytical framework,
which will be crucial in aiding clinical translation. NNP provides a
summary value for measuring economic effects and resource allo-
cation required to deploy SVM based diagnostic tools at service
level. For individual patients, predictive values offer directly useful
numerical measurement of the likelihood of a diagnostic outcome
that can guide treatment decisions, as highlighted in our hypothet-
ical example. This is an initial step toward translating psychiatric
neuroimaging from ‘the scanners to the services.”
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