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Abstract: Wheat (Triticum aestivum L.) is known to be negatively affected by heat stress, and its
production is threatened by global warming, particularly in arid regions. Thus, efforts to better
understand the molecular responses of wheat to heat stress are required. In the present study,
Fourier transform infrared (FTIR) spectroscopy, coupled with chemometrics, was applied to develop
a protocol that monitors chemical changes in common wheat under heat stress. Wheat plants at the
three-leaf stage were subjected to heat stress at a 42 ◦C daily maximum temperature for 3 days, and
this led to delayed growth in comparison to that of the control. Measurement of FTIR spectra and
their principal component analysis showed partially overlapping features between heat-stressed and
control leaves. In contrast, supervised machine learning through linear discriminant analysis (LDA)
of the spectra demonstrated clear discrimination of heat-stressed leaves from the controls. Analysis
of LDA loading suggested that several wavenumbers in the fingerprinting region (400–1800 cm−1)
contributed significantly to their discrimination. Novel spectrum-based biomarkers were developed
using these discriminative wavenumbers that enabled the successful diagnosis of heat-stressed leaves.
Overall, these observations demonstrate the versatility of FTIR-based chemical fingerprints for use in
heat-stress profiling in wheat.

Keywords: wheat; heat stress; FTIR spectroscopy; chemometrics; arid region; linear discriminant
analysis; spectral biomarker

1. Introduction

Wheat (Triticum aestivum L.) is one of the most important crops globally. Together with
rice, maize, and soybean, these crops supply two-thirds of the calories that are required
for the world population [1]. Wheat yield is sensitive to heat stress, and an approximately
6% loss in global yield is estimated with each Celsius degree increase in temperature
caused by future global warming. The negative effects of heat stress on wheat yield are
dependent upon the growth stages [2,3], and even a short duration of heat for one day
reduced wheat yield [4]. Therefore, the development of new climate change adaptation
measures that include the optimization of wheat cultivation practices and breeding of
heat-tolerant wheat varieties is essential for the thermo-stressed regions of the globe [5].
Understanding the physiological and morphological responses to heat stress is of pivotal
importance for genetic and/or agronomic improvement in wheat.

Int. J. Mol. Sci. 2022, 23, 2842. https://doi.org/10.3390/ijms23052842 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23052842
https://doi.org/10.3390/ijms23052842
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-0202-8934
https://orcid.org/0000-0002-1711-6961
https://orcid.org/0000-0003-0203-0759
https://orcid.org/0000-0002-9991-5766
https://doi.org/10.3390/ijms23052842
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23052842?type=check_update&version=4


Int. J. Mol. Sci. 2022, 23, 2842 2 of 15

Metabolome techniques have provided an important tool for understanding envi-
ronmental stress tolerance mechanisms in plants [6–8], and these techniques provide
deeper insights into the phenotypic/agronomic variations influenced by the environ-
ment. Metabolome-based chemical fingerprinting has been employed as a selection tool
for desirable traits in crops [7]. Various analytical platforms are available in the field
of metabolomics, and multiple technologies are often required to gain comprehensive
knowledge regarding the biochemical changes in each biological system [6]. Among the
various metabolomic platforms, liquid chromatography-mass spectrometry (LC-MS) and
gas chromatography-mass spectrometry (GC-MS) are the most widely used technologies to
date. These methodologies have been successfully used for the characterization of com-
plex metabolic responses in wheat, including changes under post-anthesis heat stress [8],
growth-stage-specific metabolic responses to heat [9], and the effects of post-anthesis heat
stress on the metabolic profile of the grain [10]. Although LC-MS- and GC-MS-based
metabolomics exhibit the advantages of higher capacities for the detection and identifi-
cation of metabolites, these techniques primarily target compounds possessing smaller
molecular weights, and destructive extraction pretreatments are required prior to analyses.

In contrast, other metabolomic platforms, such as nuclear magnetic resonance (NMR)
and Fourier transform infrared (FTIR) spectroscopy, possess the advantage of analyz-
ing supramolecular structures such as cell walls with little sample preparation require-
ments [6,11,12]. FTIR spectroscopy possesses further advantages for potential applicabil-
ity to in vivo imaging of biological materials [13,14] and remote sensing [15]. The FTIR
spectroscopic technique has been used to study metabolic responses of plants to various
environmental stresses, such as the salinity response in the beauty leaf tree (Calophyllum
inophyllum) [16], and differential metabolic behaviors of roots and leaves in a halophyte
Sesuvium portulacastrum under salt stress [17]. The FTIR spectroscopic technique has also
been applied to different aspects of wheat such as metabolite distributions in the leaves
under nitrate-limiting conditions [18], the oxidative-stress response of wheat roots [19], and
structural changes in gluten [20], as well as for phylogenetic research examining cultivated
and wild wheat species [21]. However, to our knowledge, no previous study has applied
this technique to study metabolomic changes under heat stress in wheat. Therefore, the
objective of the current study was to establish a protocol for fingerprinting and develop-
ing chemical biomarkers that characterize the molecular responses of common wheat to
heat stress.

2. Results
2.1. Growth and Physiological Response of Wheat to Heat Stress

The common wheat cultivar ‘Norin 61’ was grown until the three-leaf stage at a
daily temperature of 22 ◦C and then exposed to heat stress at a daily temperature of
42 ◦C for three days. A significantly higher canopy temperature of 37.1 ◦C ± 1.8 was
observed in heat-stressed plants (hereafter designated as H3 plants) in comparison to
23.5 ± 1.9 ◦C in unstressed control plants of the same age (hereafter referred as C3 plants)
and to 21.5 ± 2.0 ◦C in plants prior to the heat treatment (hereafter designated as C0 plants)
(Figure 1A). The relative water content of the leaves was comparable between C3 and H3
plants (81.3 ± 9.8% and 77.4 ± 7.6%, respectively), and these values were not significantly
different compared to that of C0 plants (85.9 ± 2.5%) (Figure 1B). Although the total leaf
length increased from 72.8 ± 6.6 cm in the C0 plants to 88.2 ± 9.4 cm in H3 plants, it
was significantly lower than that in C3 plants (102.0 ± 3.2 cm) (Figure 1C). Shoot biomass
exhibited a similar trend, where the value for H3 plants (0.120 ± 0.019 g) was reduced by
17.7% in comparison to that in C3 plants (0.146 ± 0.009 g) (Figure 1D).
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Figure 1. Impact of heat stress on wheat growth and physiology. (A) The canopy temperature, (B) 
relative water content, (C) total leaf length, and (D) shoot biomass of plants prior to heat treatment 
(C0), of control plants after three days (C3), and of plants subjected to heat stress for three days (H3) 
are presented. Values are the average and standard deviation for 18–31 measurements from 5–6 
plants in “(A)” and for 5–6 plants in “(B–D)”. Statistical analysis was carried out by Tukey’s range 
test (p < 0.05) and different letters (a, b, and c) were used to indicate significant differences between 
treatments. 

2.2. FTIR and Principal Component Analysis 
The fully expanded third leaves of C3 and H3 plants were powdered, solidified as 

potassium bromide (KBr) pellets, and analyzed using FTIR spectroscopic technique. Fig-
ure 2 presents a typical example of the FTIR spectrum of each plant. These spectra exhib-
ited largely similar patterns with a characteristic broad peak in the range of 2700–3700 
cm−1, a number of sharper peak signals at approximately 2900 cm−1, complex contours in 
the 900–1800 cm−1 range, and relatively minor peak signals at approximately 400–800 cm−1 
(Figure 2). The broad peak at approximately 2700–3700 cm−1 can be attributed to O–H, C–
H, and N–H stretching, while the sharper peak signals at approximately 2900 cm−1 can be 
attributed to C–H stretching bands from aliphatic compounds [22]. In the so-called “fin-
ger-printing” region ranging from 400–1800 cm−1 [22], multiple peak signals are recog-
nizable that largely overlapped and formed complex patterns. At least 12 peaks were de-
tected in the spectra from both C3 and H3 plants, which can be assigned to various func-
tional groups as shown in Table 1. However, it is noteworthy that the sample preparation 
conditions employed in this study, such as drying the leaf tissues at 70 °C, grinding, and 
the usage of a KBr matrix, might influence the wavenumber positions of maxima of some 
polar functional groups of biomolecules. Previous studies have demonstrated that the em-
ployment of a KBr matrix and grinding resulted in the shifts of some FTIR vibrational 
bands by up to 15 cm−1, which might influence the band energies, affect ion exchange, and 
induce crystallization of metastable amorphous biopolymers [23,24]. Nevertheless, from 
visual inspection, it was difficult to identify distinguishable features between C3 and H3 
plants, and this suggested that the use of chemometric techniques is required for spectral 
analysis. 

Figure 1. Impact of heat stress on wheat growth and physiology. (A) The canopy temperature,
(B) relative water content, (C) total leaf length, and (D) shoot biomass of plants prior to heat treatment
(C0), of control plants after three days (C3), and of plants subjected to heat stress for three days
(H3) are presented. Values are the average and standard deviation for 18–31 measurements from
5–6 plants in “(A)” and for 5–6 plants in “(B–D)”. Statistical analysis was carried out by Tukey’s
range test (p < 0.05) and different letters (a, b, and c) were used to indicate significant differences
between treatments.

2.2. FTIR and Principal Component Analysis

The fully expanded third leaves of C3 and H3 plants were powdered, solidified as
potassium bromide (KBr) pellets, and analyzed using FTIR spectroscopic technique. Figure 2
presents a typical example of the FTIR spectrum of each plant. These spectra exhibited
largely similar patterns with a characteristic broad peak in the range of 2700–3700 cm−1,
a number of sharper peak signals at approximately 2900 cm−1, complex contours in the
900–1800 cm−1 range, and relatively minor peak signals at approximately 400–800 cm−1

(Figure 2). The broad peak at approximately 2700–3700 cm−1 can be attributed to O–H, C–H,
and N–H stretching, while the sharper peak signals at approximately 2900 cm−1 can be
attributed to C–H stretching bands from aliphatic compounds [22]. In the so-called “finger-
printing” region ranging from 400–1800 cm−1 [22], multiple peak signals are recognizable
that largely overlapped and formed complex patterns. At least 12 peaks were detected in
the spectra from both C3 and H3 plants, which can be assigned to various functional groups
as shown in Table 1. However, it is noteworthy that the sample preparation conditions
employed in this study, such as drying the leaf tissues at 70 ◦C, grinding, and the usage of a
KBr matrix, might influence the wavenumber positions of maxima of some polar functional
groups of biomolecules. Previous studies have demonstrated that the employment of a KBr
matrix and grinding resulted in the shifts of some FTIR vibrational bands by up to 15 cm−1,
which might influence the band energies, affect ion exchange, and induce crystallization of
metastable amorphous biopolymers [23,24]. Nevertheless, from visual inspection, it was
difficult to identify distinguishable features between C3 and H3 plants, and this suggested
that the use of chemometric techniques is required for spectral analysis.
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Figure 2. Representative FTIR spectra from the leaves of control (C3) and heat-stressed (H3) 
wheat. 

Table 1. Major FTIR peaks observed and their assignment to probable functional groups in wheat 
leaves. 

No. Wavenumber (cm−1) Probable Functional Groups 
1 3293 O–H stretching, N–H stretching. 
2 2960 C–H stretching in –CH3 (antisymmetric). 
3 2925 C–H stretching in –CH2– (antisymmetric). 
4 2852 C–H stretching in –CH2– (symmetric). 
5 1651 C = C stretching, C = O stretching (amide), N–H bending (amide I). 
6 1541 C = C stretching (aromatic), N–H bending (amide II), C–N stretching. 
7 1385 C–H bending (antisymmetric), =C–H in-plain bending. 

8 1241 C–O stretching, in-plain C–H bending (aromatic), aliphatic C–O stretching, P = O stretch-
ing (aliphatic). 

9 1158 
C–O stretching, C–N stretching (aliphatic), in-plain C–H bending (aromatic), aliphatic C–O 

stretching. 

10 1106 
C–O stretching, C–N stretching (aliphatic), in-plain C–H bending (aromatic), aliphatic C–O 

stretching. 
11 1055 C–O stretching, C–N stretching (aliphatic), in-plain C–H bending (aromatic). 
12 618 =C–H out-of-plane bending, =C–H bending, C–S stretching. 

Assignment of wavenumbers to probable functional groups are according to [24–26]. 

Subsequently, a principal component analysis (PCA) was employed to characterize 
the spectral differences between C3 and H3 plants. Figure 3A provides the PCA score plot 
of 358 spectra (180 and 178 spectra from C3 and H3 plants, respectively) that was based 
upon the variables of 3601 data points (normalized absorbance values from 400 to 4000 
cm−1 with an interval of 1 cm−1) for each spectrum. The PC1-PC2 space in the plot explained 
81.1% of the total variance (Figure 3A and Supplementary Figure S1). Consequently, spec-
tra from C3 and H3 plants were mostly clustered on the PC2-positive and negative half-
planes, respectively, suggesting the presence of distinct spectral features between C3 and 
H3. Loading plots of the PCA showed complex patterns (Figure 3B–D); regions for PC2 
loading over 0.5 were observed in wavenumbers of 459–484, 564–607, 610–614, 622–665, 
670–752, 1177–1344, and 1351–1471 cm−1, whereas PC2 loading below −0.5 were seen in 
the regions of 2736–2897 and 2977–3082 cm−1 (Figure 3D), suggesting that absorbance of 
these specific positive and negative regions tended to influence separation of C3 and H3 
plants. However, considerable numbers of C3 and H3 spectra were unseparated in the 

Figure 2. Representative FTIR spectra from the leaves of control (C3) and heat-stressed (H3) wheat.

Table 1. Major FTIR peaks observed and their assignment to probable functional groups in
wheat leaves.

No. Wavenumber (cm−1) Probable Functional Groups

1 3293 O–H stretching, N–H stretching.
2 2960 C–H stretching in –CH3 (antisymmetric).
3 2925 C–H stretching in –CH2– (antisymmetric).
4 2852 C–H stretching in –CH2– (symmetric).
5 1651 C=C stretching, C=O stretching (amide), N–H bending (amide I).
6 1541 C=C stretching (aromatic), N–H bending (amide II), C–N stretching.
7 1385 C–H bending (antisymmetric), =C–H in-plain bending.

8 1241 C–O stretching, in-plain C–H bending (aromatic), aliphatic C–O stretching,
P=O stretching (aliphatic).

9 1158 C–O stretching, C–N stretching (aliphatic), in-plain C–H bending (aromatic),
aliphatic C–O stretching.

10 1106 C–O stretching, C–N stretching (aliphatic), in-plain C–H bending (aromatic),
aliphatic C–O stretching.

11 1055 C–O stretching, C–N stretching (aliphatic), in-plain C–H bending (aromatic).
12 618 =C–H out-of-plane bending, =C–H bending, C–S stretching.

Assignment of wavenumbers to probable functional groups are according to [24–26].

Subsequently, a principal component analysis (PCA) was employed to characterize the
spectral differences between C3 and H3 plants. Figure 3A provides the PCA score plot of
358 spectra (180 and 178 spectra from C3 and H3 plants, respectively) that was based upon
the variables of 3601 data points (normalized absorbance values from 400 to 4000 cm−1

with an interval of 1 cm−1) for each spectrum. The PC1-PC2 space in the plot explained
81.1% of the total variance (Figure 3A and Supplementary Figure S1). Consequently, spectra
from C3 and H3 plants were mostly clustered on the PC2-positive and negative half-planes,
respectively, suggesting the presence of distinct spectral features between C3 and H3.
Loading plots of the PCA showed complex patterns (Figure 3B–D); regions for PC2 loading
over 0.5 were observed in wavenumbers of 459–484, 564–607, 610–614, 622–665, 670–752,
1177–1344, and 1351–1471 cm−1, whereas PC2 loading below −0.5 were seen in the regions
of 2736–2897 and 2977–3082 cm−1 (Figure 3D), suggesting that absorbance of these specific
positive and negative regions tended to influence separation of C3 and H3 plants. However,
considerable numbers of C3 and H3 spectra were unseparated in the central origin of the
score plot (Figure 3A), suggesting that the PCA alone was not sufficient to distinguish the
spectral features in heat-stressed wheat leaves.
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The 60% group was used as a training set in the supervised machine learning process to 
construct a linear discriminant model. The LDA algorithm successfully separated the 
training dataset into the heat-stressed leaves from the controls in the histogram (Figure 
4A), where the FTIR spectra with positive and negative LD1 scores corresponded to those 
taken from H3 and C3 leaves, respectively. The remaining 40% of the test dataset was then 
applied to the model for validation, and the results exhibited a slightly broader frequency 
distribution for both C3 and H3 in the histogram compared to those in the training set, 
while essentially confirming a clear discrimination between heat-stressed and control 
leaves (Figure 4B). Therefore, the FTIR spectral fingerprint in combination with the LDA 
approach was demonstrated to be effective in detecting discriminatory biochemical infor-
mation in heat-stressed wheat leaves. 

Figure 3. Principal component analysis of FTIR spectra. (A) A score plot showing overlapping
distribution between C3 and H3 plants. (B) A two-dimensional loading plot. Assignment of a color
gradient to respective wavenumbers are the same as those presented in (C,D). (C,D) One-dimensional
loading column plots for (C) PC1 and (D) PC2. The loading for each wavenumber is expressed using
a color gradient image along their x-axes.

2.3. Linear Discriminant Analysis

A linear discriminant analysis (LDA) was employed to improve the discrimination of
heat-stressed leaves. The 358 FTIR spectra that consisted of 180 and 178 spectra from C3 and
H3 leaves, respectively, were randomly split into two groups at a ratio of 60:40%. The 60%
group was used as a training set in the supervised machine learning process to construct a
linear discriminant model. The LDA algorithm successfully separated the training dataset
into the heat-stressed leaves from the controls in the histogram (Figure 4A), where the FTIR
spectra with positive and negative LD1 scores corresponded to those taken from H3 and C3
leaves, respectively. The remaining 40% of the test dataset was then applied to the model for
validation, and the results exhibited a slightly broader frequency distribution for both C3
and H3 in the histogram compared to those in the training set, while essentially confirming
a clear discrimination between heat-stressed and control leaves (Figure 4B). Therefore, the
FTIR spectral fingerprint in combination with the LDA approach was demonstrated to be
effective in detecting discriminatory biochemical information in heat-stressed wheat leaves.

To assess which parts of the spectra were important for discriminating between heat-
stressed and control leaves in LDA, the LDA loadings were examined. A plot of LDA
loadings versus wavenumber revealed that several spectral regions, under a threshold
of absolute loading intensity over 0.15, played key roles in regard to the discrimination
ability (Figure 5). The plot exhibits two strong positive loading peaks at 1465 cm−1 (loading
intensity of 0.398) and 1729 cm−1 (0.176) that contributed to the higher LDA score in the H3
leaves, and four strongly negative loading minimum points of 1251 cm−1 (loading intensity
of −0.318), 576 cm−1 (−0.250), 1502 cm−1 (−0.224), and 482 cm−1 (−0.183) that contributed
to the lower LDA score in the C3 leaves. These six spectral points were located within
the multiple peak-overlapping region at 400–1800 cm−1 in the FTIR spectra (Figure 2) and
corresponded to the finger-printing region [22]. These spectral regions may reflect changes
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in the chemical compositions and/or structures under heat stress that can potentially serve
as spectral biomarkers for diagnosing heat-stress exposure in wheat leaves.
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Table 2. Characteristics of spectral biomarkers. 

Marker Name 
Wavenumbers (cm−1) 

Loading *1 
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H3/C3 Ratio *2 p *3 
Target Anchor-1 Anchor-2 C3 H3 
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Figure 5. Identification of the discriminatory spectral region. Loading plot of the LDA results that
were used for the classification of H3 and C3 leaves. Wavenumbers for the major peaks and minimum
turning points are indicated by red fonts.

2.4. Spectral Biomarkers for Heat Stress Response

To explore the possibility of developing spectral biomarkers specific for the heat-
stress response, the spectral regions that were identified as the major discriminants in the
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LDA loading plot presented in Figure 5 were further evaluated. For this purpose, two
anchor points that encompass the target wavenumber were set, and a new parameter “Fm”
(FTIR marker) that functions as a normalized target absorbance indicator was defined
according to the offset absorbance values of the first and second anchors as 0 and 1,
respectively (described in the Materials and Methods section below). The two anchor
points were scanned in the vicinity of the target wavenumber and selected according to the
following criteria: (i) the distance between the anchor point and target was within 150 cm−1;
(ii) statistical significance (p value) of difference by Student’s t-test for Fm values between
heat stress and control is below 0.0001; (iii) anchor points are preferably situated at visually
discernible landmarks such as spectral peaks and minimum or inflection points within the
spectral curves. The Fm values for the target wavenumber were calculated using 358 FTIR
spectra data from C3 (180 spectra) and H3 (178 spectra) plants. Accordingly, anchor-1 and
-2 were selected as shown in Table 2. A comparison of the averaged FTIR spectra between
C3 and H3 plants in the magnified views showed that the target wavenumbers were mostly
located in the middle of spectral slopes (Figure 6). The normalized absorbance at the target
wavenumbers were slightly, but consistently, higher in Fm1465 and Fm1729 (Figure 6A,B),
and lower in Fm1251, Fm576, Fm1502, and Fm482 (Figure 6C–F). Although knurl-like
noises were detected in the FTIR spectra in the wavenumber range around 405–480 cm−1, a
difference of absorbance at the target wavenumber of 482 cm−1 was notably larger than the
fluctuation of the noises (Figure 6F). Box plots demonstrated that the biomarkers Fm1465
and Fm1729 exhibited significantly higher Fm values in H3 plants compared to those in C3
plants (Figure 7A, B, Table 2), while the other biomarkers (Fm1251, Fm576, Fm1502, and
Fm482) possessed statistically lower Fm values in H3 plants compared to those in C3 plants
(Figure 7C–F, Table 2). This was consistent with the positive and negative LDA loading
values (Figure 5), respectively.

Table 2. Characteristics of spectral biomarkers.

Marker
Name

Wavenumbers (cm−1)
Loading *1

Median Fm Value H3/C3
Ratio *2 p *3

Target Anchor-1 Anchor-2 C3 H3

Fm1465 1465 1480 1399 0.398 0.345 0.381 1.104 2.1 × 10−61

Fm1729 1729 1768 1703 0.176 0.559 0.588 1.052 3.8 × 10−80

Fm1251 1251 1241 1358 −0.318 −0.0428 −0.112 2.607 3.1 × 10−26

Fm576 576 648 542 −0.25 1.436 0.899 0.626 1.1 × 10−4

Fm1502 1502 1480 1615 −0.224 0.335 0.294 0.879 4.4 × 10−75

Fm482 482 401 501 −0.183 0.741 0.666 0.899 7.9 × 10−21

*1 Loading score of LDA at the target wavenumber. *2 H3/C3 ratio of median Fm values. *3 Probability by t-test.
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3. Discussion
3.1. Sensitivity of FTIR Spectral Response in Heat-Stressed Wheat Leaves

In this study, the FTIR spectroscopic technique was successfully applied to discriminate
heat-stressed wheat leaves from those of control plants, thus demonstrating that this technique
can serve as an analytical tool for monitoring chemical changes during heat stress in wheat.
The heat stress applied in this study led to delayed leaf growth and biomass production
(Figure 1C,D), and this was similar to observations reported in previous studies [27,28] where
plants maintained their shoot growth to some degree under stress, thus suggesting that the
intensity of the heat stress employed in this study was not at a lethal level. The relative water
content in the leaves was statistically unchanged by heat stress in this study, unlike previously
reported cases of heat-induced decline in wheat leaves [29,30]. This further indicated that the
stress intensity in this study was relatively modest. Nevertheless, significant spectral differences
were observed by FTIR spectroscopy, thus suggesting that FTIR-based fingerprinting was
sensitive enough to characterize changes in the chemical constituents of wheat under non-
lethal heat-stress conditions.

3.2. Chemometrics Using FTIR Spectra

As the FTIR spectra from heat-stressed and control plants were similar upon initial
inspection (Figure 2), the application of chemometric methods was indispensable for obtain-
ing a better interpretation of the FTIR spectra. Chemometric methods are commonly used
to gain deeper insights from the obtained FTIR spectroscopic data [18,31–33]. As PCA alone
was not sufficient to fully interpret the spectra (Figure 3), additional chemometric methods
were applied. We applied LDA, which successfully discriminated between heat-stressed
and control leaves, and we demonstrated the potency of the FTIR-based chemometric ap-
proach for diagnosing plant heat-stress status. Many previous studies have applied various
chemometric methods. Johnson et al. (2003) [31] utilized PCA in combination with genetic
algorithms to fingerprint salt-stressed tomato varieties. Recently, Nikalje et al. (2019) [17]
applied PCA for characterizing metabolic responses of roots and leaves in a halophyte S.
portulacastrum, demonstrating that FTIR spectroscopy differentiated different tissues and
stress intensity in the PC1-PC2 plane. Cortizas and López-Costas (2020) [34] used PCA
together with structural equation models to study the compositional and archaeological
changes in human bone collagen. Grunert et al. (2020) [35] applied PCA for factor extrac-
tion, and this was followed by the use of two types of supervised machine learning methods
(PCA-LDA and PCA-Mahalanobis discriminant analysis) for the classification of peritoneal
dialysis effluent. Chemometric interpretation of FTIR spectra using the combination of
PCA-LDA has also been utilized for the study of embryonic stem cell differentiation in
murine models [36] and for the identification of spectral markers for putative stem cell
regions of human intestinal crypts [37]. Consistent with these previous studies, the LDA
applied in the present study successfully discriminated between heat-stressed and control
leaves (Figure 4), thus demonstrating the potency of the FTIR-based chemometric approach
for diagnosing plant heat-stress status.

3.3. FTIR-Based Biomarker for Chemical Changes under Heat Stress

The development of FTIR-based biomarkers has proven to be an effective analytical method
in various scientific fields, including medical diagnosis [35], food quality control [32,33], and
forensic analysis of cosmetic compounds [38]. In the present study, we developed FTIR-based
spectral biomarkers that were based on the LDA loading intensity at specific wavenumbers
(Figure 5). The developed biomarkers successfully distinguished heat-stressed leaves from
controls (Table 1; Figure 7). Among the six biomarkers developed, Fm1465 and Fm1729 exhibited
an increase under heat stress, while Fm1251, Fm576, Fm1502, and Fm482 exhibited a decrease
under stress.

Among the biomarkers that increased under heat stress, the wavenumber for the
marker Fm1465 was situated in the major region reported as a broad and poorly re-
solved C–H bending and C–O stretching region [22] that has been reported as a region
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for suberin/cutin in plant extracellular space [39,40]. The peak at 1465 cm−1 is also lo-
cated in the vicinity of the reported assigned signals of 1463 cm−1 for CH2 scissoring
and 1460 cm−1 for CH3 asymmetric bending in lipids [41] and the C–H signal in cell wall
polysaccharides [22,42]. Responses of these candidate compounds in heat-stressed plants
have been previously reported, including the complex regulation of leaf lipid composition
in wheat [43] and heat stress-induced alteration of cell-wall components in the leaves of
coffee [44] and wheat [45].

Another biomarker which increased under heat stress in this study was Fm1729. This
wavenumber region can be assigned to stretching vibrations of ester C=O groups, which
(together with the aforementioned bending C–H vibrations) are typical for lipids [24–26].
Similar increases in peak intensity around this region were observed in pea pollen grains
under heat stress [46], which may indicate quantitative/qualitative regulation of the pollen
exine layer under the stress. The increase in the Fm1729 value in wheat leaves in the present
study may, therefore, suggest the adaptive alteration of lipid composition under heat stress.
Alternatively, the increase in the Fm1729 value may indicate heat-induced injury in leaf
lipids. Malondialdehyde (MDA), a major product of lipid peroxidation as a consequence of
oxidative stress, has a characteristic FTIR signal around 1700–1750 cm−1 [47]. An increase
of MDA was documented in wheat seedlings exposed to heat stress [48].

Among down-regulated Fm markers, the wavenumber of the Fm1251 marker was
situated in the vicinity of the previously assigned signals of 1240 cm−1 for hemicellulose
and 1260 cm−1 for pectin [25,49]. Pectin substances in the extracellular matrix have been
demonstrated to function as a major regulatory factor for cell wall porosity in soybean
cells [50], thus raising the hypothesis that adaptation to the heat environment may involve
chemical rearrangement of pectins and foliar heat conductivity [44]. Other Fm markers
that decreased under heat stress included Fm1502. A previous study by Kurian et al. [51]
interpreted the wavenumber regions 1502–1600 cm−1 as aromatic skeletal vibration of lignin.
Lima et al. [44] detected an alteration of lignin monomer composition after three days of
heat stress in coffee leaves, suggesting that plant responses to the heat environment may
include the structural rearrangement involving lignocellulose supramolecular structure.

Nevertheless, assignments of the proposed Fm biomarkers to any specific compounds
are currently premature due to the intrinsic nature of overlapping signals in FTIR spectra
and cumulative steric and/or electronic effects in a given molecule that can potentially
lead to a large shift in spectral signals [22]. To identify the molecular entities for these
Fm biomarkers, future biochemical and/or genetic studies are anticipated that may com-
bine multifaceted approaches, including biomass fractionation, mass spectrometry, and
genetic mapping.

3.4. Application of FTIR-Based Metabolome Profiling on Agronomy

The present study suggests that FTIR-based chemical fingerprinting can serve as a versatile
tool for diagnosing plant physiological status under various environmental conditions, includ-
ing heat stress. Metabolomics has been used as a powerful analytical tool to understand the
links between agronomic performance and the underlying molecular mechanisms [6–8,52]. The
versatility of FTIR spectroscopy has been demonstrated in previous studies in regard to discrim-
inating genotype differences in cultivated and wild wheat species [21] and rice varieties [32].
Additionally, FTIR spectroscopy enables high-throughput measurements [53,54], suggesting
that it can be used for chemo-typing heat-stress responses in crop breeding programs. Easier
setup of FTIR spectroscopic facilities in comparison to that of other metabolomic platforms
may also be beneficial for applying this technology to field metabolome studies [55,56]. Re-
cently, FTIR-based remote sensing technologies have emerged as a new tool for monitoring the
surface properties of land [15,57], and this may further broaden the possibility of developing
spectrum-based plant diagnoses for crop production and breeding.
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4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Non-sterilized seeds from the common wheat cultivar ‘Norin 61’ were placed on a
filter paper (qualitative filter paper No. 2, Advantec, Tokyo, Japan) that was cut out at
an approximately 85-mm diameter in a Petri dish (88-mm diameter), and the seeds were
imbibed by applying 6 mL of tap water to the dish so that the paper became evenly wet.
Twelve seeds were placed per dish and the seed/water mass ratio was 1:15. The dish was
covered by a transparent lid to avoid water evaporation, and the seeds were imbibed for
three days at room temperature (25 ◦C) under a fluorescent room lamp illumination (a light
intensity of approximately 10 µmol m−2 s−1) from 9 a.m. to 5 p.m. The germinated seeds
were then transferred to pots (a height of 10 cm and diameter of 5 cm) containing 120 g of
commercial horticulture soil (a brand “Oishii Yasaiwo Sodateru Baiyoudo”, Cainz, Honjo,
Saitama, Japan) composed of composted bark, granular clay-like mineral, pumice, peat
moss, perlite, and vermiculite. The soil was sterilized by autoclaving at 121 ◦C for 30 min be-
fore planting. Pots were transferred to a growth chamber with a 14/10 h day/night regime,
a relative humidity setting of 50%, a light intensity of approximately 500 µmol m−2 s−1, and
a temperature setting of 22/18 ◦C. Soil moisture level was maintained at 80–90% of field
capacity (FC) [58] throughout the experiment. The 100% FC was determined as described
previously [59]. When the plants reached the three-leaf stage and the length of the third
leaf exceeded that of the second leaf, the seedlings were transferred to a heat chamber with
a daily maximum temperature of 42 ◦C. In this heat chamber, the night temperature was
18 ◦C for 10 h, and the temperature setting was increased stepwise by 5 ◦C per hour from
the beginning of the light regime for 3 h to a maximum temperature of 42 ◦C that was
continued for 6 h. The temperature was then dropped to 33 ◦C for 1 h and then decreased
stepwise by 5 ◦C per h to 18 ◦C during the next 3 h.

4.2. Measurements of Plant Growth and Physiology

Physiological measurements were acquired at three different conditions, including
initial measurements on the day that treatment commenced (C0) and measurements at
three days after the treatment for control (C3) and heat-stress (H3) conditions. Canopy tem-
perature was measured using an FLIR-C2 thermal camera (FLIR system, Tallinn, Estonia).
FLIR Tools software (v6.4.18039.1003) was used to estimate leaf surface temperature at 5 h
after the beginning of the light regime.

For leaf relative water content measurement, the third leaf was harvested at 5 h after
the beginning of the light regime, and a 2 cm leaf segment was obtained from the middle
of the leaves. The fresh weight of the leaf segment was immediately measured using
an electric balance, and turgid weight was measured after soaking the leaf segments in
distilled water for 24 h at room temperature (25 ◦C). Tissue paper was used to remove
the water from leaf surfaces before the turgid weight measurement. The leaf segments
were transferred to an oven (EI-450B, ETTAS, AS-ONE, Osaka, Japan) at 70 ◦C to achieve
complete dryness, and the dry weight was measured. Relative water content was calculated
using the following formula [60];

100 × [(Fw − Dw)/(Tw − Dw)]

where Fw, Dw, and Tw denote the fresh weight, dry weight, and turgid weight of the leaf
segment, respectively.

For the measurement of total leaf length, all leaves were harvested from the plants
and scanned using a scanner (type DCP-J572N, Brother Industries, Nagoya, Japan). Leaf
length was measured using ImageJ version 1.80 [61].

For biomass measurement, all aboveground tissues of the individual plants were dried
in an oven at 70 ◦C until complete dryness. Their weights were measured after the samples
were completely dried.
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4.3. FTIR Measurement

The third leaf was harvested from the control and heat-treated plants and individually
dried in an oven at 70 ◦C to achieve complete dryness. The dried leaves were ground into
a fine powder using an agate mortar and pestle. The powdered samples (approximately
10 mg) were mixed with powdered KBr (IR grade, Nakalai, Kyoto, Japan) at a gravimetric
ratio of 1:100, and approximately 10 mg of the mixture was transferred into a dice of
7 mm diameter in a hydraulic press (Pixie Hydraulic Pellet Press, PIKE Technologies,
Madison, WI, USA). A pressure of 2.5 t cm−2 was then applied to form a thin disk. Ten
disks were created from a single plant. FTIR absorbance spectra were recorded using a
PerkinElmer Spectrum 65 spectrometer (Waltham, MA, USA) equipped with spectrum
software version 10.4.2. Spectrum data were collected over the mid-infrared wavenumber
range from 4000 to 400 cm−1 with a resolution of 1 cm−1 and 16 scans per measurement.
Spectral measurements were repeated three times per disk, with an exception of one disk
from the heat-stressed sample in which the measurement was performed only once. Data
were collected from 60 disks where each was derived from six plants each from control
and heat-stressed plants, and 180 and 178 spectral data were obtained for control and
heat-stressed leaves, respectively.

4.4. Chemometrics of Spectral Data

FTIR spectra were baseline-corrected using a linear gradient of absorbance values at
4000 and 400 cm−1, and the absorbance values were normalized to obtain a total value
of 1 million for each spectrum. A principal component analysis (PCA) was performed
using the prcomp function in the stat package (v3.6.2) in R Statistical Software [62], and the
score plot and loading plot was drawn using the ggplot function in the ggplot2 package
(version 3.3.5) in R. For LDA, the 358 spectral datasets in the range from 3600 to 400 cm−1

wavenumber were randomly split into a training and test set at a ratio of 60% to 40% using
the sample function in the base package (v3.6.2) in R and then calculated using the lda
function in the MASS package (v7.3–54).

For the development of spectral Fm biomarkers, a custom-made R script was written
to scan the two candidate anchor point wavelengths in the 300 cm−1 range spanning the
target wavenumber and for calculating the Fm values and p-value in the Student’s t-test.
The Fm values were calculated using the following formula:

Fm = (Atarget − Aanchor1)/(Aanchor2 − Aanchor1)

where Atarget, Aanchor1, and Aanchor2 denote the normalized absorbance values for the target
and anchors 1 and 2, respectively. The R scripts were deposited in Supplementary File S1.

4.5. Statistical Analysis

The t-test function in the stats package (v3.6.2) was used for Student’s t-test. Tukey’s
test was performed using the Astatsa.com online web statistical calculator [63].

5. Conclusions

In the present study, an FTIR-based fingerprint technique was applied to characterize
the metabolome response of wheat leaves to heat stress. Although PCA was unable to
achieve complete separation of stressed leaves from controls, LDA clearly discriminated
between these two samples, thus demonstrating that LDA-based chemometrics using FTIR
spectra provides a powerful approach for monitoring heat-induced chemical changes in
wheat leaves. Based on the markedly altered spectral fingerprinting regions, six spectral
biomarkers were developed that correctly reflected the heat-stress status of the leaves.
Overall, the present study suggests the potential of FTIR spectroscopy, coupled with
chemometrics analysis, for studying the heat-stress response and tolerance mechanisms
in wheat.
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