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Abstract 

Leveraging artificial intelligence (AI) approaches in animal health (AH) makes it possible to address highly complex 
issues such as those encountered in quantitative and predictive epidemiology, animal/human precision‑based 
medicine, or to study host × pathogen interactions. AI may contribute (i) to diagnosis and disease case detection, (ii) 
to more reliable predictions and reduced errors, (iii) to representing more realistically complex biological systems and 
rendering computing codes more readable to non‑computer scientists, (iv) to speeding‑up decisions and improving 
accuracy in risk analyses, and (v) to better targeted interventions and anticipated negative effects. In turn, challenges 
in AH may stimulate AI research due to specificity of AH systems, data, constraints, and analytical objectives. Based on 
a literature review of scientific papers at the interface between AI and AH covering the period 2009–2019, and inter‑
views with French researchers positioned at this interface, the present study explains the main AH areas where various 
AI approaches are currently mobilised, how it may contribute to renew AH research issues and remove methodologi‑
cal or conceptual barriers. After presenting the possible obstacles and levers, we propose several recommendations 
to better grasp the challenge represented by the AH/AI interface. With the development of several recent concepts 
promoting a global and multisectoral perspective in the field of health, AI should contribute to defract the different 
disciplines in AH towards more transversal and integrative research.
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1 Introduction
Artificial intelligence (AI) encompasses a large range of 
theories and technologies used to solve problems of high 
logical or algorithmic complexity. It crosses many disci‑
plines, including mechanistic modelling, software engi‑
neering, data science, and statistics (Figure 1). Introduced 
in the 1950s, many AI methods have been developed or 
extended recently with the improvement of computer 
performance. Recent developments have been fuelled by 
the interfaces created between AI and other disciplines, 
such as bio‑medicine, as well as massive data from dif‑
ferent fields, particularly those associated with healthcare 
[1, 2].

AI addresses three challenges that also make sense in 
animal health (AH): (1) understanding a situation and 
its dynamics, e.g., epidemic spread; (2) the perception of 
the environment, which corresponds in AH to the detec‑
tion of patterns (e.g., repeated sequence of observations), 

forms (e.g., of a protein) and signals (e.g., increased 
mortality compared to a baseline) at different scales; (3) 
computer‑based decision making, or, more realistically, 
human decision support (e.g., expert systems, diagnostic 
support, resource allocation).

To answer these challenges, a wide range of concepts 
and methods are developed in AI. This includes machine 
learning (ML), a widely known AI method nowadays, 
which has been developing since the 1980s [3]. Since 
the 2000s, deep learning is developing with the rise of 
big data and the continuous increasing of computing 
capacities, enabling the exploration of massive amount 
of information that cannot be processed by conventional 
statistical methods. In addition, this also includes meth‑
ods and algorithms for solving complex problems, auto‑
mating tasks or reasoning, integrating information from 
heterogeneous sources, or decision support (Figure  1). 
These methods are now uprising in the human health 
sector, but are still rarely used to study animal health 
issues that they would help to revisit.

Part of the scientific challenges faced in AH can be 
approached from a new perspective by using some of 
these AI methods to analyse the ever‑increasing data 
collected on animals, pathogens, and their environment. 
AH research benefits from advances in machine and 
deep learning methods, e.g., in predictive epidemiology, 
individual‑based precision medicine, and to study host–
pathogen interactions [2, 4]. These methods contribute 
to disease diagnosis and individual case detection, to 
more reliable predictions and reduced errors, to speed‑
up decisions and improved accuracy in risk analysis, and 
to better targeting interventions in AH [5]. AH research 
also benefits from scientific advances in other domains 
of AI. Knowledge representation and modelling of rea‑
soning [6] allow more realistic representations of com‑
plex socio‑biological systems such as those encountered 
in AH. Examples include processes related to decision‑
making and uncertainty management [7, 8], as well as of 
patient life courses like in human epidemiology [9]. This 
contributes to making them more readable by noncom‑
puter experts. In addition, advances in problem solving 
under constrained resource allocation [10], in autono‑
mous agents [11], multi‑agent systems [12], and multi‑
level systems [13], as well as on automatic computer code 
generation [14] can be mobilised to enhance efficient and 
reliable epidemiological models. Interestingly, this may 
aid to anticipate the effect of control and management 
decisions at different spatial and temporal scales (animal, 
herd, country…).

Conducting research at the AH/AI interface also leads 
to identify new challenges for AI, on themes common 
with human health but considering different contexts and 
perspectives [15]. First, taking into account the particular 
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Figure 1 Interactions between animal health (AH), artificial 
intelligence (AI), and closely related research domains. This 
illustration is pinpointing only the links between AH (in blue), AI 
and its main subfields (in red), and other related fields of research 
(in black). It can be naturally complexified through the interactions 
between AH and other research topics (e.g., human medicine) or 
between core disciplines (e.g., statistics and physics).



Page 3 of 15Ezanno et al. Vet Res           (2021) 52:40  

agro‑ and socio‑economic conditions of production sys‑
tems is crucial when dealing with AH. Animal produc‑
tion systems depend on human activities and decisions. 
They can be a source of income (e.g., livestock) or labour 
forces and source of food in family farming. Citizens have 
also high expectations in terms of ethics and animal wel‑
fare [16]. Conventional measures to control animal dis‑
eases may no longer be acceptable by society (e.g., mass 
culling during outbreaks [17], antimicrobial usage, [18]). 
Alternatives must be identified and assessed, and AI can 
contribute. For example, individual‑based veterinarian 
medicine is emerging, mobilising both AI methods and 
new AH data streams, these data differing from data in 
human health [19]. The integration of data from deep 
sequencing in AH, including emerging technologies for 
studying the metabolome and epigenome, is also a chal‑
lenge [20, 21]. Second, interactions between animal spe‑
cies, in particular between domestic animals and wildlife, 
lead to specific infectious disease risks (e.g., multi‑host 
pathogens such as for African swine fever, pathogens 
crossing the species barrier facilitated by frequent con‑
tacts and promiscuity). The intensity of such interactions 
could increase due to separate or synergistic actions of 
environmental (e.g., landscape homogenisation, land use 
change for agriculture development, climate change), 
demographic (e.g., increasing global demand for animal 
production) and societal (e.g., outdoor livestock manage‑
ment) pressures. In addition, working on multi‑species 
disease networks provides crucial information on the 
underlying molecular mechanisms favouring interspe‑
cific transmission [22]. Third, animal populations are 
governed by recurrent decision‑making that also impacts 
health management (e.g., trade, control measures). Eco‑
nomic criteria as consequences on livestock farmers’ 
incomes are therefore essential indicators for evaluating 
AH control strategies, which can sometimes be misun‑
derstood or may be at odds with societal expectations. 
These specificities make the AH/AI interface a theme 
of interest to stimulate new methodological work and to 
solve some of old and current locks faced by AH research 
today. With the development of new concepts in health 
such as One Health, Ecohealth and Planetary Health, 
promoting multidisciplinarity, stakeholders’ participa‑
tion, data sharing, and tackling the complexity of health 
issues (e.g., multi‑host pathogen transmission, short and 
long‑term climatic impacts on disease patterns [23]), AI 
could participate in this new development by making it 
possible to technically solve some of the complex prob‑
lems posed.

Mobilising the literature published at the AH/AI inter‑
face between 2009 and 2019 (Additional file 1A), focus‑
ing our literature search on mainly livestock and wildlife, 
as well as interviews conducted with French researchers 

positioned at this interface (Additional file  1B), we 
identified the main research areas in AH in which AI 
is currently involved country‑wide. We explored how 
AI methods contribute to revisiting AH questions and 
may help remove methodological or conceptual barri‑
ers within the field. We also analysed how AH questions 
interrogate and stimulate new AI technical or scientific 
developments. In this paper, we first discuss issues related 
to data collection, organisation and access (Section  1), 
then we discuss how AI methods contribute to revisit‑
ing our understanding of animal epidemiological systems 
(Section 2), to improving case detection and diagnosis at 
different scales (Section 3), and to anticipating pathogen 
spread and control in a wide range of scenarios in order 
to improve AH management, facilitate decision‑making 
and stimulate innovation (Section 4). Finally, we present 
the possible obstacles and levers to the development of 
AI in modern AH (Section 5), before making recommen‑
dations to best address the new challenges represented 
by this AH/IA interface (Section 6).

2  Collect, organise and make accessible quality 
data

A central point for research in AH remains the qual‑
ity and availability of data, at the different organization 
levels of living systems and therefore at different spatial 
and temporal scales [24]. Data of interest are diverse. 
They can be obtained thanks to molecular analysis (e.g., 
genomic, metagenomics, or metabolic data), from obser‑
vational data on individuals (e.g., body temperature, 
behaviour, milk production and composition, weight, 
feed intake), or from the production system (e.g., herd 
structure, breeding, management of sanitary issues). 
They can also be obtained at larger scales, beyond herds 
or local groups of animals (e.g., epidemiological data, 
demographic events, commercial movements, meteoro‑
logical data, land‑use occupation).

Even though the acquisition of these massive and het‑
erogeneous data remain challenging (e.g., metabolome 
data), a large and diverse amount is already collected: (i) 
through mandatory reporting in accordance with regula‑
tions (e.g., commercial movements of cattle, epidemio‑
surveillance platform), (ii) by automatic devices (e.g., 
sensors, video surveillance systems), and (iii) on an ad 
hoc basis as part of research programs. This leads to a 
very wide diversity of data properties, and therefore of 
their management, access and possible uses. These data 
can be specifically obtained for certain animals or herds 
(e.g., during cohort monitoring programs) or by private 
companies (e.g., pig trade movements such as in France, 
milk collection). This can limit accessibility to academ‑
ics and public research. Globalisation and large‑scale 
animal trade may generate the need to use data obtained 
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at worldwide scale in AH, especially for quantitative 
epidemiology (e.g., transcontinental spread of patho‑
gens, animal genetics and breed management) leading to 
standardisation issues [25].

Consideration should be given to future systems for 
observing, collecting and managing these data [26], and 
to practices aimed at better collaboration between stake‑
holders. While data management has always been an 
important element in applied research to facilitate their 
use and valorisation, it is now a strategic issue both in 
theoretical and more applied research, coupled with a 
technical and algorithmic challenge [27–29]. Indeed, 
producing algorithms to manage massive data flows and 
stocks, by optimising calculations, is a challenge, particu‑
larly in real time. It seems also necessary to make hetero‑
geneous data sources interoperable, requiring dedicated 
methodological developments [25]. In addition, much 
of the data is private, with ownership often heterogene‑
ous (e.g., multiple owners, non‑centralised data, closed 
data) and sometimes unclear (e.g., lack of knowledge of 
the real owner of the data between, for example, farmers, 
the data collector or the farmers’ union). All this tends to 
considerably complicate access to the data, raises ques‑
tions about intellectual property, and raises questions in 
relation to regulations with regards to data protection, 
e.g., the adaptation of regulation to AH while respect‑
ing the confidentiality of the personal data mobilised. 
What is the relevant business model for data collection 
or access to existing databases? What about the openness 
of AH data (e.g., duality between the notion of public 
good and the private nature of certain data) to make it 
possible to experiment in real situations and compare the 
performance of AI algorithms? Answering these ques‑
tions would facilitate the collection and sharing of ad hoc 
data. AI, particularly when combining a participatory 
framework with expert systems and multi‑agent systems, 
helps to build realistic representations of complex socio‑
biological systems. Thus, it proves to be an effective tool 
to promote the collaboration of different stakeholders in 
collective and optimised decision‑making, and to assess 
of the impact of changes in uses and practices [30].

Encouraging experimentation of AI technologies at 
a territorial scale becomes crucial to favour their devel‑
opment, validate their performance, and measure their 
predictive quality. In AH, simplified access to data‑gen‑
erating facilities would allow innovative solutions to be 
tested on a larger scale and would accelerate their devel‑
opment and evaluation. Substantial expertise exists (e.g., 
epidemiological data platform, large cohorts, experimen‑
tal farms) that could be put to good use. In addition, AI 
could help to revisit sampling methods for field data col‑
lection in AH and epidemiological surveillance, by better 

and more dynamically targeting the data to be collected 
while avoiding redundant collinear, non‑necessary data.

3  Contribution of AI to better understand animal 
epidemiological systems

Recent technological advances involving AI approaches 
have made it possible to obtain vast quantities of meas‑
urements and observations, as well as to store and 
share these data more efficiently. This has resulted in an 
increasing requirement for appropriate data analytical 
methods. AI methods emerged as the response of the 
computer‑science community to these requirements, 
leveraging the exponential improvements in computa‑
tional power. In parallel, statistical methods have greatly 
evolved in the last few decades as well, e.g., with regards 
to dimensionality‑reduction in the spaces of variables 
and parameters, variable selection, and model compari‑
son and combination. The rise in computational power 
has unleashed the development of Bayesian inference 
through simulation or approximate methods [31]. Bayes‑
ian methods have, in turn, facilitated the integration of 
data from diverse sources, the incorporation of prior 
knowledge and allowed for inference on more complex 
and realistic models while changing the paradigm of sta‑
tistical inference [32–34].

3.1  Better understanding the evolution of AH 
and socio‑ecological systems in a One Health context

Learning methods can be used to do phylogenetic recon‑
structions, contributing in particular to new evolutionary 
scenarios of pathogens and their transmission pathways. 
For example, phylogenetic models offer an interest‑
ing perspective for identifying environmental bacterial 
strains with high infectious potentiality [35], or for pre‑
dicting the existence of putative host reservoirs or vec‑
tors [36]. The analysis of pathogen sharing among hosts 
has been used to classify the potential reservoirs of 
zoonotic diseases using machine learning [37]. The analy‑
sis of pathogen genomes can also be used to identify gen‑
otypes of animal pathogens that are more likely to infect 
humans [38].

Using phenomenological niche models that rely on 
data distribution more than on hypotheses about eco‑
logical processes at play, disease occurrence data or ret‑
rospective serological data coupled with environmental 
variables can be related to the risk of being exposed to 
a pathogen. Thus, they can help monitor potential spill‑
overs and emerging risks and anticipate the epidemic 
pathogen spread [39]. For instance, Artificial Neural 
Networks (ANN) have identified the level of genetic 
introgression between wild and domesticated animal 
populations in a spatialized context [40], which may help 
to understand gene diffusion in host × pathogen systems 
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involving multiple host species, and characterise speci‑
men pools at higher risk to act as pathogen spreaders or 
sinks. Other AI approaches such as multi‑agent models, a 
more mechanistic approach, have been used in an explicit 
spatial context for vector‑borne pathogen transmissions, 
and proved to be sufficiently versatile to be adapted to 
several other particular contexts [12].

It should be noted here that several studies reveal the 
relatively ancient nature of AI research in AH. Such AI 
methods have often made it possible to identify signals 
(e.g., genetic introgression) or even particular patterns or 
properties (e.g., importance of density‑dependence in the 
vector‑borne transmission) that are less visible or hardly 
detectable by more conventional statistical treatments.

All these approaches contribute to better understand 
pathogen transmission in complex system networks 
as generally observed for emerging infections in tropi‑
cal, developing regions of the world. On this matter, 
an improved knowledge is key for protecting humans 
against these new threats, and AI/AH interfaces develop‑
ment and training in cooperation with the poorest coun‑
tries would facilitate synergistic effects and actions to 
predict and tackle new disease threats.

3.2  Reliability, reproducibility and flexibility 
of mechanistic models in AH

Better understanding and predicting pathogen spread 
often requires an explicit and integrative representation 
of the mechanisms involved in the dynamics of AH sys‑
tems, irrespective of the scale (within‑host: [41]; along 

a primary production chain: [42]; in a territory: [43, 44]; 
over a continent: [45]).

Mathematical (equations) or computer‑based (simula‑
tions) models can be used. Such mechanistic models (i.e., 
which represent the mechanisms involved in the infec‑
tion dynamics), when sufficiently modular to represent 
contrasted situations, make it possible to anticipate the 
effects of conventional but also innovative control meas‑
ures (e.g., new candidate molecules, sensors, genomic 
selection; [46]).

However, to assess realistic control measures, mecha‑
nistic epidemiological models require the integration of 
observational data and knowledge from biology, epide‑
miology, evolution, ecology, agronomy, sociology or eco‑
nomics. Their development can rapidly face challenges 
of reliability, transparency, reproducibility, and usage 
flexibility. Moreover, these models are often developed 
de novo, making little use of previous models from other 
systems. Finally, these models, even based on realistic 
biological hypotheses, may be considered negatively as 
black boxes by end users (health managers), because the 
underlying assumptions often became hidden in the code 
or equations.

The integration of multiple modelling perspectives 
(e.g., disciplines, points of view, spatio‑temporal scales) 
is an important question in the modelling‑simulation 
field. Epidemiological modelling could benefit from exist‑
ing tools and methods developed in this field [47–49]. 
Although essential, good programming practices alone 

Figure 2 AI at the service of mechanistic epidemiological modelling (adapted from [51]). A. Modellers develop each epidemiological 
model de novo, producing specific codes not easily readable by scientists from other disciplines or by model end‑users. B. Using AI approaches 
to combine a domain‑specific language and an agent‑based software architecture enhances reproducibility, transparency, and flexibility of 
epidemiological models. A simulation engine reads text files describing the system to automatically produce the model code. Complementary 
add‑ons can be added if required. Models are easier to transfer to animal health managers as decision support tools.



Page 6 of 15Ezanno et al. Vet Res           (2021) 52:40 

[50] cannot meet these challenges [51]. Scientific librar‑
ies and platforms accelerate the implementation of the 
complex models often needed in AH. For example, the R 
library SimInf [52] helps integrate observational data into 
mechanistic models. The BROADWICK framework [53] 
provides reusable software components for several scales 
and modelling paradigms, but still requires modellers to 
write large amounts of computer code.

New methods at the crossroads between software engi‑
neering and AI can enhance transparency and reproduci‑
bility in mechanistic modelling, fostering communication 
between software scientists, modellers and AH research‑
ers throughout the modelling process (e.g., assumption 
formulation, assessment, and revision). Knowledge rep‑
resentation methods from symbolic AI, formalised using 
advanced software engineering methods such as domain‑
specific languages (DSL, e.g., in KENDRICK for differ‑
ential equation models: [54]), makes model components 
accessible in a readable structured text file instead of 
computer code. Hence, scientists from various disciplines 
and field managers can be more involved in the model 
design and evaluation. Scenario exploration and model 
revision also no longer require rewriting the model code.

Other AI methods can improve model flexibility and 
modularity. Autonomous software agents enable to rep‑
resent various levels of abstraction and organisation [55], 
helping modellers go more easily back and forth within 
small and larger scales, and ensure that all relevant mech‑
anisms are adequately formalised at proper scales (i.e., 
scale‑dependency of determinants and drivers in hierar‑
chical living systems). Combining knowledge representa‑
tion (through a DSL) and such a multi‑level agent‑based 
simulation architecture (e.g., in EMULSION, Figure  2, 
[56]) enables to encompass several types of models (e.g., 
compartmental, individual‑based) and scales (e.g., indi‑
vidual, population, territory), and it tackles simultane‑
ously the recurring needs for transparency, reliability 
and flexibility in modelling contagious diseases. This 
approach should also facilitate in the future the produc‑
tion of support decision tools for veterinary and public 
health managers and stakeholders.

3.3  Extracting knowledge from massive data in basic AH 
biology

Supervised, unsupervised and semi‑supervised learn‑
ing methods facilitate basic research development in 
biology and biomedicine, for example by using morpho‑
logical analyses to study cell mobility [57]. The use of 
classification approaches and smart filters allows nowa‑
days to sort massive molecular data (e.g., data from high 
throughput sequencing and metagenomics). Metabolic, 
physiological and immunological signalling pathways 

are explored, and metabolites are identified and quanti‑
fied in complex biological mixtures, which was before a 
major challenge [58]. In addition, diagnostic time may be 
reduced by developing image analysis processing (e.g., 
accelerated detection of clinical patterns; [59, 60]), often 
necessary to study host–pathogen interactions in animal 
pathology. For example, the use of optimisation methods 
has improved the understanding of the fragmentation of 
prion assemblages, contributing to a significant reduc‑
tion in the time required to diagnose neurodegenera‑
tive animal diseases, thus paving the way for identifying 
potential therapeutic targets [61]. In livestock breeding, 
there is a methodological transition underway from tra‑
ditional prediction strategies to more advanced machine 
learning approaches including artificial neural networks, 
deep learning and Bayesian networks which are being 
used to improve the reliability of genetic predictions and 
further the understanding of phenotypes biology. [62].

In human health, new disciplines have emerged in the 
second half of the  20th century at the interface between 
AI and flagship disciplines, such as cell biology and 
immunology. Interface disciplines have developed, e.g., 
computational biology and immunology, which today 
must spread to AH. Current human immunology is 
based on the description of fine molecular and cellu‑
lar mechanisms (e.g., the number of known interleukins 
has increased considerably compared to the 1970s). The 
desire to understand the processes underlying immune 
responses has led to a revolution by inviting this disci‑
pline to focus on complex systems biology and AI‑based 
approaches [63]. However, the imbalance between the 
numbers of immunologists and immunology modellers 
is hampering the fantastic growth of this new discipline.

As an additional level of complexity, the hierarchical 
nature of biological systems makes that at the individual 
level, animals including humans must be considered as 
holobionts made of myriads of hosted microbial forms 
that form discrete ecological units (i.e., infracommu‑
nities). The potential of AI to grasp such diversity and 
complexity (e.g., tissue‑specific microbiotes) and to 
scaling‑up to higher levels of organization (e.g., compo‑
nent and compound communities of microbes, includ‑
ing pathogens, circulating in herd and in a given region) 
is certainly tremendous and should be studied with the 
same vigour as recent development in computational 
biology and immunology [40].

4  Revisiting AH case detection methods 
at different scales

Managing livestock health issues requires effective case 
detection methods, at the individual or even infra‑indi‑
vidual (organ) scale, at the group/herd scale, or at larger 
scales (e.g., territories, countries). Machine learning 
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methods allow detecting patterns and signals in massive 
data, e.g., in spatial data or time‑series of health syn‑
dromes and disease cases, contributing to the develop‑
ment of smart agriculture and telemedicine (Figure  3). 
Alerts can be produced, and contribute to management 
advice in numerical agriculture [64] and veterinary 
practices [65]. AI may contribute to an earlier detection 
of infected cases and the rationalisation of treatments 
(including antimicrobials) in farm animals, by analysing 
data collected from connected sensors [66], by targeting 
individuals or groups of animals [59], or even by using 
mechanistic models to predict the occurrence of case 
detections and their treatment [67]. Also, machine learn‑
ing methods enable to discriminate pathogen strains and 
thus to better understand their respective transmission 
pathways if different [68]. Finally, therapeutic strategies 
can be reasoned through multi‑criteria optimisation, by 
identifying whom to treat in a herd, when, according to 
what protocol and for how long, in order to maximise the 
probability of cure while minimising both the risk of drug 
resistance and the volume or number of doses that are 
necessary (i.e., individual‑based and precision medicine).

Nevertheless, alert quality depends on the quality and 
representativeness of the datasets used by the learning 

algorithms. Numerous biases (e.g., hardware, software, 
human) can affect prediction accuracy. Moreover, alerts 
produced after training necessarily reflect the specificities 
of the system from which the data originates (e.g., area, 
period, rearing practices). Thus, result transposition to 
other epidemiological systems or to the same system sub‑
jected to environmental or regulatory changes remains 
risky. Furthermore, while machine learning methods 
(e.g., classification, image analysis, pattern recognition, 
data mining) provide solutions for a wide range of bio‑
medical and bio‑health research questions, it is crucial 
to demonstrate the performance of these methods by 
measuring their predictive quality and comparing them 
to alternative statistical methods whenever possible [69].

At the population level, case detection is based on 
direct (detection of syndromes) or indirect surveillance, 
mobilising syndrome proxies. Hence, the emergence of 
some animal diseases can be detected by syndromic sur‑
veillance, by detecting abnormal or rare signals in routine 
data (e.g., mortality, reproduction, abortion, behaviour, 
milk production, increased drug use; [70]). Also, sero‑
logical data can be used retrospectively to identify indi‑
vidual characteristics related to a risk of being exposed 
to a pathogen, and thus orientate management efforts 

Figure 3 Extracting information from massive data to monitor animal health and better rationalise treatments. 
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(e.g., in wildlife; [71]). Statistics and AI are largely com‑
plementary to address such issues. Both mobilise the 
wide range of available data, which are highly heteroge‑
neous, massive and mostly sparse, to detect signals that 
are often weak or scarce [28, 72, 73]. Such signals can be 
proxy records (e.g., emergence of infectious diseases fol‑
lowing environmental disturbances), health symptoms 
and syndromes, or even metabolic pathways in cascades 
which can be precursors of chronic or degenerative dis‑
eases. AI also includes methods to mobilise information 
available on the web. For example, semi‑automatic data 
mining methods enabled to identify emerging signals for 
international surveillance of epizooties [74] or to analyse 
veterinary documents such as necropsy reports [75, 76]. 
Methods from the field of natural language processing 
can compensate the scarcity of data by extracting syntac‑
tic and semantic information from textual records, trig‑
gering alerts on new emerging threats that could have 
been missed otherwise.

On a large to very large scale (i.e., territory, country, 
continent, global), data analysis of commercial animal 
movements between farms makes it possible to predict 
the associated epidemic risk [77, 78]. These movements 
are difficult to predict, particularly since animal trade is 
based on many factors associated with human activities 
and decisions. Methods for recognising spatio‑temporal 
patterns and methodological developments for the analy‑
sis of oriented and weighted dynamic relational graphs 
are required in this field because very few of the existing 
methods allow large‑scale systems to be studied, whereas 
datasets are often very large (e.g., several tens or even 
hundreds of thousands of interacting operations).

On this topic, the specific frontier between learn‑
ing methods of AI and statistics is relatively blurred, 
lying most on the relative prominence of the compu‑
tational performance of algorithms versus mathemat‑
ics, probability and rigorous statistical inference. While 
machine learning methods are more empirical, focused 
on improving their predictive performance, statistics is 
more concerned with the quantification and modelling 
of uncertainties and errors [79, 80]. In the last decade, 
both communities have started to communicate and to 
mix together. Methods have cross‑fertilised, giving birth 
to statistical models using synthetic variables generated 
by AI methods, or AI algorithms optimising statistical 
measures of likelihood or quality. New research areas, 
such as Probabilistic Machine Learning, have emerged at 
the interface between the two domains [1, 80, 81]. Mean‑
while, machine learning and statistics have kept their 
specific interests and complementarity; machine learn‑
ing methods are especially well‑suited to processing non‑
standard data types (e.g., images, sounds), while statistics 
can draw inference and model processes for which only 

few data are available, or where the quantities of interest 
are extreme events.

5  Targeted interventions, model of human 
decisions, and support of AH decisions

5.1  Choosing among alternatives
A challenge for animal health managers is to identify 
the most relevant combinations of control measures 
according to local (e.g., farm characteristics, production 
objectives) and territorial (e.g., available resources, farm 
location, management priorities) specificities. They have 
to anticipate the effects of health, environmental and 
regulatory changes, and deliver quality health advice. 
The question also arises of how to promote innovation 
in AH, such as to anticipate the required characteris‑
tics of candidate molecules in vaccine strategies or drug 
delivery [82, 83], or to assess the competitive advantage 
of new strategies (e.g., genomic selection of resistant 
animals, new vaccines) over more conventional ones. 
Private (e.g., farmers, farmers’ advisors) and collective 
managers (e.g., farmer groups, public authorities) need 
support decision tools to better target public incentives, 
identify investments to be favoured by farmers [46] and 
target the measures as effectively as possible: who to tar‑
get (which farms, which animals)?; with which appropri‑
ate measure(s)?; when and for how long? These questions 
become essential to reasoning about input usage (e.g., 
antimicrobials, pesticides, biocides) within the frame‑
work of the agro‑ecological transition.

The use of mechanistic modelling is a solution to 
assess, compare and prioritise ex ante a wide range of 
options (Figure  4; [84]). However, most of the available 
models do not explicitly integrate human decision‑mak‑
ing, while control decisions are often made by farmers 
(e.g., unregulated diseases), with sometimes large‑scale 
health and decision‑making consequences (e.g., patho‑
gen spread, dissemination of information and rumours, 
area of influence). Recent work aims to integrate humans 
and their decisions by mobilising optimal control and 
adaptive strategies from AI [7, 85] or health economics 
methods [86, 87]. A challenge is to propose clear and 
context‑adapted control policies [88]. Such research is 
just starting in AH [46] and must be extended as part of 
the development of agro‑ecology, facing current societal 
demand for product quality and respect for ecosystems 
and their biodiversity on one side, animal well‑being and 
ethics on the other side, and more generally international 
health security.

5.2  Accounting for expectations and fears of animal health 
managers

Animal health managers should have access to model 
predictions in a time frame compatible with management 
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needs, which is problematic in the face of unpredict‑
able emerging events (e.g., new epidemiological systems, 
transmission pathways, trade patterns, control measures). 
Developing a library of models included in a common 
framework would strengthen the responsiveness of mod‑
ellers in animal epidemiology. Relevant models would be 
developed more quickly and would gain accuracy from 
real‑time modelling as epidemics progress [89, 90]. How‑
ever, if this makes move more quickly from concepts 
(knowledge and assumptions) to simulations and support 
decision tools, a gain in performance is still required to 
perform analyses at a very large scale. The automatic gen‑
eration of high‑performance computer code could be a 
relevant solution, which however remains a crucial meth‑
odological lock to be addressed in AI. In addition, it is 
often required to perform a very large number of calcu‑
lations or to analyse very large datasets, which call for a 
rational use of computing resources. Software transferred 
to health managers sometimes require the use of private 

cloud resources (i.e., it does not run on simple individual 
computers), highlighting the trade‑offs between simula‑
tion cost, service continuity (e.g., failure management) 
and time required to obtain simulation results [91]. These 
questions are currently related to computer science 
research, and collaborations are desirable between these 
researchers and those from AH.

Managers also wish to rely on accurate predictions from 
realistic representations of the biological systems. Before 
being used, model behaviour should be analysed, which 
raises the questions of exploring the space of uncertain‑
ties and data, and of optimization under constraints. 
This often requires intensive simulations, which would 
benefit from optimization algorithms to explore more 
efficiently the space of possibilities. In turn, this would 
allow, for example, the automatic identification of how 
to achieve a targeted objective (e.g., reducing the preva‑
lence of a disease below an acceptable threshold) while 
being constrained in resource allocation. While this issue 

Figure 4 Identifying relevant strategies to control bovine paratuberculosis at a regional scale (adapted from [76]). Classically, identifying 
relevant strategies means defining them a priori and comparing them, e.g., by modelling. Only a small number of alternatives can be considered. 
If all alternatives are considered as in the figure, it results in a multitude of scenarios whose analysis becomes challenging. Here, each point 
corresponds to the epidemiological situation after 9 years of pathogen spread over a network of 12 500 dairy cattle herds for a given strategy 
(asterisk: no control). Initially, 10% of the animals are infected on average in 30% of the herds. The blue dots correspond to the most favourable 
strategies. Mobilizing AI approaches in such a framework, especially optimization under constraints, would facilitate the identification of relevant 
strategies by exploring the space of possibilities in a more targeted manner.
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finds solutions in modern statistics for relatively simple 
systems, it represents a science front for complex systems 
(e.g., large scale, multi‑host/multi‑pathogen systems) 
that are becoming the norm. In addition, optimization 
goals specific to AH may generate ad hoc methodological 
needs [92]. The needs in abstraction and analysis capac‑
ity are massive and could benefit from complementari‑
ties between AI (e.g., reasoned exploration, intelligent 
use of computer resources, optimized calculations) and 
statistics to extract as much information as possible from 
the data: (1) explore, analyse, predict; (2) infer processes 
and emergent properties. Methodological developments 
are still required and would benefit many health issues, 
particularly in relation to the currently evolving concepts 
of reservoir‑host, edge‑host and species barrier [93]. Fur‑
thermore, methodological developments and dissemina‑
tion of existing methods should be reinforced.

Finally, three barriers have been identified to the 
development of support decision tools for health man‑
agers, related to the societal issue of the acceptability of 
AI sensu lato, as a major factor of progress. First, ethi‑
cal issues, which are obvious when it comes to human 
health, are just as important to consider in AH. Which 
AI‑based tools do we want for modern animal husband‑
ries and trades, and for which objectives? Are these tools 
not likely to lead to discrimination against farms accord‑
ing to their health status, even when this status cannot be 
managed by the farmer alone? Second, in AH too, there is 
a fear that AI‑tools may replace human expertise. How‑
ever, automating does not mean replacing human, his 
expertise and decision [94], but rather supporting his 
capacities for abstraction and analysis, accelerating the 
global process, making predictions more reliable, guid‑
ing complementary research. Nevertheless, a significant 
development of computer resources and equipment is 
not without impacting the environment in terms of car‑
bon footprint (e.g., energy‑intensive servers, recycling of 
sensors), which must also be accounted for. Third, the 
very high complexity of analysing results and accultur‑
ating end‑users with knowledge issued from academic 
research, particularly AI, is an obstacle to the appropria‑
tion of AI‑tools by their users. This may lead to the pref‑
erence for simpler and more easily accessible methods. 
However, the latter may not always be the most relevant 
or reliable. Citizen science projects, also known as com‑
munity participation in human epidemiology, enable AH 
to co‑design and co‑construct the AI‑tools of tomorrow 
with their end‑users [95], to better meet their expecta‑
tions and needs, and to increase their confidence in the 
predictions of sometimes obscure research models, espe‑
cially when they are hard to read (e.g., lines of code). 
Similarly, these AI‑tools could be developed together 
with public decision‑makers, livestock farmers, agro‑food 

industries and sectoral trade unions. Co‑construction 
gives time to explain the science behind the tools and 
makes it more transparent and useful. This citizen par‑
ticipation, which is nowadays supported in many coun‑
tries, guarantees decisions more in line with citizens’ 
expectations and corresponds to a general trend towards 
structured decision‑making. AI must contribute to this 
democratisation of aid in public decision‑making in AH.

6  Barriers to the development of research 
at the AI/AH interface

Research conducted at the interface between AI and AH 
requires strong interactions between biological disci‑
plines (e.g., infectiology, immunology, clinical sciences, 
genetics, ecology, evolution, epidemiology, animal and 
veterinary sciences) and more theoretical disciplines 
(e.g., modelling, statistics, computer science), some‑
times together with sociology and economics. Conduct‑
ing research at this interface requires strengthening the 
few teams already positioned in Western Europe, but also 
bringing together teams working around the concepts of 
One Health, Ecohealth and Planetary Health to benefit 
from recent achievements in infectious disease ecology 
and modelling, plant health and environmental health 
[96]. This work must be based on a wide range of meth‑
odological skills (e.g., learning methods, data mining, 
information systems, knowledge representation, multi‑
agent systems, problem solving, metamodeling, optimisa‑
tion, simulation architecture, model reduction, decision 
models). The need for research, training and support are 
crucial issues at national, European and international lev‑
els. Also, a facilitated and trusted connection is required 
between academics, technical institutes, and private 
partners, who are often the holders or collectors of data 
of interest to solve AH research questions through AI 
approaches. The construction of better inter‑sectoral 
communication and coordination must be done at supra‑
institutional level, as this theme seems hyper‑competitive 
and as some current divisions still go against information 
and data sharing.

An acculturation of researchers to AI, its methods and 
potential developments, but also its limitations, must be 
proposed to meet the challenges of  21st century agricul‑
ture. Indeed, there are obstacles to conducting research 
on this scientific front. Establishing the new collabora‑
tions required between teams conducting methodologi‑
cal work and teams in the fields of application remains 
difficult given the low number of academic staff on these 
issues, their very high current mobilisation and their low 
availability to collaborate on new subjects, as well as the 
difficulty of understanding and mastering these methods. 
There is a need for watching and training on AI methods 
available or under development, new softwares/packages, 
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and their applicability. To develop key collaborations 
and establish a strategic positioning, an interconnection 
can also be made via transversal teams which appears 
as a preferential path. Solutions must also be found to 
encourage method percolation in the community and the 
development of scientific and engineering skills.

Finally, AI methods, such as classification, machine 
learning, data mining, and the innovations in AH to 
which these methods can lead are rarely discussed in vet‑
erinary high school education, whereas these students 
represent the future professionals of AH [96]. Similarly, 
there is a quasi‑absence of sentinel networks of veterinar‑
ians, even if it is developing, although AH questions can 
arise on a large and collective scale. The scientific com‑
munity would also benefit from further increasing its 
skills and experience in the valuation, transfer and pro‑
tection of intellectual property on these AI methods and 
associated outcomes.

7  Levers to create a fruitful AI/AH interface
7.1  Data sharing and protection
No innovation at the interface between AI and AH is pos‑
sible without strong support for the organisation of data 
storage, management, analysis, calculation, and restitu‑
tion. The major risk is that demands for AI developments 
inflate without being supported by available human 
resources. In addition, an expertise in law, jurisdiction 
and ethics is required with regard to the acquisition, 
holding, use and protection of data in AH. This ques‑
tion must be considered at least at the inter‑institutional/
national level, and could benefit from a similar thinking 
already engaged in human health. The issue is to be able 
to support any change with regard to data traceability to 
their ownership, whether being from public or private 
domains.

New data are rich and must be valued as much as pos‑
sible, not by each owner separately, but through data 
sharing and the mobilisation of multi‑disciplinary skills 
to analyse such heterogeneous and complex data. Hence, 
data interoperability skills are required and must be 
developed. Models for making federated data sustain‑
able over decades are required [97]. In addition, further 
encouraging the publication of data papers as valuable 
research products can help to develop the necessary cul‑
ture of sharing, documentation and metadata.

Finally, to be able to launch ambitious experiments with 
AI methods on real data, it is necessary to (1) remove 
unauthorised access to data by negotiating with own‑
ers at large scale; (2) analyse and understand the related 
effect on methodological developments; and (3) if nec‑
essary, extend such initiatives to other areas, at national 
scale, or even across European countries.

7.2  Attract the necessary skills
An undeniable barrier to conduct such research comes 
from human resources, in particular the current insuf‑
ficient capacity of supervision by permanent scientists. 
Collaborations are a solution to attract new skills. How‑
ever, initiating collaborations at the AH/AI interface 
becomes very complicated because the qualified teams 
are already overwhelmed. Skill development at this inter‑
face must be supported, the cross‑fertilisation of disci‑
plines being essential. A watch on methods must also be 
carried out, accompanied by explanations for application 
fields, to train researchers and engineers. Financial incen‑
tives for scientist internships in specialised laboratories 
would increase skill capitalisation in advanced methods, 
while facilitating future national or international collabo‑
rations. In a context of limited resources as observed in 
many countries nowadays (e.g., new opened positions 
in national institutions) and limited experts pool (e.g., 
skills), facilitating post‑doctoral fellows and continuing 
education of researchers becomes crucial. Finally, to con‑
solidate the pool of future researchers in AH, promoting 
basic AI education in initial training of AH researchers, 
engineers and veterinarians is paramount.

More specifically concerning current research in 
immunology, cell biology and infectiology, the contribu‑
tion of AI has been more widely considered in human 
health, which could feed a similar reflection in AH as 
locks and advances are not very specific. Before embark‑
ing on the fronts of science (e.g., emerging epigenom‑
ics and metabolomics in AH), a few persons from these 
biological disciplines should acculturate into AI, or even 
acquire autonomy in the use of methods [98], which 
internationally tends to be the trend [63]. This can be 
done through the sharing of experiences and basic train‑
ing on existing methods, their advantages and limitations 
compared to other methods coming from statistics and 
mathematical modelling.

7.3  Encourage the development of AH/AI projects
Projects at the AH/AI interface, like any interdisciplinary 
project, must mobilise teams from both groups of disci‑
plines and allow everyone to progress in their own disci‑
pline. However, identifying the issues shared between the 
most relevant disciplines requires a good acculturation 
of the disciplines between them, as well as an otherness 
aimed at better understanding each other [95], which is 
not yet the case at the AH/AI interface.

In terms of funding, European project calls offer inter‑
esting opportunities, but a significant imbalance persists 
between the ability to generate data and analyse complex 
issues, and the availability of human resources and skills 
to address such issues through AI methods or other mod‑
ern methods in statistics, mathematics and computer 
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science. The major international foundations (e.g., Bill 
and Melinda Gates) can also be mobilised on emerging 
infectious diseases at the animal/human interface (e.g., 
characterisation of weak signals, phenologies, emergence 
precursors), with a more significant methodological 
value. However, risk‑taking is rarely allowed by funding 
agencies, although it is crucial to initiate interdiscipli‑
nary work. Dedicated incentive funding would support 
projects in their initial phase and make larger projects 
emerge after consolidation of the necessary disciplinary 
interactions.

Finally, these projects are generally based on the use of 
significant computing resources. Thus, research institutes 
and private partners should contribute in a financial or 
material way to the shared development of digital infra‑
structures, data centres, supercomputing centres on a 
national scale, as well as support recognised open‑source 
software platforms on which a large part of the research 
conducted is based (e.g., Python, R).

7.4  Promoting innovation and public–private partnership
Encouraging public–private partnership would promote 
a leverage effect on public funding and would make it 
possible to place AI research and development on a long‑
term basis in AH. Mapping the highly changing landscape 
of companies in the AH/AI sector, whether international 
structures or start‑ups, would provide a better under‑
standing of the possible interactions. Similarly, mapping 
academic deliverables produced at this interface would 
increase their visibility and highlight their potential for 
valorisation or transfer. Finally, considering the produc‑
tion of documented algorithms as scientific deliverables, 
along with publications, would help support this more 
operational research. More broadly, it would be advisable 
to initiate a communication and education/accultura‑
tion policy around AI and its development in AH (e.g., 
links with the society, farmers, agricultural unions, public 
services).

8  Conclusion
The use of AI methods (e.g., machine learning, expert 
systems, analytical technologies) converges today with 
the collecting of massive and complex data, and allows 
these fields to develop rapidly. However, it is essential 
not to perceive massive data and AI as the same trend, 
because the accumulation of data does not always lead 
to an improvement in knowledge. Nevertheless, the 
more data are numerous and representative of working 
concepts and hypotheses, the more important results 
can be obtained from AI applications. The underlying 
ethical, deontological and legal aspects of data owner‑
ship, storage, management, sharing and interoperability 
also require that a reflection be undertaken nationally 

and internationally in AH to better manage these data 
of multi‑sectoral origin and their various uses. Moreo‑
ver, while the effort to acquire such data is impressive, 
the development of AI skills within the AH community 
remains limited in relation to the needs. Opportuni‑
ties for collaborations with AI teams are limited because 
these teams are already in high demand. To ensure that 
AH researchers are well aware of the opportunities 
offered by AI, but also of the limits and constraints of AI 
approaches, a training effort must be provided and gen‑
eralized. Finally, the current boom in AI now makes it 
possible to integrate the knowledge and points of view of 
the many players in the field of animal health and welfare 
further upstream. However, this requires that AI and its 
actors accept to deal with the specificity and complexity 
of AH, which is not a simple library of knowledge that 
can be digitised to search for sequences or informative 
signals.

Supplementary Information
The online version contains supplementary material available at https ://doi.
org/10.1186/s1356 7‑021‑00902 ‑4.

 Additional file 1. Systematic literature review, interviews, previous 
publication in French.

Acknowledgements
This work has benefited from interactions with many French researchers 
(Additional file 1B) interested in the AI/AH interface, for which we thank them 
here. We also thank Stéphane Abrioux, Didier Concordet and Human Rezaie 
for participating to the discussions.

Authors’ contributions
PE carried out the literature review and analysed the interviews. PE and JFG 
conducted the interviews, drafted and wrote the manuscript. SP, GB, FM, RD, 
HM provided complementary views and references in their respective disci‑
plines. All authors read and approved the final manuscript.

Funding
PE is supported by the French Research Agency (project CADENCE: ANR‑
16‑CE32‑0007). XB is involved in the project “MOnitoring Outbreak events 
for Disease surveillance in a data science context” supported by the EU 
Framework Programme for Research and Innovation H2020 (H2020‑SC1‑
BHC‑2018–2019, Grant 874850). JFG is supported by both an “Investisse‑
ment d’Avenir” managed by the French Research Agency (LABEX CEBA: 
ANR‑10‑LABX‑25‑01) and a US NSF‑NIH Ecology of infectious diseases award 
(NSF#1911457), and is also supported by IRD, INRAE, and Université of Mont‑
pellier. The funding bodies had no role in the study design, data analysis and 
interpretation, and manuscript writing.

Competing interests
The authors declare that they have no competing interests.

Author details
1 INRAE, Oniris, BIOEPAR, Nantes, France. 2 INRAE, EpiA, Theix, France. 3 ASTRE, 
Univ Montpellier, CIRAD, INRAE, Montpellier, France. 4 Sorbonne Université, 
IRD, UMMISCO, Bondy, France. 5 Université Paris‑Saclay, INRAE, Jouy‑en‑Josas, 
MaIAGE, France. 6 MIVEGEC, IRD, CNRS, Univ Montpellier, Montpellier, France. 
7 Comité National Français Sur Les Changements Globaux, Paris, France. 

Received: 16 June 2020   Accepted: 20 January 2021

https://doi.org/10.1186/s13567-021-00902-4
https://doi.org/10.1186/s13567-021-00902-4


Page 13 of 15Ezanno et al. Vet Res           (2021) 52:40  

References
 1. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL (2018) 

Artificial intelligence in radiology. Nat Rev Cancer 18:500–510
 2. Karczewski KJ, Snyder MP (2018) Integrative omics for health and disease. 

Nat Rev Genet 19:299–310
 3. Murphy KP (2012) Machine learning: a probabilistic perspective. In: Adap‑

tive computation and machine learning series. MIT Press, USA
 4. Zhang W, Chien J, Yong J, Kuang R (2017) Network‑based machine learn‑

ing and graph theory algorithms for precision oncology. NPJ Precis Oncol 
1:25

 5. Saria S, Butte A, Sheikh A (2018) Better medicine through machine learn‑
ing: what’s real, and what’s artificial? PLoS Med 15:e1002721.  https ://doi.
org/10.1371/journ al.pmed.10027 21

 6. Bedi G, Carrillo F, Cecchi GA, Fernández Slezak D, Sigman M, Mota NB, 
Ribeiro S, Javitt DC, Copelli M, Corcoran CM (2015) Automated analysis of 
free speech predicts psychosis onset in high‑risk youths. Schizophrenia 
1:15030

 7. Maclachlan MJ, Springborn MR, Fackler PL (2017) Learning about a mov‑
ing target in resource management: optimal Bayesian disease control. 
Am J Agri Econ 99:140–162. https ://doi.org/10.1093/ajae/aaw03 3

 8. Lynn LA (2019) Artificial intelligence systems for complex decision‑
making in acute care medicine: a review. Patient Saf Surg 13:6. https ://
doi.org/10.1186/s1303 7‑019‑0188‑2

 9. Pinaire J, Azé J, Bringay S, Landais P (2017) Patient healthcare trajectory. 
An essential monitoring tool: a systematic review. Health Inf Sci Syst 5:1

 10. Vrakas D, Vlahavas IPL (2008) Artificial intelligence for advanced problem 
solving techniques. Information Science Reference, Hershey, PA, pp. 369

 11. Shakshuki E, Reid M (2015) Multi‑agent system applications in healthcare: 
current technology and future roadmap. Proc Comput Sci 52:252–261. 
https ://doi.org/10.1016/j.procs .2015.05.071

 12. Roche B, Guégan JF, Bousquet F (2008) Multi‑agent systems in 
epidemiology: a first step for computational biology in the study of 
vector‑borne disease transmission. BMC Bioinform 9:435. https ://doi.
org/10.1186/1471‑2105‑9‑435

 13. Picault S, Huang Y‑L, Sicard V, Ezanno P (2017) Enhancing Sustainabil‑
ity of Complex Epidemiological Models through a Generic Multilevel 
Agent‑based Approach. In: Proceedings of the  26th International Joint 
Conference on Artificial Intelligence (IJCAI). pp. 374–380, AAAI. https ://
doi.org/10.24963 /ijcai .2017/53p

 14. Russell S, Norvig P (2010) Artificial intelligence a modern approach.  3rd 
edn. Upper Saddle River, New Jersey, pp. 1132

 15. Ducrot C, Bed’Hom B, Béringue V, Coulon JB, Fourichon C, Guérin JL, 
Krebs S, Rainard P, Schwartz‑Cornil I, Torny D, Vayssier‑Taussat M, Zientara 
S, Zundel E, Pineau T (2011) Issues and special features of animal health 
research. Vet Res 42:96

 16. Clark B, Stewart GB, Panzone LA, Kyriazakis I, Frewer LJ (2016) A systematic 
review of public attitudes, perceptions and behaviours towards produc‑
tion diseases associated with farm animal welfare. J Agric Environ Ethics 
29:455–478. https ://doi.org/10.1007/s1080 6‑016‑9615‑x

 17. Miguel E, Grosbois V, Caron A, Pople D, Roche B, Donnelly C (2020) A 
systemic approach to assess the potential and risks of wildlife culling for 
infectious disease control. Commun Biol 3:353. https ://doi.org/10.1038/
s4200 3‑020‑1032‑z

 18. Hur B, Hardefeldt LY, Verspoor K, Baldwin T, Gilkerson JR (2019) Using 
natural language processing and VetCompass to understand antimi‑
crobial usage patterns in Australia. Aust Vet J 97:298–300. https ://doi.
org/10.1111/avj.12836 

 19. Behmann J, Hendriksen K, Mueller U, Buescher W, Pluemer L (2016) Sup‑
port vector machine and duration‑aware conditional random field for 
identification of spatio‑temporal activity patterns by combined indoor 
positioning and heart rate sensors. Geoinformatica 20:693–714. https ://
doi.org/10.1007/s1070 7‑016‑0260‑3

 20. Suravajhala P, Kogelman LJA, Kadarmideen HN (2016) Multi‑omic data 
integration and analysis using systems genomics approaches: methods 
and applications in animal production, health and welfare. Genet Sel Evol 
48:38. https ://doi.org/10.1186/s1271 1‑016‑0217‑x

 21. Goldansaz SA, Guo AC, Sajed T, Steele MA, Plastow GS, Wishart DS (2017) 
Livestock metabolomics and the livestock metabolome: a system‑
atic review. PLoS One 12:e0177675. https ://doi.org/10.1371/journ 
al.pone.01776 75

 22. Anvar SY, Tucker A, Vinciotti V, Venema A, van Ommen GJ, van der Maarel 
SM, Raz V, ’t Hoen PA (2011) Interspecies translation of disease networks 
increases robustness and predictive accuracy. PLoS Comput Biol 
7:e1002258. https ://doi.org/10.1371/annot ation /fc0b4 192‑6427‑4fb3‑
b347‑c6665 1adf8 55

 23. Morand S, Guégan J‑F, Laurans Y (2020) From One Health to Ecohealth, 
mapping the incomplete integration of human, animal and environmen‑
tal health. Iddri, Issue Brief No. 04/20

 24. Ezenwa VO, Prieur‑Richard A‑H, Roche B, Bailly X, Becquart P, Garcia‑Peña 
GE, Hosseini PR, Keesing F, Rizzoli A, Suzán GA, Vignuzzi M, Vittecoq M, 
Mills JN, Guégan J‑F (2015) Interdisciplinarity and infectious diseases: 
an Ebola case study. PLoS Pathog 11:e1004992. https ://doi.org/10.1371/
journ al.ppat.10049 92

 25. Van Boeckel TP, Takahashi S, Liao Q, Xing W, Lai S, Hsiao V, Liu F, Zheng 
Y, Chang Z, Yuan C, Metcalf CJE, Yu H, Grenfell BT (2016) Hand, foot, and 
mouth disease in China: critical community size and spatial vaccination 
strategies. Sci Rep 6:25248. https ://doi.org/10.1038/srep2 5248

 26. Holmstrom LK, Beckham TR (2017) Technologies for capturing and ana‑
lysing animal health data in near real time. Rev Sci Tech 36:525–538

 27. Neethirajan S (2017) Recent advances in wearable sensors for animal 
health management. Sens Biosensing Res 12:15–29

 28. Perez AM, Zeng D, Tseng CJ, Chen H, Whedbee Z, Paton D, Thurmond 
MC (2009) A web‑based system for near real‑time surveillance and 
space‑time cluster analysis of foot‑and‑mouth disease and other 
animal diseases. Prev Vet Med 91:39–45. https ://doi.org/10.1016/j.preve 
tmed.2009.05.006

 29. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak 
A, Blomberg N, Boiten J‑W, da Silva Santos LB, Bourne PE, Bouwman J, 
Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Fink‑
ers R, Gonzalez‑Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa 
J, ’t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, et al (2016) The FAIR guiding 
principles for scientific data management and stewardship. Sci Data 
3:160018. https ://doi.org/10.1038/sdata .2016.18

 30. Binot A, Duboz R, Promburom P, Phimpraphai W, Cappelle J, Lajaunie C, 
Goutard FL, Pinyopummintr T, Figuié M, Roger FL (2015) A framework to 
promote collective action within the One Health community of practice: 
using participatory modelling to enable interdisciplinary, cross‑sectoral 
and multi‑level integration. One Health 1:44–48. https ://doi.org/10.1016/j.
onehl t.2015.09.001

 31. Robert CP (2014) Bayesian computational tools. Annu Rev Stat Appl 
1:153–177. https ://doi.org/10.1146/annur ev‑stati stics ‑02251 3‑11554 3

 32. Dunson DB (2001) Commentary: practical advantages of Bayesian analy‑
sis of epidemiologic data. Am J Epidemiol 153:1222–1226. https ://doi.
org/10.1093/aje/153.12.1222

 33. Uusitalo L (2007) Advantages and challenges of Bayesian networks 
in environmental modelling. Ecol Model 203:312–318. https ://doi.
org/10.1016/j.ecolm odel.2006.11.033

 34. Fokoué E (2019) On the ubiquity of the Bayesian paradigm in statistical 
machine learning and data science. Math Appl 8:189–209. https ://doi.
org/10.13164 /ma.2019.12

 35. Bailly X (2017) Hidden Markov phylogenetic models offer an interesting 
perspective to identify “high risk lineages” of environmental pathogens. 
Infect Genet Evol 55:45–47. https ://doi.org/10.1016/j.meegi d.2017.08.007

 36. Babayan SA, Orton RJ, Streicker DG (2018) Predicting reservoir hosts and 
arthropod vectors from evolutionary signatures in RNA virus genomes. 
Science 362:577–580. https ://doi.org/10.1126/scien ce.aap90 72

 37. Wardeh M, Sharkey KJ, Baylis M (2020) Integration of shared‑pathogen 
networks and machine learning reveals the key aspects of zoonoses and 
predicts mammalian reservoirs. Proc Biol Sci 287:20192882. https ://doi.
org/10.1098/rspb.2019.2882

 38. Li J, Zhang S, Li B, Hu Y, Kang X‑P, Wu X‑Y, Huang M‑T, Li Y‑C, Zhao Z‑P, Qin 
C‑F, Jiang T (2020) Machine learning methods for predicting human‑
adaptive influenza A viruses based on viral nucleotide compositions. Mol 
Biol Evol 37:1224–1236. https ://doi.org/10.1093/molbe v/msz27 6

 39. Peters DPC, McVey DS, Elias EH, Pelzel‑McCluskey AM, Derner JD, Burruss 
ND, Schrader TS, Yao J, Pauszek SJ, Lombard J, Rodriguez LL (2020) Big 
data‑model integration and AI for vector‑borne disease prediction. 
Ecosphere 11:e03157. https ://doi.org/10.1002/ecs2.3157

 40. Lek S, Guégan J‑F (2000) Artificial neuronal networks. In: Application 
to ecology and evolution. Springer, Berlin. https ://doi.org/10.1016/j.
it.2016.11.006

https://doi.org/10.1371/journal.pmed.1002721
https://doi.org/10.1371/journal.pmed.1002721
https://doi.org/10.1093/ajae/aaw033
https://doi.org/10.1186/s13037-019-0188-2
https://doi.org/10.1186/s13037-019-0188-2
https://doi.org/10.1016/j.procs.2015.05.071
https://doi.org/10.1186/1471-2105-9-435
https://doi.org/10.1186/1471-2105-9-435
https://doi.org/10.24963/ijcai.2017/53p
https://doi.org/10.24963/ijcai.2017/53p
https://doi.org/10.1007/s10806-016-9615-x
https://doi.org/10.1038/s42003-020-1032-z
https://doi.org/10.1038/s42003-020-1032-z
https://doi.org/10.1111/avj.12836
https://doi.org/10.1111/avj.12836
https://doi.org/10.1007/s10707-016-0260-3
https://doi.org/10.1007/s10707-016-0260-3
https://doi.org/10.1186/s12711-016-0217-x
https://doi.org/10.1371/journal.pone.0177675
https://doi.org/10.1371/journal.pone.0177675
https://doi.org/10.1371/annotation/fc0b4192-6427-4fb3-b347-c66651adf855
https://doi.org/10.1371/annotation/fc0b4192-6427-4fb3-b347-c66651adf855
https://doi.org/10.1371/journal.ppat.1004992
https://doi.org/10.1371/journal.ppat.1004992
https://doi.org/10.1038/srep25248
https://doi.org/10.1016/j.prevetmed.2009.05.006
https://doi.org/10.1016/j.prevetmed.2009.05.006
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1016/j.onehlt.2015.09.001
https://doi.org/10.1016/j.onehlt.2015.09.001
https://doi.org/10.1146/annurev-statistics-022513-115543
https://doi.org/10.1093/aje/153.12.1222
https://doi.org/10.1093/aje/153.12.1222
https://doi.org/10.1016/j.ecolmodel.2006.11.033
https://doi.org/10.1016/j.ecolmodel.2006.11.033
https://doi.org/10.13164/ma.2019.12
https://doi.org/10.13164/ma.2019.12
https://doi.org/10.1016/j.meegid.2017.08.007
https://doi.org/10.1126/science.aap9072
https://doi.org/10.1098/rspb.2019.2882
https://doi.org/10.1098/rspb.2019.2882
https://doi.org/10.1093/molbev/msz276
https://doi.org/10.1002/ecs2.3157
https://doi.org/10.1016/j.it.2016.11.006
https://doi.org/10.1016/j.it.2016.11.006


Page 14 of 15Ezanno et al. Vet Res           (2021) 52:40 

 41. Go N, Touzeau S, Islam Z, Belloc C, Doeschl‑Wilson A (2019) How to 
prevent viremia rebound? Evidence from a PRRSv data‑supported model 
of immune response. BMC Syst Biol 13:15

 42. Ferrer Savall J, Bidot C, Leblanc‑Maridor M, Belloc C, Touzeau S (2016) 
Modelling Salmonella transmission among pigs from farm to slaughter‑
house: interplay between management variability and epidemiological 
uncertainty. Intern J Food Microbiol 229:33–43. https ://doi.org/10.1016/j.
ijfoo dmicr o.2016.03.020

 43. Widgren S, Engblom S, Bauer P, Frössling J, Emanuelson U, Lindberg A 
(2016) Data‑driven network modelling of disease transmission using 
complete population movement data: spread of VTEC O157 in Swedish 
cattle. Vet Res 47:81

 44. Qi L, Beaunée G, Arnoux S, Dutta BL, Joly A, Vergu E, Ezanno P (2019) 
Neighbourhood contacts and trade movements drive the regional 
spread of bovine viral diarrhoea virus (BVDV). Vet Res 50:30. https ://doi.
org/10.1186/s1356 7‑019‑0647‑x

 45. Buhnerkempe MG, Tildesley MJ, Lindström T, Grear DA, Portacci K, Miller 
RS, Lombard JE, Werkman M, Keeling MJ, Wennergren U, Webb CT (2014) 
The impact of movements and animal density on continental scale cattle 
disease outbreaks in the United States. PLoS One 9:e91724. https ://doi.
org/10.1371/journ al.pone.00917 24

 46. Ezanno P, Andraud M, Beaunée G, Hoch T, Krebs S, Rault A, Touzeau S, 
Vergu E, Widgren S (2020) How mechanistic modelling supports deci‑
sion 1 making for the control of enzootic infectious diseases. Epidemics 
32:100398

 47. Garira W (2018) A primer on multiscale modelling of infectious dis‑
ease systems. Infect Dis Model 3:176–191. https ://doi.org/10.1016/j.
idm.2018.09.005

 48. Traoré M, Zacharewicz G, Duboz R, Zeigler B (2018) Modeling and 
simulation framework for value‑based healthcare systems. Simulation 
95:481–497. https ://doi.org/10.1177/00375 49718 77676 5

 49. Childs LM, El Moustaid F, Gajewski Z, Kadelka S, Nikin‑Beers R, Smith JW Jr, 
Walker M, Johnson LR (2019) Multi‑scale models and data for infectious 
diseases: a systematic review. PeerJ Preprints 7:e27485v1. https ://doi.
org/10.7287/peerj .prepr ints.27485 v1

 50. Sandve GK, Nekrutenko A, Taylor J, Hovig E (2013) Ten simple rules for 
reproducible computational research. PLoS Comput Biol 9:e1003285. 
https ://doi.org/10.1371/journ al.pcbi.10032 85

 51. Leek JT, Peng RD (2015) Opinion: reproducible research can still be 
wrong: adopting a prevention approach. Proc Natl Acad Sci USA 
112:1645–1646. https ://doi.org/10.1073/pnas.14214 12111 

 52. Widgren S, Bauer P, Eriksson R, Engblom S (2016) SimInf: an R package for 
data‑driven stochastic disease spread simulations. ArXiv160501421 Q‑Bio 
Stat. http://arxiv .org/abs/1605.01421 

 53. O’Hare A, Lycett SJ, Doherty TM, Salvador LC, Kao RR (2016) Broadwick: a 
framework for computational epidemiology. BMC Bioinform 17:65. https 
://doi.org/10.1186/s1285 9‑016‑0903‑2

 54. Bui TMA, Stinckwich S, Ziane M, Roche B, Ho TV (2015) KENDRICK: a 
domain specific language and platform for mathematical epidemiologi‑
cal modelling. In: proc. IEEE RIVF International Conference on Computing 
and Communication Technologies, Research, Innovation, and Vision for 
the Future. pp. 132–7. https ://doi.org/10.1109/RIVF.2015.70498 88

 55. Mathieu P, Morvan G, Picault S (2018) Multi‑level agent‑based simula‑
tions: four design patterns. Simul Model Pract Theory 83:51–64. https ://
doi.org/10.1016/j.simpa t.2017.12.015

 56. Picault S, Huang Y‑L, Sicard V, Arnoux S, Beaunée G, Ezanno P (2019) 
EMULSION: transparent and flexible multiscale stochastic models in 
human, animal and plant epidemiology. PLoS Comput Biol 15:e1007342. 
https ://doi.org/10.1371/journ al.pcbi.10073 42

 57. Sebag AS, Plancade S, Raulet‑Tomkiewicz C, Barouki R, Vert J‑P, Walter T 
(2015) Inferring an ontology of single cell motions from high‑throughput 
microscopy data. In: Proc. IEEE International Symposium on Biomedical 
Imaging, Apr. 2015, New‑York, USA, pp. 160–163. https ://doi.org/10.1109/
ISBI.2015.71638 40

 58. Tardivel P, Canlet C, Lefort G, Tremblay‑Franco M, Debrauwer L, Concordet 
D, Servien R (2017) ASICS: an automatic method for identification and 
quantification of metabolites in complex 1D 1H NMR spectra. Metabo‑
lomics 13:109

 59. Dórea FC, Muckle CA, Kelton D, McClure JT, McEwen BJ, McNab WB, 
Sanchez J, Revie CW (2013) Exploratory analysis of methods for auto‑
mated classification of laboratory test orders into syndromic groups in 

veterinary medicine. PLoS One 8:e57334. https ://doi.org/10.1371/journ 
al.pone.00573 34

 60. Gandia P, Jaudet C, Chatelut E, Concordet D (2017) Population pharma‑
cokinetics of tracers: a new tool for medical imaging? Clin Pharmacokinet 
56:101–106

 61. Chyba M, Coron J‑M, Mileyko Y, Rezaei H (2016) Optimization of prion 
assemblies fragmentation. In: Proc. IEEE Conference on Decision and 
Control (CDC), Las Vegas, USA, 6

 62. Nayeri S, Sargolzaei M, Tulpan D (2019) A review of traditional and 
machine learning methods applied to animal breeding. Anim Health Res 
Rev 20:31–46. https ://doi.org/10.1017/S1466 25231 90001 48

 63. Bassaganya‑Riera J, Hontecillas R (2016) Introduction to computational 
immunology. In: Bassaganya‑Riera J (ed) Computational immunology: 
models and tools. pp. 1–8

 64. Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D (2018) Machine 
learning in agriculture: a review. Sensors 18:2674. https ://doi.org/10.3390/
s1808 2674

 65. Jones‑Diette JS, Dean RS, Cobb M, Brennan ML (2019) Validation of 
text‑mining and content analysis techniques using data collected from 
veterinary practice management software systems in the UK. Prev Vet 
Med 167:61–67. https ://doi.org/10.1016/j.preve tmed.2019.02.015

 66. Morota G, Ventura RV, Silva FF, Koyama M, Fernando SC (2018) Big data 
analytics and precision animal agriculture symposium: machine learning 
and data mining advance predictive big data analysis in precision animal 
agriculture. J Anim Sci 96:1540–1550. https ://doi.org/10.1093/jas/sky01 4

 67. Picault S, Ezanno P, Assié S (2019) Combining early hyperthermia detec‑
tion with metaphylaxis for reducing antibiotics usage in newly received 
beef bulls at fattening operations: a simulation‑based approach. In: 
Society of veterinary epidemiology and preventive medicine (SVEPM), pp. 
13. Utrecht, The Netherland, 27‑30/3/2019

 68. Esener N, Green MJ, Emes RD, Jowett B, Davies PL, Bradley AJ, Dottorini 
T (2018) Discrimination of contagious and environmental strains of 
Streptococcus uberis in dairy herds by means of mass spectrometry and 
machine‑learning. Sci Rep 8:17517. https ://doi.org/10.1038/s4159 8‑018‑
35867 ‑6

 69. Hepworth PJ, Nefedov AV, Muchnik IB, Morgan KL (2012) Broiler chickens 
can benefit from machine learning: support vector machine analysis of 
observational epidemiological data. J R Soc Interface 9:1934–1942. https 
://doi.org/10.1098/rsif.2011.0852

 70. Marceau A, Madouasse A, Lehébel A, van Schaik G, Veldhuis A, Van der 
Stede Y, Fourichon C (2014) Can routinely recorded reproductive events 
be used as indicators of disease emergence in dairy cattle? An evaluation 
of 5 indicators during the emergence of bluetongue virus in France 
in 2007 and 2008. J Dairy Sci 97:6135–6150. https ://doi.org/10.3168/
jds.2013‑7346

 71. Fountain‑Jones NM, Machado G, Carver S, Packer C, Recamonde‑
Mendoza M, Craft ME (2019) How to make more from exposure data? An 
integrated machine learning pipeline to predict pathogen exposure. J 
Anim Ecol 88:1447–1461. https ://doi.org/10.1111/1365‑2656.13076 

 72. Charras‑Garrido M, Azizi L, Forbes F, Doyle S, Peyrard N, Abrial D (2013) 
On the difficulty to delimit disease risk hot spots. Int J Appl Earth Obs 
22:99–105. https ://doi.org/10.1016/j.jag.2012.04.005

 73. Forbes F, Charras‑Garrido M, Azizi L, Doyle S, Abrial D (2013) Spatial risk 
mapping for rare disease with hidden Markov fields and variational EM. 
Annals Appl Stat 7:1192–1216

 74. Arsevska E, Valentin S, Rabatel J, de Goër de Hervé J, Falala S, Lancelot R, 
Roche M (2018) Web monitoring of emerging animal infectious diseases 
integrated in the French Animal Health Epidemic Intelligence System. 
PLoS One 13:0199960. https ://doi.org/10.1371/journ al.pone.01999 60

 75. Küker S, Faverjon C, Furrer L, Berezowski J, Posthaus H, Rinaldi F, Vial F 
(2018) The value of necropsy reports for animal health surveillance. BMC 
Vet Res 14:191. https ://doi.org/10.1186/s1291 7‑018‑1505‑1

 76. Bollig N, Clarke L, Elsmo E, Craven M (2020) Machine learning for 
syndromic surveillance using veterinary necropsy reports. PLoS One 
15:e0228105. https ://doi.org/10.1371/journ al.pone.02281 05

 77. Hoscheit P, Geeraert S, Beaunée G, Monod H, Gilligan CAG, Filipe J, Vergu 
E, Moslonka‑Lefebvre M (2016) Dynamical network models for cattle 
trade: towards economy‑based epidemic risk assessment. J Complex 
Netw 5:604–624. https ://doi.org/10.1093/comne t/cnw02 6

 78. Moslonka‑Lefebvre M, Gilligan CA, Monod H, Belloc C, Ezanno P, Filipe 
JAN, Vergu E (2016) Market analyses of livestock trade networks to inform 

https://doi.org/10.1016/j.ijfoodmicro.2016.03.020
https://doi.org/10.1016/j.ijfoodmicro.2016.03.020
https://doi.org/10.1186/s13567-019-0647-x
https://doi.org/10.1186/s13567-019-0647-x
https://doi.org/10.1371/journal.pone.0091724
https://doi.org/10.1371/journal.pone.0091724
https://doi.org/10.1016/j.idm.2018.09.005
https://doi.org/10.1016/j.idm.2018.09.005
https://doi.org/10.1177/0037549718776765
https://doi.org/10.7287/peerj.preprints.27485v1
https://doi.org/10.7287/peerj.preprints.27485v1
https://doi.org/10.1371/journal.pcbi.1003285
https://doi.org/10.1073/pnas.1421412111
http://arxiv.org/abs/1605.01421
https://doi.org/10.1186/s12859-016-0903-2
https://doi.org/10.1186/s12859-016-0903-2
https://doi.org/10.1109/RIVF.2015.7049888
https://doi.org/10.1016/j.simpat.2017.12.015
https://doi.org/10.1016/j.simpat.2017.12.015
https://doi.org/10.1371/journal.pcbi.1007342
https://doi.org/10.1109/ISBI.2015.7163840
https://doi.org/10.1109/ISBI.2015.7163840
https://doi.org/10.1371/journal.pone.0057334
https://doi.org/10.1371/journal.pone.0057334
https://doi.org/10.1017/S1466252319000148
https://doi.org/10.3390/s18082674
https://doi.org/10.3390/s18082674
https://doi.org/10.1016/j.prevetmed.2019.02.015
https://doi.org/10.1093/jas/sky014
https://doi.org/10.1038/s41598-018-35867-6
https://doi.org/10.1038/s41598-018-35867-6
https://doi.org/10.1098/rsif.2011.0852
https://doi.org/10.1098/rsif.2011.0852
https://doi.org/10.3168/jds.2013-7346
https://doi.org/10.3168/jds.2013-7346
https://doi.org/10.1111/1365-2656.13076
https://doi.org/10.1016/j.jag.2012.04.005
https://doi.org/10.1371/journal.pone.0199960
https://doi.org/10.1186/s12917-018-1505-1
https://doi.org/10.1371/journal.pone.0228105
https://doi.org/10.1093/comnet/cnw026


Page 15 of 15Ezanno et al. Vet Res           (2021) 52:40  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

the prevention of joint economic and epidemiological risks. J R Soc 
Interface 13:20151099. https ://doi.org/10.1098/rsif.2015.1099

 79. Efron B (2020) Prediction, estimation, and attribution. J Am Stat Ass 
115:636–655. https ://doi.org/10.1080/01621 459.2020.17626 13

 80. Ghahramani Z (2012) Probabilistic modelling, machine learning, and the 
information revolution. MIT Computer Science and Artificial Intelligence 
Lab, http://mlg.eng.cam.ac.uk/zoubi n/talks /mit12 csail .pdf, Accessed 17 
Oct 2019

 81. Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learn‑
ing: data mining, inference, and prediction.  2nd edn. Springer Series in 
Statistics. Springer

 82. Goodswen SJ, Kennedy PJ, Ellis JT (2017) On the application of reverse 
vaccinology to parasitic diseases: a perspective on feature selection and 
ranking of vaccine candidates. Int J Parasitol 47:779–790. https ://doi.
org/10.1016/j.ijpar a.2017.08.004

 83. Schneider G (2019) Mind and machine in drug design. Nat Mach Intell 
1:128–130. https ://doi.org/10.1038/s4225 6‑019‑0030‑7

 84. Beaunée G, Vergu E, Joly A, Ezanno P (2017) Controlling bovine paratu‑
berculosis at a regional scale: towards a decision modeling tool. J Theor 
Biol 435:157–183. https ://doi.org/10.1016/j.jtbi.2017.09.012

 85. Viet A‑F, Krebs S, Rat‑Aspert O, Jeanpierre L, Belloc C, Ezanno P (2018) 
A modelling framework based on MDP to coordinate farmers’ disease 
control decisions at a regional scale. PLoS One 13:e0197612. https ://doi.
org/10.1371/journ al.pone.01976 12

 86. Wang T, Hennessy DA (2015) Strategic interactions among private and 
public efforts when preventing and stamping out a highly infectious 
animal disease. Am J Agri Econ 97:435–451. https ://doi.org/10.1093/ajae/
aau11 9

 87. Tago D, Hammitt JK, Thomas A, Raboisson D (2016) The impact of farmers’ 
strategic behavior on the spread of animal infectious diseases. PLoS One 
11:e0157450. https ://doi.org/10.1371/journ al.pone.01574 50

 88. Probert WJM, Lakkur S, Fonnesbeck CJ, Shea K, Runge MC, Tildesley 
MJ, Ferrari MJ (2019) Context matters: using reinforcement learning to 
develop human‑readable, state‑dependent outbreak response policies. 
Phil Trans R Soc B 374:20180277. https ://doi.org/10.1098/rstb.2018.0277

 89. Liang R, Lu Y, Qu X, Su Q, Li C, Xia S, Liu Y, Zhang Q, Cao X, Chen Q, Niu 
B (2020) Prediction for global African swine fever outbreaks based on 
a combination of random forest algorithms and meteorological data. 
Transbound Emerg Dis 67:935–946. https ://doi.org/10.1111/tbed.13424 

 90. Salje H, Tran Kiem C, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, 
Andronico A, Hozé N, Richet J, Dubost C‑L, Le Strat Y, Lessler J, Levy Bruhl 
D, Fontanet A, Opatowski L, Boelle P‑Y, Cauchemez S (2020) Estimating 
the burden of SARS‑CoV‑2 in France. Science 369:208–211

 91. Parlavantzas N, Pham LM, Morin C, Arnoux S, Beaunée G, Qi L, Gontier P, 
Ezanno P (2019) A service‑based framework for building and executing 
epidemic simulation applications in the cloud. Concurr Comp Pract Exper 
32:e5554. https ://doi.org/10.1002/cpe.5554

 92. Shah N, Malensek M, Shah H, Pallickara S, Pallickara SL (2019) Scalable net‑
work analytics for characterization of outbreak influence in voluminous 
epidemiology datasets. Concurr Comp Pract Exper 31:e4998. https ://doi.
org/10.1002/cpe.4998

 93. Han BA, Majumdar S, Calmon FP, Glicksberg BS, Horesh R, Kumar A, Perer 
A, von Marschall EB, Wei D, Mojsilović A, Varshney KR (2019) Confronting 
data sparsity to identify potential sources of Zika virus spillover infection 
among primates. Epidemics 27:59–65. https ://doi.org/10.1016/j.epide 
m.2019.01.005

 94. Reddy S, Fox J, Purohit MP (2019) Artificial intelligence‑enabled health‑
care delivery. J R Soc Med 112:22–28

 95. Duboz R, Echaubard P, Promburom P, Kilvington M, Ross H, Allen W, Ward 
J, Deffuant G, de Garine‑Wichatitsky M, Binot A (2018) Systems think‑
ing in practice: participatory modelling as a foundation for integrated 
approaches to health. Front Vet Sci 5:303. https ://doi.org/10.3389/fvets 
.2018.00303 

 96. Van der Waal K, Morrison RB, Neuhauser C, Vilalta C, Perez AM (2017) 
Translating big data into smart data for veterinary epidemiology. Front 
Vet Sci 4:110. https ://doi.org/10.3389/fvets .2017.00110 

 97. Reichman OJ, Jones MB, Schildhauer MP (2011) Challenges and 
opportunities of open data in ecology. Science 331:703–705. https ://doi.
org/10.1126/scien ce.11979 62

 98. Schultze JL (2015) Teaching ‘big data’ analysis to young immunologists. 
Nat Immunol 16:902–905

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1098/rsif.2015.1099
https://doi.org/10.1080/01621459.2020.1762613
http://mlg.eng.cam.ac.uk/zoubin/talks/mit12csail.pdf
https://doi.org/10.1016/j.ijpara.2017.08.004
https://doi.org/10.1016/j.ijpara.2017.08.004
https://doi.org/10.1038/s42256-019-0030-7
https://doi.org/10.1016/j.jtbi.2017.09.012
https://doi.org/10.1371/journal.pone.0197612
https://doi.org/10.1371/journal.pone.0197612
https://doi.org/10.1093/ajae/aau119
https://doi.org/10.1093/ajae/aau119
https://doi.org/10.1371/journal.pone.0157450
https://doi.org/10.1098/rstb.2018.0277
https://doi.org/10.1111/tbed.13424
https://doi.org/10.1002/cpe.5554
https://doi.org/10.1002/cpe.4998
https://doi.org/10.1002/cpe.4998
https://doi.org/10.1016/j.epidem.2019.01.005
https://doi.org/10.1016/j.epidem.2019.01.005
https://doi.org/10.3389/fvets.2018.00303
https://doi.org/10.3389/fvets.2018.00303
https://doi.org/10.3389/fvets.2017.00110
https://doi.org/10.1126/science.1197962
https://doi.org/10.1126/science.1197962

	1 Introduction
	2 �Collect, organise and make accessible quality data
	3 �Contribution of AI to better understand animal epidemiological systems
	3.1 �Better understanding the evolution of AH and socio‑ecological systems in a One Health context
	3.2 �Reliability, reproducibility and flexibility of mechanistic models in AH
	3.3 �Extracting knowledge from massive data in basic AH biology

	4 �Revisiting AH case detection methods at different scales
	5 �Targeted interventions, model of human decisions, and support of AH decisions
	5.1 �Choosing among alternatives
	5.2 �Accounting for expectations and fears of animal health managers

	6 �Barriers to the development of research at the AI/AH interface
	7 �Levers to create a fruitful AI/AH interface
	7.1 �Data sharing and protection
	7.2 �Attract the necessary skills
	7.3 �Encourage the development of AH/AI projects
	7.4 �Promoting innovation and public–private partnership

	8 �Conclusion
	References
	Research perspectives on animal health in the era of artificial intelligence
	Abstract 
	1 Introduction
	2 Collect, organise and make accessible quality data
	3 Contribution of AI to better understand animal epidemiological systems
	3.1 Better understanding the evolution of AH and socio-ecological systems in a One Health context
	3.2 Reliability, reproducibility and flexibility of mechanistic models in AH
	3.3 Extracting knowledge from massive data in basic AH biology

	4 Revisiting AH case detection methods at different scales
	5 Targeted interventions, model of human decisions, and support of AH decisions
	5.1 Choosing among alternatives
	5.2 Accounting for expectations and fears of animal health managers

	6 Barriers to the development of research at the AIAH interface
	7 Levers to create a fruitful AIAH interface
	7.1 Data sharing and protection
	7.2 Attract the necessary skills
	7.3 Encourage the development of AHAI projects
	7.4 Promoting innovation and public–private partnership

	8 Conclusion
	Acknowledgements
	References




