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Abstract: More than fifteen genetic diseases, including Huntington’s disease, myotonic 
dystrophy 1, fragile X syndrome and Friedreich ataxia, are caused by the aberrant 
expansion of a trinucleotide repeat. The mutation is unstable and further expands in 
specific cells or tissues with time, which can accelerate disease progression. DNA damage 
and base excision repair (BER) are involved in repeat instability and might contribute to 
the tissue selectivity of the process. In this review, we will discuss the mechanisms of 
trinucleotide repeat instability, focusing more specifically on the role of BER. 
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1. Trinucleotide Repeat Instability in Diseases  

Trinucleotide repeat (TNR) disorders define a group of more than fifteen neurodegenerative, 
neurological and neuromuscular diseases [1,2]. These genetic diseases result from the aberrant 
expansion of TNRs within specific genes. Various types of TNRs can cause diseases, including CAG 
repeats (Huntington’s disease, HD, and several dominant spinocerebellar ataxia), CTG repeats 
(myotonic dystrophy 1, DM1), CGG repeats (fragile X syndrome, FXS) and GAA repeats (Friedreich 
ataxia, FRDA). Noticeably, CAG/CTG repeat diseases are the most frequent, accounting for a dozen of 
disorders. TNRs are polymorphic in the control population; however, above a threshold of 30 to  
50 repeat units, the repeats are pathogenic. TNRs associated with diseases are found in various parts of 
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genes, including 3' and 5' UTRs, exons and introns. The location of the repeat expansion within genes 
influences the pathomechanism, which ranges from loss-of-function (FXS, FRDA) and protein and 
RNA gain-of-functions (HD and DM1, respectively).  

TNR expansions are dynamic mutations, which are ongoing across generations and within tissues, 
due to germline and somatic instability, respectively [3]. The outcome of repeat instability is 
contraction or expansion of the repeat. Expansion in the germline can lead to an anticipation effect, 
corresponding to worsening of the disease in successive generations, i.e., earlier onset and more rapid 
progression of the symptoms [4]. Depending on the disease, a parent-of-origin effect is observed, 
resulting in paternal or maternal bias of expansion or contraction. In somatic tissues, expansion events 
tend to be more frequent than contraction events, leading to the progressive increase of the repeat tract 
with age. Importantly, somatic instability is tissue-selective. In most TNR diseases, the degree of 
variation of the repeat tract over time is highly dependent upon tissue or cell-type, and the tissues or 
cells presenting high TNR instability vary to some extent between diseases [2]. In HD and DM1, 
somatic instability is most prevalent in the affected tissues and has been proposed to act as a disease 
modifier, accelerating disease progression [5–8]. In HD, CAG instability is most elevated in the 
striatum, the tissue that is most affected [6,9–13]. It is noteworthy that in most CAG/CTG diseases, 
repeat instability is generally elevated in brain tissues, with the exception of the cerebellum,  
which presents limited repeat instability [2]. Interestingly, somatic CAG instability is usually great in 
the central nervous system and, more specifically, in neurons, indicative of the implication of 
replication-independent mechanisms [6]. 

2. Trinucleotide Repeat Instability as the Result of Erroneous DNA Repair  

Mechanistic models of TNR instability are based upon the assumption that TNRs form stable DNA 
secondary structures, and error-prone repair of those structures results in repeat size variation [1,3,14]. 
In vitro experiments have shown that TNR sequences can adopt several structures, and the sequence of 
the repeat influences both the stability and the nature of the DNA structure [15,16]. For instance, 
slipped-out CAG and slipped-out CTG repeats adopt predominantly random coil and hairpin 
conformation, respectively, which explains the increased stability of CTG-associated DNA structures 
relative to CAG-associated DNA structures [17–20]. In addition, increasing the length of TNRs 
augments the stability, as well as the complexity of the secondary structures [15,16,21]. Sequences of 
more than 10 CAG/CTG repeats can show a pattern involving multiple loops or hairpins [21,22]. An 
additional level of complexity of DNA structures is suggested by a recent study showing 
interconverting conformations of slipped-DNA junctions formed by TNRs [23]. Finally, stable 
DNA:RNA hybrids (R-loops) can also form during transcription across TNRs [24,25].  

It remains to be determined whether unusual DNA:DNA structures truly form under physiological 
conditions, particularly in cells or tissues presenting high levels of repeat instability. However, several 
pieces of indirect evidence support their in vivo existence. Cellular processes altering DNA or 
chromatin structure, including DNA repair, replication, transcription and epigenetic-related 
mechanisms, have been shown to contribute to TNR instability [3]. These processes would either 
promote the formation of secondary structures at repeats or induce their error-prone repair.  
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More specifically, studies performed using mice modeling DM1, HD, spinocerebellar ataxia type 7 
and spinocerebellar ataxia type 1 indicate that the chromatin, transcription and replication status at 
repeats modulates repeat instability through gene-specific cis-elements, which include CCCTC-binding 
factor (CTCF) sites, CpG islands and replication origins [26–29]. It would remain to be examined 
whether the level of trans-factors regulating cis-element activity, including CTCF, modulate 
susceptibility to instability in tissues.  

In addition, it has been shown that trans-factors involved in DNA repair are physiological modifiers 
of TNR instability. Specifically, in HD and/or DM1 mice, TNR instability is reduced upon inactivation 
of genes involved in mismatch repair (MMR), including Msh2, Msh3 and Pms2 [30–34], base excision 
repair (BER), including Ogg1 and Neil1 [35,36], and nucleotide excision repair (NER), including Xpa 
and Csb [37,38]. Thus, abnormal repair at TNR promotes instability. How these different factors and 
mechanisms interplay in a given tissue is unclear, but it is likely that the contribution of  
each is dependent upon the tissue considered. Therefore, investigating the mechanisms underlying 
tissue-selectivity should help in deciphering TNR instability. Our recent data suggest that BER is one 
mechanism involved in the tissue selectivity of CAG/CTG repeat instability. Below, we discuss, more 
specifically, the physiological role of BER in the TNR instability associated with disease. 

3. In Vivo Mechanism of BER in Trinucleotide Repeat Instability 

BER is a DNA repair pathway specialized in the elimination of DNA base damage, of which  
8-oxoguanine (8-oxoG) is the most common DNA lesion [39,40]. BER is characterized by a sequence 
of highly coordinated steps, starting from the removal of the DNA base lesion by a DNA glycosylase. 
This results in the formation of an abasic site, which is cleaved by an AP endonuclease (Ape1 in 
mammals) [41,42]. The DNA strand break is then processed by either single-nucleotide base excision 
repair (SN-BER) or long-patch base excision repair (LP-BER). In SN-BER, DNA polymerase β (Polβ) 
incorporates a single nucleotide and incises the remaining 5'-sugar phosphate, prior to ligation by DNA 
ligase III (Lig3). In LP-BER, the flap endonuclease 1 (Fen1) removes the 5'-flap structure generated 
during the multi-nucleotide synthesis step mediated by Polβ or a replicative DNA polymerase prior to 
ligation by DNA ligase I (Lig1) [41,42].  

3.1. BER in Various Models of Trinucleotide Repeat Instability 

Yeast studies demonstrated the first evidence that allowed insight into the involvement of BER 
proteins in TNR instability. Deficiency or haploinsufficiency of rad27, the homolog of mammalian 
Fen1 in yeast, led to length-dependent CAG/CTG expansion and instability [43,44]. On the other side, 
it is the overexpression of Lig1 homolog in yeast (cdc9) that yielded longer repeat tracts [45]. 
Overexpression of an inactive form of cdc9 possessing a functional binding site for proliferating cell 
nuclear antigen (PCNA) led to similar results, suggesting that instability is dependent upon PCNA 
interaction rather than DNA ligase activity [45,46]. Mutations in PCNA and the replicative DNA 
polymerase Polδ also induced destabilization of the repeat tract [47]. Fen1, PCNA, Lig1 and the 
replicative DNA polymerases are involved in both replication and LP-BER, and yeast studies did not 
allow discriminating of whether replication and/or LP-BER contribute most to TNR instability. The 
effects of Lig1 protein level, activity and capacity to interact with PCNA on replication and repair at 
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CAG/CTG repeats were assessed using human cells and plasmid-based substrates [48]. Consistent with 
the yeast studies, disruption of Lig1 and PCNA interaction increased instability, due to errors during 
replication, whereas Lig1 overexpression increased repair-dependent TNR instability. In addition, 
reduced Lig1 activity did not alter instability. 

Mouse genetics was further used to attempt to define the role of BER proteins in TNR instability. 
DM1 mice were crossed with knock-in mice carrying a mutation in Lig1, resulting in very low residual 
ligase activity [49,50]. Somatic CTG/CAG instability in DM1 mice expressing the Lig1 mutant was 
similar to that in DM1 mice. However, DM1 mice mutants for Lig1 showed a maternal instability bias, 
leading to increased contractions and decreased expansions. Furthermore, HD and DM1 mice were 
crossed with mice haploinsufficient for Fen1. Somatic CAG/CTG instability was unchanged in HD 
and DM1 mice heterozygous for Fen1, regardless of the tissues analyzed, though a modest effect on 
germline instability was observed in HD mice haploinsufficient for Fen1 [51,52]. These results might 
indicate that the mechanisms underlying CAG/CTG instability in yeast and mammals are different. 
The involvement of replication in repeat instability might be prominent in proliferative cells, such as 
yeast, but more limited in mammalian tissues. Alternatively, different compensatory mechanisms 
might take place in yeast and mammalian tissues that could account for the different effects induced by 
deficiency of Fen1 or Lig1 in the two model systems. Of note, in contrast to yeast, the complete 
inactivation of Fen1 could not be achieved in mice, due to the embryonic lethality of full  
knock-outs [53,54]. In general, assessing the role of BER proteins in CAG/CTG instability using 
mouse genetics is a difficult task, as inactivation of the main BER genes, including Polβ [55,56],  
Ape1 [57], Xrcc1 [58], Fen1 or Lig1, is embryonically lethal. 

DNA glycosylases represent an exception to this rule. The inactivation of individual DNA 
glycosylases is compatible with life in mammals, due to functional redundancy. Interestingly, full 
inactivation of the DNA glycosylase, Ogg1, in HD mice led to reduction of the age-dependent  
repeat instability in the brain and liver, suggesting the repair of 8-oxoG lesions promotes somatic CAG 
instability [35]. Inactivation of Ogg1 or Ape1 in a human cell model allowing for detection of repeat 
contraction events only did not improve repeat stability, possibly due to the low frequency rate of 
contraction in this model system [59]. In addition, HD mice deficient for the DNA glycosylases, Aag 
and Nth1, which remove alkylated purines and pyrimidine-derived lesions, respectively, had no effect 
on CAG instability [35]. In addition, somatic and germline instability was reduced in HD mice 
deficient for Neil1. Interestingly, somatic instability was decreased in all tissues tested, which included 
brain and non-brain tissues. Neil1 is a DNA glycosylase that targets pyrimidine-derived lesions, like 
NTH1 [36]. However, Neil1 can remove DNA lesions in both duplex and single-strand DNA (ssDNA), 
and can also remove 8-oxoG lesions in both DNA configurations, though removal efficiency for this 
DNA lesion is poor [60]. Importantly, CAG instability in HD mice was only moderately reduced upon 
inactivation of Ogg1 and Neil1, and phenotype penetrance (e.g., improved CAG instability) was 
partial, suggesting that neither Ogg1 nor Neil1 is essential regarding CAG instability, possibly due to 
overlapping substrate specificities. Whereas these data demonstrate that DNA glycosylases contribute 
to CAG instability in vivo, the exact nature of mutagenic DNA lesions remains elusive. Assessing the 
effect of inactivation of additional DNA glycosylases could help in answering this question. Finally, it 
remains to be determined whether DNA glycosylases contribute to repeat instability in other models of 
TNR diseases. Interestingly, it was reported that the DNA oxidizing agent, potassium bromate, 
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exacerbates germline repeat expansion in a fragile X premutation model, suggesting that repair of 
oxidative DNA lesions might be involved in the instability of CGG repeats [61]. 

3.2. Level and Accessibility of DNA Lesions at Trinucleotide Repeats 

Accumulation of oxidative DNA damage with age in specific tissues could explain the age 
dependency and tissue specificity of somatic instability [35]. However, though the global level of 
DNA damage increased with age in HD mouse striatum and cerebellum, it was lower in the striatum, 
which presents high CAG instability levels, when compared to the cerebellum, showing minimal 
repeat instability [62]. In addition, DNA damage at CAG repeats did not increase with age and was not 
higher in striatum, though it was abnormally high in HD mouse tissues [62]. These data suggest that 
the amount of DNA lesions at CAG repeats does not directly contribute to age-dependent and  
tissue-selective somatic instability, suggesting that other mechanisms explain these features.  

The increased level of DNA lesions at CAG repeats found in tissues of HD mice might result from 
their reduced accessibility to DNA repair proteins. Several studies support this hypothesis. Repair of 
hairpin-forming substrates with DNA lesions, including 8-oxoG, 5-OHC and the AP site, was 
impeded, likely due to reduced binding of DNA repair proteins to hairpin structures [36,62–64]. Along 
this line, the degree of stiffness of CAG/CTG substrates with slip-outs negatively influenced repair  
efficiency [23]. Additionally, hairpin substrates with CAG/CTG repeats contained a hot spot for DNA 
damage [63]. Thus, both reduced accessibility and increased susceptibility to DNA damage could 
contribute to lesion accumulation at CAG/CTG expansions. 

3.3. Mechanism of BER in Tissue-Selective CAG/CTG Repeat Instability 

Several in vitro and cell-based studies have provided insights into the mechanism by which BER 
proteins might contribute to CAG/CTG instability. It has been reported that processing of CAG/CTG 
substrates by Polβ��a central component of BER, leads to strand displacement and multi-nucleotide gap 
filling, due to polymerase slippage at repeats [65,66]. Polymerase slippage would induce the formation 
of a 5'-flap structure, which would require LP-BER proteins, including Fen1 and Lig1, for completion 
of repair. Since stable secondary structures forming at TNR repeats prevent efficient excision by  
Fen1 [67,68], it was hypothesized that expansion of the repeat tract could arise from inefficient 
excision or alternate cleavage by Fen1 of the 5'-flap structure generated upon multi-nucleotide gap filling 
by Polβ, followed by ligation of an erroneous number of repeats [14,66]. Alternate cleavage by Fen1 
would be required for the generation of a ligatable nick and completion of repair. Studies using 
partially and fully reconstituted repair assays support these possibilities and further indicate that the 
level of coordination of BER enzymatic steps is critical in determining the repair outcome at 
CAG/CTG repeats [69–71]. The processing of CAG/CTG substrates preferentially involved LP-BER 
in contrast to substrates with a random sequence, suggesting that LP-BER is required to repair a lesion 
at CAG/CTG repeats. Furthermore, repair outcome was influenced by the stoichiometry of BER 
proteins [62,71]. BER protein levels and activities greatly varied between the striatum and the 
cerebellum. Although the level of Polβ was similar in the two tissues, LP-BER proteins, including 
Fen1 and Lig1, were much more abundant in the cerebellum as compared to the striatum. As a result, 
repair efficiency at CAG/CTG repeats was poor and led to the formation of persistent intermediate 
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products when using the striatal BER protein stoichiometry, as compared to that of the cerebellum. It 
was hypothesized that the sub-optimal BER activity in the striatum contributes to the increased striatal 
instability seen in HD, whereas the efficient and well-coordinated BER activity in the cerebellum 
might limit instability in this tissue, preventing the formation of secondary DNA structures at repeats. 

Moreover, the sequence of the repeat (CAG versus CTG) and the position of the lesion within  
the CAG/CTG substrates also influenced repair outcome, e.g., repair efficiency and LP-BER 
requirement [71,72]. The results by Lai et al. suggest that the position of the lesion within the repeat 
substrate determines whether expansion or contraction occurs [72]. It was reported that a lesion located 
at the 5'-end of CTG repeats results in expansion, whereas a lesion located in the middle or the 3'-end 
of the repeats results in deletion. In studies using plasmid-based CAG/CTG substrates and mammalian 
cell extracts, it was also reported that the position of a nick with respect to the repeat tract influences 
repair outcome [18,20,22,73]. In these assays, repair efficiency was decreased when the slip-out was 
located on the CTG strand in comparison to the CAG strand. The mechanism of TNR instability 
includes both stochastic and deterministic components [74]. The occurrence, accessibility and location 
of a DNA lesion at repeats are stochastic events that might contribute to the stochastic component of 
instability, whereas damage repair would be involved in the deterministic component. Since BER protein 
stoichiometry varies between tissues, this BER deterministic component might be tissue-dependent 
(Figure 1). Interestingly, the level of MMR proteins, including Msh2, Msh3 and Msh6, is also highly 
variable between mouse tissues [75]. It was suggested that the elevated levels of MMR proteins in 
embryonic stem cells of DM1 patients might contribute to the high CTG instability level found in these 
cells [76]. Similar conclusions were drawn using induced pluripotent stem cells derived from 
fibroblasts of Friedreich ataxia patients [77,78]. However, the relative levels of MMR proteins were 
higher in the cerebellum, as compared to the striatum and cortex, indicating that high MMR protein 
amounts do not correlate with high instability levels in somatic tissues. Further studies are required to 
specify how tissue-specific regulation of trans-factors impacts on tissue selective instability. 

4. Conclusions 

Many genetic diseases are caused by dynamic mutations, including trinucleotide repeat expansion 
diseases. Repeat instability can accelerate disease progression. Understanding the etiology of TNR 
instability is crucial, since instability might represent a therapeutic target. During the last decade, 
important advances have been made that increase our understanding of the rules governing this 
particular type of instability. Specifically, it was discovered that oxidative DNA damage and BER play 
a physiological role in the somatic CAG instability involved in HD and possibly contribute to the 
tissue selectivity and stochasticity of the instability process. Yet, how broad the involvement of 
oxidative DNA damage and BER in the TNR instability associated with diseases is would need to be 
investigated. How BER interacts with other mechanisms modulating TNR instability, including MMR, 
transcription and replication, is also a question that would deserve interest. 
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Figure 1. Base excision repair (BER)-induced CAG repeat expansion is tissue-dependent. 
Oxidative DNA lesions, including 8-oxoG lesions, occur stochastically at trinucleotide 
CAG repeats and are processed by the BER pathway. A DNA glycosylase (e.g., Ogg1) and 
Ape1 initiate repair. Repair outcome (“no expansion” or “expansion”) is dependent upon 
the location of the lesion and the tissue that is repaired. In the cerebellum, where Fen1 and 
Lig1 are abundant, the DNA lesion at CAG repeats is correctly repaired: the flappy 
structure resulting from multinucleotide incorporation by Polβ during long-patch (LP)-BER 
by Fen1 is efficiently processed, and the subsequent ligation step does not result in 
expansion. In contrast, in the striatum, where Fen1 and Lig1 proteins are reduced, repair of 
the DNA lesion at CAG repeats is error-prone. The flappy structure is not efficiently 
processed, which ultimately leads to repeat expansion through a yet unknown mechanism. 
Additional DNA repair pathways, including mismatch repair (MMR), might interplay with 
BER during this process.  
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