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	 Background:	 Delayed graft function (DGF) is a common complication that impairs allograft function after kidney transplan-
tation. However, the mechanism of DGF remains unclear. Nuclear magnetic resonance (NMR)-based analysis 
has been widely used in recent times to assess changes in metabolite levels.

	 Material/Methods:	 Samples of perfusate from allografts donated after circulatory death were collected prior to transplantation, 
during static cold storage. 1H-NMR-based metabolomics combined with the statistical methods, orthogonal 
partial least-squares discriminant analysis (OPLS-DA), and principle-component analysis (PCA), were employed 
to test different levels of metabolites between the allografts that exhibited DGF and those that exhibited im-
mediate graft function (IGF).

	 Results:	 The study population consisted of 36 subjects, 11 with DGF and 25 with IGF. Of the 37 detected and identified 
metabolites, a-glucose and citrate were significantly elevated in the perfusate of DGF allografts, and taurine 
and betaine were significantly decreased.

	 Conclusions:	 1H-NMR analysis of DGF and IGF perfusates revealed some significant differences in their metabolite profiles, 
which may help explain the mechanisms of kidney ischemia-reperfusion injury and DGF.
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Background

Delayed graft function (DGF) is usually defined based on the 
need for dialysis during the first week after kidney transplan-
tation; excluding dialysis for hyperkalemia in the first 24 hours. 
It is increasingly recognized as a serious complication of kidney 
transplantation that can adversely affect the survival of the 
graft and transplant recipients [1,2]. According to one study, 
recipients who experienced DGF had a 41% greater risk of graft 
loss at a mean follow-up time of 3.2 years [3]. DGF rates have 
been increasing in parallel with increased use of donation-af-
ter-circulatory-death (DCD) kidneys, therefore it is likely to re-
main a significant clinical challenge in terms of patient quality 
of life and long-term allograft survival [4]. Accurate evaluation 
of allograft quality is essential for surgeons to give a short-
term prognosis for recipients and allografts, and thereby de-
termine the appropriate perioperative care. However, there are 
few biomarkers and evaluation parameters which are routine-
ly applied in clinical practice.

Metabolomics entails studying the metabolite profiles of bio-
logical fluids and extracts from cell or tissue, and it has been 
extensively applied for diagnosis and evaluation of some hu-
man pathologies, such as cancer, diabetes, neurological con-
ditions and heart disease [5–8]. Owing to developments in di-
agnostic instrumentation, many analytical methods are now 
available for detecting and quantifying metabolites; these in-
clude nuclear magnetic resonance (NMR), gas chromatogra-
phy/mass spectrometry (GC/MS) and liquid chromatography/
mass spectrometry (LC/MS). Metabolomic analysis using pro-
ton nuclear magnetic resonance (1H-NMR) has shown a high 
degree of reproducibility, and can non-destructively and non-
selectively detect and quantify multiple classes of metabolites. 
It has therefore become a preferred platform for quantitative 
spectral acquisition and comprehensive profiling of proton-
containing low-molecular-weight metabolites [9].

In the present study, we collected perfusate samples from 
kidney allografts prior to transplantation, and used 1H-NMR-
based metabolomic analysis of these to compare kidneys ex-
hibiting DGF upon transplantation to those exhibiting imme-
diate graft function (IGF; controls).

Material and Methods

Ethics statement

The study protocol was in accordance with the ethical stan-
dards of the Declarations of Helsinki and Istanbul. Being lim-
ited to donations after circulatory death, the protocol of this 
study was approved by the local Ethics Committee of the First 
Affiliated Hospital of Nanjing Medical University, and written 

informed consent was obtained from all transplant recipi-
ents. None of the transplant donors were from a vulnerable 
population, and written informed consent were received from 
each of patients.

Sample collection

Adult kidneys acquired by DCD and accepted for transplanta-
tion at the kidney transplantation center of the First Affiliated 
Hospital of Nanjing Medical University between October 2014 
and June 2015 were included. All allografts arrived at our trans-
plant center in static cold storage, and demographic and clini-
cal data for the donors were recorded.

Graft perfusion was performed 30 min before the transplanta-
tion surgery, with 1 L of hypertonic citrate adenine II solution at 
0–4°C and a perfusion pressure of 100 cm H2O. No additional 
oxygen or glutathione (GSH) was supplied. After repair of the 
allograft was completed, 15 ml of the perfusate was sampled 
from the first outflow of the allograft renal vein. After high-
speed centrifugation at 3000 rpm for 10 min, the supernatant 
of the perfusate was transferred to a cryogenic vial and stored 
at –80°C for further experiments.

Sample preparation and 1H-NMR analysis

We centrifuged the perfusate samples at 12,000 rpm for 10 
min prior to NMR analysis. Then, we mixed buffer solution and 
sodium 3-trimethylsilyl-(2,2,3,3-D4)propionate (150 μL; Sigma-
Aldrich, MO, USA) in D2O with 300 μL of supernatant from each 
perfusate sample. Finally, we collected 550 μL aliquots from 
the mixtures and transferred into NMR tubes.

AV 500 MHz spectrometer (Bruker, MA, USA) was used to detect 
1H-NMR spectra. A transverse relaxation-edited Carr-Purcell-
Meiboom-Gill sequence [90-(t-180-t)n-acquisition] with a total 
spin echo delay (2nt) of 10 ms was employed to decay broad 
signals. Then, 1H-NMR spectra were measured using the fol-
lowing parameters: spectral width, 7500 MHz; number of sam-
pling points, 32 K; relaxation delay time, 2 s; scanning time, 
128 s. Finally, we phased the baseline correction of the spec-
tra manually using the TOPSPIN 3.0 package (Bruker Biospin, 
Germany). All 1H-NMR spectrograms were obtained from the 
same spectrometer.

Statistical analysis

Based on shifts corrected by the TSP signal, the spectra of 
1H-NMR were aligned into integrated segments with 0.005 ppm 
widths (4.25–4.7 and 4.73–5.28 ppm). Then, principle compo-
nent analysis (PCA) and orthogonal partial least-squares dis-
criminant analysis (OPLS-DA) were applied to determine differ-
ences in the metabolite patterns of these 2 perfusate groups. 
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In addition, corresponding loading plots were used to provide 
variable quantities. Taking component indices of subjects in 
both groups as study factors, SPSS 13.0 was used to process 
general data (SPSS Inc., IL, USA). The measured data was pre-
sented as mean ± standard deviation (SD), and a t-test was 
conducted for inter-group comparison of individual metabo-
lites. Statistically significant was identified when P<0.05.

Results

Demographic and clinical characteristics

The demographic and clinical characteristics of the subjects 
are summarized in Table 1. In all, 36 subjects were included: 
11 with allografts that showed DGF after kidney transplanta-
tion and 25 with allografts showing IGF. There were no signif-
icant differences in the characteristics of donors and recipi-
ents between the DGF and IGF groups.

IGF group DGF group P value

Number 25 11 NS

Donor information

	 Age (years, mean ± SD) 39.72±2.00 40.73±1.01 NS

	 Male (%) 92.00 90.91 NS

	 Warm ischemia time (min, mean ±SD) 2.240±0.24 3.455±0.98 NS

	 Cold ischemia time (hour, mean ±SD) 9.040±0.48 9.273±0.60 NS

Causes of death NS

	 Brain tumor 1 1

	 Brain trauma 20 9

	 Cerebral hemorrhage 4 1

Recipient information

	 Age (years, mean ±SD) 37.94±1.93 39.15±1.42 NS

	 Male (%) 60.00 54.55 NS

	 PRA (%) 0 0 –

Table 1. Baseline charaterisctics of subjects included in this study.

IGF – immediate graft function; DGF – delayed graft dysfunction; NS – not significant; SD – standard deviation; PRA – panel reactive 
antibody.
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Figure 1. �(A, B) Representative 500 MHz 
1H-NMR spectra of perfusate samples 
obtained from renal allografts that 
exhibited either delayed or immediate 
function upon transplantation (DGF 
and IGF, respectively).
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Metabolite profiling

Representative 1H-NMR spectra for perfusate samples from 
both groups are shown in Figure 1. We assigned and identi-
fied 37 metabolites, whose inter-group variation is present-
ed in Table 2.

Figure 2A shows an OPLS-DA score plot of the 1H-NMR data, 
which was used to distinguish between DGF and IGF samples. 
In the OPLS-DA score plot, each point identifies a sample and 
each cluster represents a corresponding metabolic pattern. 
Significant separation was found between DGF and IGF sam-
ples (R2Y=0.922; Q2=0.910). The color-coded plot correspond-
ed with coefficient-loading values visualized the influence of 
each metabolite between the DGF and IGF groups (Figure 2C). 
Levels of metabolites with positive correlation coefficients were 
lower in the DGF group than in the IGF group, whereas those 
with negative correlation coefficients were higher in the DGF 
group. Combining the coefficient-loading plot and an S-plot 
from the OPLS-DA analysis (Figure 2B), we found that the levels 
of 4 metabolites, citrate, a-glucose, betaine and taurine, were 
significantly different between the 2 groups (p<0.05; Table 2).

Discussion

DGF is strongly associated with an increased risk of allograft 
loss after renal transplantation. DGF is becoming increasingly 
important, as the number of patients awaiting kidney transplan-
tations is growing and there has been a great rise in the rate 
of donations after circulatory death in recent years in China. 
The current literature does not contain adequate evidence to 
provide a comprehensive mechanism for the development of 
DGF after kidney transplantation. Changes in perfusate com-
positions during static cold storage (SCS) may represent on-
going cell processes, or products of metabolism or degrada-
tion, being released from the kidneys. Metabolic profiling has 
been used to determine biomarkers for drug safety and effica-
cy, as well as for disease diagnosis (10). In this study, we ap-
plied the 1H NMR-based approach to evaluate the perfusate of 
allografts with DGF, and found that 4 important endogenous 
metabolites, citrate, a-glucose, betaine and taurine, were sig-
nificantly associated with the occurrence of DGF.

Ischemia-reperfusion (IR) injury, which is a multifactorial patho-
genesis, plays a central role in the development of DGF in al-
lografts [11]. IR injury is attributed to several processes trig-
gered by the initial deprivation of oxygen and nutrients, along 
with the concomitant accumulation of metabolic waste prod-
ucts. Further damage is then done as a result of reperfusion 
products [12,13]. Similar to how gene and protein levels of-
ten correlate with the activity of specific biochemical path-
ways and mechanisms, metabolite levels often correlate with 

processes such as cell metabolism, tissue oxygenation and ox-
idative stress, as well as general homeostasis [14]. When com-
pared to those of the IGF group, the DGF perfusates showed 
a significant increase in their a-glucose concentrations. Since 
a-glucose is one of the main components of the total glucose 
content, we inferred that total glucose would also likely have 
increased in the DGF group; this would indicate more active 
glucose metabolism in the DGF allografts during SCS. A po-
tential role for glucose metabolism in IR injury is suggested by 
the results of Chang et al. [15], who found that Dapagliflozin, 
an antidiabetic inhibitor of sodium/glucose cotransporter 2 
(SGLT2), could attenuate IR injury. Moreover, hyperglycemia 
has been shown to exacerbate kidney IR injury and acceler-
ate renal dysfunction, with several molecular pathways being 
profoundly affected by the hyperglycemia that occurs prior 
to renal IR injury [16,17]. However, in the absence of samples 
and clinical measures from the donors, it was impossible to 
determine whether the glucose increase was due to IR inju-
ry or a prior insult.

Along with increased a-glucose, we found that DGF perfus-
ates exhibited significantly elevated citrate and reduced levels 
of taurine and betaine. This suggests notable IR injury in the 
more ischemically damaged DGF allografts. There is evidence 
that anoxia, ischemia and infarction can lead to rapid loss of 
high-energy phosphates and accumulation of hydrolysis prod-
ucts, such as citrate, lactate and b-hydroxybutyrate; thus, al-
lografts with higher levels of citrate may have suffered great-
er IR injury and thus be more susceptible to the occurrence of 
DGF after transplantation [18–20].

Even more importantly, IR injury could significantly impact os-
moregulation, as reflected by the altered levels of osmolytes, 
like taurine and betaine, that have been demonstrated in 
both the present study and in previous ones [21,22]. Taurine 
is a ubiquitous free amino acid which is present in many tis-
sues and is involved in various physiological processes, such 
as osmoregulation, antioxidant activity and hepatic detoxifi-
cation [23,24]. There is strong evidence that taurine benefits 
ischemic reperfused kidneys by exerting a number of cytopro-
tective effects, such as a purported antioxidant effect, mem-
brane stabilization, cellular osmoregulation and antiapoptotic 
effects [25,26]. In addition, taurine is known to be an impor-
tant modulator and regulator of renal function, and it contrib-
utes to body-fluid and electrolyte homeostasis. This suggests 
a critical role for taurine in renal IR injury [27,28]. Like to tau-
rine, the most important physiological roles for betaine are 
as an osmolyte and a methyl donor [29]. As an osmolyte, be-
taine protects cells, proteins, and enzymes from environmen-
tal stresses, such as high salinity, low water and oxidative at-
tack [30]. Numerous studies have demonstrated the protective 
role of betaine during IR injury [21,31–33]. In our study, the 
DGF allografts showed lower taurine and betaine levels, so 
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No. Metabolites Chemical shifts (ppm) Changes in IGF group vs. DGF group

1 Isoleucine 0.88–0.94 –

2 Leucine 0.95–0.98 –

3 Valine 0.99–1.02; 1.03–1.06 –

4 3-hydroxybutyrate 1.19–1.23 –

5 Lactic acid 1.32–1.38; 4.11–4.14 Down

6 Alanine 1.46–1.52 Dwon

7 Acetate 1.92–1.94 Down

8 NAG 2.05–2.15 –

9 GSH 2.2–2.25; 2.55–2.58; 4.56–4.60 Down

10 Glutamate 2.33–2.39 Down

11 Succinate 2.41–2.42 Down

12 Citrate 2.65–2.75 Down*

13 Creatine 3.03–3.04; 3.92–3.95 Down

14 Ethanolamine 3.11–3.14 Down

15 O-Acetylcholine 3.20–3.23 Down

16 Taruine 3.30–3.32; 3.40–3.45 Up*

17 b-glucose 3.46–3.51 Up

18 Glycine 3.50–3.60 Up

19 a-glucose 3.60–3.88 Down*

20 Bet 3.87–3.90 Up*

21 Glycolate 3.91–3.92 Up

22 Isocitrate 4.01–4.05 Up

23 Myo-inositol 4.06–4.08 Up

24 O-Phosphoserine 4.08–4.10; 4.16–4.20 Up

25 Unsaturated lipid 5.24–5.26 Down

26 UDP-galactose 5.62–5.70 Up

27 Uridine 5.89–5.95; 7.87–7.91 Up

28 Inosine 6.09–6.12; 8.35–8.37 Up

29 Sodium fumarate dibasic 6.52–6.54 Up

30 Tyrosine 6.89–6.92; 7.18–7.28 Up

31 Histamine 7.10–7.13 Up

32 Phenylalanine 7.30–7.46 Down

33 Uracil 7.54–7.57 Down

34 Xanthine 7.92–7.94 Up

35 Oxypurinol 8.20–8.23 Down

36 Niacinamide 8.26–8.28 Up

37 Formate 8.45–8.46 Down

Table 2. Metabolites detected in the perfute of IGF and DGF allograft.

DGF – delayed graft function; IGF – immediate graft function; NAG – N-acetyl-beta-D-glucusamidase; GSH – glutathione. * P value 
<0.05; ** P value <0.01.
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they may have suffered IR injury due, at least in part, to the 
loss of taurine and betaine’s protective effects.

In 2014, Guy et al. [34] studied the metabolite profiles of per-
fusates from 26 cadaveric cases, during hypothermic machine 
perfusion (HMP) of cadaveric kidneys using NMR spectrosco-
py. Their results showed that glucose, inosine, leucine and 

Figure 2. �Scores plot, S-plot, and color-coded loadings plot for orthogonal partial least-squares discriminant analysis (OPLS-DA) of 
1H-NMR data from renal-allograft perfusates. (A) Scores plot where each point represents 1 perfusate sample. (B) S-plot of 
perfusate samples. (C) Color-coded loadings plot shows metabolites that differed between the delayed (DGF) and immediate 
(IGF) graft-function groups (red, higher concentration; blue, lower concentration).
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gluconate were significantly different in DGF group, which 
differed from ours in that the DGF group exhibited significant 
decreases in glucose, inosine, leucine and gluconate. This dis-
crepancy could be explained by a number of methodological 
differences between the studies, including the details of mea-
surement instruments, the application of HMP and the use of 
different preservation solutions.

Although our metabolomic analysis achieved significant re-
sults, it had some limitations. First, during SCS and perfusion 
of the allografts, we applied a hypertonic citrate adenine (HC-
A) II solution, which, in China, is the most widely used kid-
ney-preservation solution. HC-A II provides similar efficacy and 
safety to classical HTK solutions [35], but along with dihydro-
gen phosphate, hydroxide phosphate, adenine and mannitol, 
it contains citrate and is therefore a potential confounding 
factor for the elevated citrate we observed in the DGF per-
fusates. Second, our sample population was too small ow-
ing to the strict inclusion and exclusion criteria used. A large 
number of subjects were ruled out because of particular de-
tails relating to the donation; for example, the recipient ex-
hibited acute rejection or the presence of panel reactive anti-
bodies, the donor was a child, the donor had a viral infection 
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