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Abstract
Sex differences in the brain appear to play an important role in the prevalence and progres-

sion of various neuropsychiatric disorders, but to date little is known about the cerebral

mechanisms underlying these differences. One widely reported finding is that women dem-

onstrate higher cerebral perfusion than men, but the underlying cause of this difference in

perfusion is not known. This study investigated the putative role of steroid hormones such

as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS) as underlying

factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images

of 36 healthy adult subjects (16 men, 20 women). Analyses on average whole brain perfu-

sion levels included a multiple regression analysis to test for the relative impact of each

hormone on the global perfusion. Additionally, voxel-based analyses were performed to

investigate the sex difference in regional perfusion as well as the correlations between local

perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results repli-

cated the known sex difference in perfusion, with women showing significantly higher global

and regional perfusion. For the global perfusion, DHEAS was the only significant predictor

amongst the steroid hormones, showing a strong negative correlation with cerebral perfu-

sion. The voxel-based analyses revealed modest sex-dependent correlations between

local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in corti-

cal, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an

important role as an underlying factor driving the difference in cerebral perfusion between

men and women.
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Introduction
Sex differences in the brain appear to play an important role in the prevalence and progression
of various neuropsychiatric disorders, as well as in learning, emotion perception, and treatment
response [1–3]. While early childhood disorders like autism and attention-deficit/hyperactivity
disorder are more prevalent in males, anxiety and depression are more prevalent in females
[1], and differences in the age of onset for schizophrenia have also been reported between men
and women [4]. However, to date little is known about the cerebral mechanisms underlying
these apparent differences, despite an increasing body of knowledge about differences in brain
structure, function, and morphology between the sexes.

One of the most widely reported findings with regard to baseline brain physiology in men
and women is that of an increased rate of perfusion or cerebral blood flow in women. Sex dif-
ferences in cerebral perfusion have been observed using various techniques including single-
photon emission computed tomography (SPECT), positron emission tomography (PET),
Xenon-enhanced computed tomography, and arterial spin labelling (ASL) [5–9], both on a
global level [5–7,9–11], and locally in posterior cingulate cortex, precuneus, and thalamus
[8,12]. In addition to demonstrating higher perfusion during rest, women have also been
reported to show higher perfusion during cognitive activity [2]. However, the underlying cause
of these sex differences remains unclear and the factors modulating this sex difference in perfu-
sion are poorly understood.

One contributing factor for the reported sex differences in perfusion may lie in the combi-
natory modulation of different steroid hormones (including sex hormones), since these hor-
mones are known to influence the vascular response and to differ between men and women.
Specifically, oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS) are
thought to represent potential modulators of perfusion. Oestrogens enhance production or
sensitivity to vasodilatory factors (for a review, see [13]), and have been shown to be positively
related to cerebral blood flow (CBF) or perfusion in studies applying techniques such as Dopp-
ler ultrasound [14], SPECT [15], and PET [16]. Testosterone, on the other hand, exerts vaso-
constrictive effects [13], and testosterone supplementation has been reported to decrease CBF
in postmenopausal women [17]. In men, the local metabolism of testosterone into oestradiol
via aromatase [18] might influence the relationship of circulating testosterone and perfusion to
a significant degree. This mechanism may underlie the finding of an increase in CBF in hypo-
gonadal men [19].

Sex differences are not only present in the sex steroids oestradiol and testosterone, but also
in DHEAS, which is a precursor of sex steroids. Most studies reported higher levels of DHEAS
in men than in women [20–23], while others reported no significant sex differences in DHEAS
[24,25]. Nevertheless, a multitude of studies have shown the wide range of functions of
DHEAS and its non-sulphated precursor DHEA (collectively referred to as "DHEA(S)") in
human physiology, cardiovascular diseases, and brain function and diseases (for reviews, see
[26–30]). A few studies reported positive associations between flow-mediated vasodilation of
brachial artery and DHEA(S) in postmenopausal women [31,32], while others found no effect
[33]. One study found a positive correlation between hippocampal perfusion measured with
SPECT and DHEAS in patients with Alzheimer's disease but not in controls [34]. The role of
DHEAS as an underlying factor in the sex difference in cerebral perfusion therefore remains
unclear.

In this study, we investigate whether steroid hormone concentrations are linked to cerebral
perfusion, and specifically whether hormone concentrations may explain the previously
reported sex differences in perfusion. To our knowledge, no studies have yet investigated the
relationships between serum sex hormones, DHEAS and cerebral perfusion in the same healthy
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volunteers. We use non-invasive ASL, which provides a quantitative measure of tissue perfu-
sion, in contrast to the relative blood oxygenation level dependent response measured by func-
tional magnetic resonance imaging (fMRI). The benefits and the wide range of possible
applications of ASL have been demonstrated in a large body of studies in basic and clinical neu-
roscience (for a review, see [35]). Based on the known sex differences in perfusion and hor-
mone levels, we hypothesized that perfusion correlates positively with oestradiol as both are
higher in women but negatively with testosterone, which is lower in women. Although DHEAS
is also lower in women, we hypothesized that it is positively related to perfusion as found in
previous SPECT and ultrasound studies (see above).

Methods

Subjects
The subject group consisted of 44 adult volunteers (20 males), recruited by local advertisement.
Subjects were excluded due to comorbid disorders affecting perfusion (n = 2), caffeine intake
shortly before the measurement (n = 1), and technical problems with the ASL acquisition
(n = 5). Perfusion data were acquired from the remaining 36 subjects (16 males) and entered
into the analysis of the sex difference in perfusion (see Table 1 for demographics). Additionally,
blood samples were collected for hormone assay (see below) for n = 35 subjects (15 males).
Hematocrit (Hct) data were collected in a subset of n = 18 subjects (9 males). Subjects reported
no history of neurological or psychiatric illness, illegal substance abuse, or use of psychotropic
medication. All subjects refrained from caffeine, alcohol, and nicotine for 4 hours (2.5 hours
for nicotine in one subject) before the experiment.

Ethics Statement
The study was approved by the Ethics Committee of the Canton of Zurich, Switzerland. All
subjects gave written informed consent.

Hormone concentration acquisition
Serum concentrations of oestradiol, testosterone, and DHEAS were measured on an Elecsys
2010 using commercial Electro-Chemi-Luminescence Immuno-Assays (Roche Diagnostics,
Rotkreuz, Switzerland) with coefficients of variations of 8.4% (256 pmol/L), 4.9% (7.4 nmol/L),
and 4.7% (2.3 μmol/L), respectively.

Data were collected as part of a larger study investigating age-related cerebral changes of
psychophysiological markers from childhood to adulthood. Perfusion data and blood samples
were collected during the same measurement session. All measurements were performed in
the afternoon or early evening. Hormone data from two female participants were incomplete
(n = 1 female with missing oestradiol value, n = 1 female with missing DHEAS and oestradiol).
Regression analyses between hormones and perfusion were performed both for the full group
of subjects including all available hormone data and for a subset of participants excluding sub-
jects taking hormonal contraceptives (n = 8 females) or medication affecting testosterone
(n = 1 male). For all analyses, there was no difference in age between men and women (see
Table 1).

MRI-data acquisition
MR imaging studies were performed with a 3.0 T GE HD.xt whole-body MRI scanner (GE
Healthcare, Milwaukee, WI, USA), using an 8-channel receive-only head coil and a body trans-
mit coil. Cerebral perfusion images were collected during an eyes-closed resting condition with
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a background-suppressed, pulsed continuous arterial spin labelling (pCASL) sequence, using a
3D stack of spirals fast spin echo readout [36]. Thirty-two axial slices were collected with a rep-
etition time of 5.5 s and an echo time of 25 ms, a slice thickness of 4 mm, a field of view of 24
cm, 3 Nex, a nominal in-plane resolution of 1.9 × 1.9 mm2, and a total scan time of 5 min 17 s.
A post-labelling delay of 1.5 s was used to reduce errors from transit time effects [37]. Struc-
tural images were obtained with a 3D T1-weighted gradient echo pulse sequence (number of
slices = 172, slice thickness = 1.0 mm, repetition time = 9.94 ms, echo time = 2.948 ms, inver-
sion time = 600 ms, field of view = 256 mm × 192 mm, flip angle = 8°, matrix = 256 × 192,
reconstructed voxel resolution: 1 × 1 × 1 mm). The participants were provided with earplugs.

MRI preprocessing
The perfusion images were quantified using the model proposed by Alsop and Detre [37], with
additional terms included to represent the finite labelling duration [38] and to correct for
incomplete recovery of the magnetisation in the reference image due to the saturation applied
tsat (2,000 ms) before imaging. The perfusion was calculated according to the following equa-
tion [37,39]:

f ¼ l

2aT1b 1� e�
t

T1b

� �
ðSctrl � SlblÞ 1� e

�tsat
T1g

� �

Sref
e

w
T1b ð1Þ

where f is the perfusion (in ml/min/100 ml), Sctrl − Slbl is the difference image (control-label),
and Sref is a proton-density weighted reference image. λ is the blood brain partition coefficient
(0.9), α is the inversion efficiency, T1b is the T1 of blood (1600 ms), T1g is the T1 of grey matter
(1200 ms), w is the post-labelling delay (1.5 s), and τ is the labelling duration (1.5 s). The

Table 1. Group demographics and hormone values for the voxel based analyses.

Men Women

Analysis Variable n§ Mean
(SD)

Median Range n§ Mean (SD) Median Range p*

Sex difference in perfusion Age [years] 16 33.7 (9.9) 32.4 21.4–50.6 20 30.3 (8.6) 27.3 21.0–48.4 .36b

Voxel-based correlation between
perfusion and sex steroids

Age [years] 14 33.3
(10.5)

29.1 21.4–50.6 12 33.5 (9.7) 29.6 21.8–48.4 .96a

Oestradiol [pmol/
L]

14 99.73
(40.60)

91.75 59.38–
203.90

12 332.70
(160.35)

331.30 103.10–
587.80

< .001a

Testosterone
[nmol/L]

14 17.12
(4.72)

17.29 8.10–
25.39

12 0.92 (0.45) 1.04 0.21–1.49 < .001a

Voxel-based correlation between
perfusion and DHEAS

Age [years] 15 33.6
(10.2)

30 21.4–50.6 19 30.5 (8.8) 27.5 21.0–48.4 .49b

DHEAS [μmol/L] 15 7.78
(4.34)

7.25 2.15–
14.43

19 5.40 (2.55) 5.21 0.90–9.91 .07a

DHEAS, dehydroepiandrosterone sulphate. All median hormone values were within the reference range (for serum oestradiol in men: 93-276 pmol/L, in

women: 110-2750 pmol/L; for serum testosterone in men: 7.6-31 nmol/L, in women: 0.2-1.8 nmol/L; for serum DHEAS in men: 1.2-13 μmol/L, in women:

1.0-9.2 μmol/L).

*p-value of comparison between men and women.
a two-tailed t-test.
b Wilcoxon rank sum test.
§ n differed for different analyses due to drop-outs (see Methods).

doi:10.1371/journal.pone.0135827.t001

Steroid Hormones and Cerebral Perfusion

PLOS ONE | DOI:10.1371/journal.pone.0135827 September 10, 2015 4 / 15



labelling efficiency is given by the product of the pCASL labelling efficiency (0.95) and an addi-
tional efficiency factor, which incorporates the loss of efficiency from the background suppres-
sion (0.75). This equation includes an additional term to correct for incomplete recovery of the
magnetisation in the reference image due to a saturation pulse applied tsat (2,000 ms) before
imaging [39]. The model assumes that the labelled spins remain primarily in the microvascula-
ture rather than exchanging with tissue water, so the T1 of blood is used for quantification
[38,39]. A representative perfusion map from one participant is shown in Fig 1.

The perfusion images for each subject were normalised to a custom perfusion template in
the Montreal Neurological Institute space using the flirt algorithm in FSL (fsl.fmrib.ox.ac.uk/
fsl) with the correlation ratio as the cost function. For later statistical analyses, a study-specific
template was generated from the normalised perfusion images of 35 healthy adult subjects by
first concatenating the images in time and subsequently calculating a mean image across time
using the fslmerge and fslmaths utilities from FSL. Finally, the Brain Extraction Tool from FSL
was applied to mask this mean image.

Statistical analyses
Statistical analyses of the non-imaging data were performed using MATLAB and Statistics
Toolbox Release 2012b (The MathWorks, Inc., Natick, Massachusetts, United States), and IBM
SPSS Statistics, Version 20. In cases of non-normally distributed data (tested with Lilliefors
test), a non-parametric Wilcoxon rank sum test was used (see Table 1).

Whole brain perfusion values were extracted to examine differences in global perfusion
between men and women and to examine the effects of each hormone on the whole brain per-
fusion. Specifically, a whole brain mask was derived from the AAL atlas [40] and registered to
the CASL images for each subject in native space, using the flirt algorithm in FSL (fsl.fmrib.ox.
ac.uk/fsl), with the correlation ratio as the cost function. The individual subject's perfusion

Fig 1. Resting perfusionmap acquired from a single participant, shown in radiological orientation (scale: 0–90 ml/min/100ml).

doi:10.1371/journal.pone.0135827.g001
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image was then masked with this image using fslmaths, and the mean perfusion signal from
this masked image was calculated with fslstats (fsl.fmrib.ox.ac.uk/fsl). A multiple regression
model in SPSS (Enter method) was then used to test for the differential effect of each hormone
on the perfusion, with whole brain perfusion as the dependent variable and age, oestradiol, tes-
tosterone, and DHEAS levels as independent variables.

In all voxel-based analyses on perfusion data, age was included as a covariate or regressor
due to the known effect of age on perfusion [e.g. 8]. Both the sex difference and the correlations
between perfusion and hormone levels were tested using the nonparametric permutation-
based methods implemented in the Cambridge Brain Analysis (CamBA) software [41,42]. The
following general linear model was used for all analyses:

P ¼ a0 þ a1 independent variable þ a2 age þ e ð2Þ

where P is the perfusion at a particular voxel, a0 is the mean effect across all subjects, a1 is the
coefficient relating the independent variable vector to perfusion at a particular voxel (i.e. sex in
the sex difference analysis and hormone values in the correlation analyses), a2 is the coefficient
for the covariate vector of age, and e is an error term.

This model was regressed at each intra-cerebral voxel onto the observed data to yield a test
statistic map of a non-parametric t-value given by the coefficient a1 divided by its standard
error. The model was also regressed 32 times at each voxel after random permutations of the
vector coding the respective independent variable (i.e. sex or hormone values) within the sub-
ject groups, thus breaking the association between the individual subjects and their individual
sex or hormone levels (see Table 1 for composition of subject groups). The resulting permuta-
tion distributions of a1, combined over all voxels, were used to derive a preliminary, voxel-level
threshold at p = .05, which was then applied to observed and permuted maps identically. The
sum or "mass" of the resulting suprathreshold voxel statistics was computed for each cluster in
both the observed and permuted maps, and these values were ordered to sample the permuta-
tion distribution under the null hypothesis of zero difference in perfusion between the sexes or
zero correlation between perfusion and hormones within the groups. The mass of each cluster
in the observed map was then tested against the critical values obtained from the correspond-
ing permutation distribution. The significance thresholds were corrected for multiple compari-
sons by setting the number of error clusters accepted to< 1 per image. For the permutation
data acquired in the present study, this threshold corresponds to a familywise error (FWE)-cor-
rected p-value of p< 0.004.

To determine the degree to which the observed voxel-based hormone correlations may con-
tribute to the observed sex difference, the number of overlapping significant voxels between
the sex difference map and the hormone correlation maps was calculated and expressed as a
percentage of the voxels in the sex difference map.

In order to assess the impact of sex-based differences in brain structure on the perfusion
results, voxel based morphometric [43,44] differences between men and women were tested
with the standard DARTEL pipeline using SPM8 (Wellcome Trust Centre for Neuroimaging,
London, UK; www.fil.ion.ucl.ac.uk/spm). T1-weighted images from each participant were first
segmented into grey, white, and cerebrospinal fluid images [45]. Segmented grey matter (GM)
images were “modulated” using non-linear warping procedures that correct for global brain
differences and align homologous brain regions into a common space [43,46]. The resulting
images were then smoothed using a Gaussian kernel with 8 mm full-width at half maximum
[43]. Between-group analysis was performed on the smoothed images to determine brain vox-
els where local GM density and volume differed between males and females, after controlling
for differences in brain size (using total intracranial volume measures as covariate).
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Results
The results of the hormone assays are given in Table 1. As to be expected, oestradiol levels were
higher in women (M = 332.7 pmol/L, SD = 160.35) than in men (M = 99.73 pmol/L, SD = 40.6,
p< .001), testosterone levels were higher in men (M = 17.12 nmol/L, SD = 4.72) than in
women (M = 0.92 nmol/L, SD = 0.45, p< .001), and DHEAS levels were higher in men
(M = 7.78 μmol/L, SD = 4.34) than in women (M = 5.4 μmol/L, SD = 2.55) on a trend level (p =
.07). Hematocrit values were higher in men (M = 0.45, SD = 0.02) than in women (M = 0.40,
SD = 0.02, p< .001).

As expected from previous reports, both the voxel-based perfusion analysis and the global
perfusion analysis demonstrated that perfusion is higher in women. Across the whole brain,
perfusion was higher in women (M = 35.97 ml/min/100 ml, SD = 5.37) than in men (M = 30.47
ml/min/100 ml, SD = 5.91, p = .006, see Fig 2a). The voxel-based analysis of the sex difference
in perfusion revealed an extensive cluster in which women showed higher regional perfusion
than men (p = .004, FWE-corrected). This cluster included frontal, parietal, temporal, and
occipital regions as well as thalamus, basal ganglia, and cerebellum (see Fig 2b). There were no
regions in which perfusion was significantly higher in men than in women in the voxel-based
analysis.

The multiple regression analysis of the whole brain perfusion data with age, oestradiol, tes-
tosterone, and DHEAS levels as predictors revealed a significant model (p = .047, R = .532,
adjusted R2 = .181), of which DHEAS emerged as the only significant predictor (standardised β
= -.536, p = .020). The standardised β and p-values for the other predictors are as follows: age
(standardised β = -.273, p = .216), oestradiol (standardised β = -.009, p = .961), and testosterone
(standardised β = -.134, p = .530). Thus, the regression analysis was repeated with only DHEAS
as a predictor, resulting in a significant model (p = .007, adjusted R2 = .180) and a standardised
β = -.452 for DHEAS (see Fig 2c). The regression with DHEAS as the only predictor in the sub-
group of subjects excluding participants on hormonal contraception or medications affecting
testosterone revealed a significant model (p = .041, adjusted R2 = .128) and a standardised β =
-.404 for DHEAS. An additional single regression analysis for oestradiol as the only predictor
did not reach significance (p = .897, standardised β = .023). A single regression analysis for tes-
tosterone revealed a significant model (p = .032, standardised β = -.363). After repeating the
regression between perfusion and testosterone for men and women separately, no significant
model was observed for men (p = .476, standardised β = 0.200), but testosterone was negatively
correlated with perfusion in women (p = .025, standardised β = -.498).

In the subset of n = 18 participants with available hematocrit (Hct) data, an additional mul-
tiple regression was performed including Hct in addition to DHEAS, age, oestradiol, and tes-
tosterone. In this smaller sub-sample the model was no longer significant (p = .50, Adjusted R2

= -0.021), but DHEAS remained the strongest predictor of whole brain perfusion (standardised
β = -.679, p = 0.08) compared to Hct (standardised β = -.205, p = 0.59), age (standardised β =
-.388, p = 0.31), oestradiol (standardised β = .003, p = 0.99), or testosterone (standardised β =
.183, p = 0.64). The regression was repeated after correcting the perfusion values for differences
in the T1 of blood relative to the value of 1600 ms assumed in the quantification (see Eq (1)
above), using the relationship between Hct and the blood T1 reported in [47]. This regression
with Hct-corrected perfusion values showed similar results with DHEAS emerging as the
strongest predictor of perfusion (standardised β = -.718, p = 0.07) compared to Hct (standard-
ised β = 0.005, p = 0.99), age (standardised β = -.411, p = .288), oestradiol (standardised β =
.002, p = 0.99), or testosterone (standardised β = .192, p = 0.63).

The voxel-based correlation analysis between cerebral perfusion and DHEAS levels revealed
an extensive cluster showing a negative correlation (p = .004, FWE-corrected). This cluster
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Fig 2. Women show higher perfusion thanmen and DHEAS correlates negatively with perfusion. a) Sex difference in whole brain grey matter
perfusion: perfusion is higher in women (M = 35.97 ml/min/100 ml, SD = 5.37) than in men (M = 30.47 ml/min/100 ml, SD = 5.91, p = .006). Single dots
represent the subjects' individual values. The horizontal line within the boxes indicate medians, the edges of the boxes are the 25th and 75th percentiles, and
the whiskers represent 1.5 times the interquartile range. b) Sex difference (women >men) in regional perfusion: women show higher regional perfusion than
men (p = .004, FWE-corrected). c) Simple regression analysis with whole brain perfusion values as the dependent variable and DHEAS as the only predictor:
a significant model was found (p = .007, adjusted R2 = .180) with a standardised β = -.452 for DHEAS. d) DHEAS effects in men and women: DHEAS
correlates negatively with regional perfusion in both sexes (p = .004, FWE-corrected). Colour bar in a) and c) denotes a non-parametric t score, given by a1/
[standard error(a1)], see methods. Images are shown in neurological orientation. Slices are at MNI z-coordinates -45, -30, -15, 0, 15, 30, 45, 60, 75 (from top
left to bottom right).

doi:10.1371/journal.pone.0135827.g002
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largely overlapped with the observed sex difference cluster and thus also included frontal, pari-
etal, temporal, and occipital regions as well as thalamus, basal ganglia, and cerebellum (see Fig
2d). The calculated overlap between the sex difference map and the DHEAS correlation map
was 65%. This analysis was rerun in two analyses which contained only subjects of one sex and
the same DHEAS effect was seen in both men and women separately. Keeping the significance
level correction to less than one error cluster per image, only the correlation analysis between
testosterone and cerebral perfusion in women revealed two small and dispersed negative clus-
ters (p = .003, FWE-corrected). These clusters included bilateral primary and secondary visual
cortex extending into precuneus as well as in bilateral thalamus extending into left ventral tem-
poral and cerebellar regions. The ratio between the overlapping significant voxels in both the
sex difference and this testosterone correlation map to the whole number of significant voxels
in the sex difference map was only 3%. All other voxel-based correlation analyses (i.e. oestra-
diol in women, oestradiol in men, and testosterone in men) did not yield any significant clus-
ters at the chosen significance level (with less than one error cluster per image). At a family-
wise error-corrected significance level of p< .05, no significant GM differences between men
and women were observed.

Discussion
This study provides the first investigation of the link between steroid hormone levels and per-
fusion on both a global and regional level. In both the whole brain perfusion analysis and the
voxel-based analysis our results replicated the well-known finding that women show higher
perfusion than men [5,6,8,12]. Moreover, we demonstrate for the first time that DHEAS was
the only significant predictor of whole brain perfusion amongst the steroid hormones investi-
gated in this study. Additionally, DHEAS showed a strong and widespread negative correlation
with cerebral perfusion in the voxel-based analysis, and the corresponding correlation map
also overlapped to a large degree (65%) with the voxel-based sex difference map. While the
direct implications of this apparent link between DHEAS and perfusion remain unclear, the
higher perfusion in women may partially explain the difference in treatment response observed
between men and women [2]. Investigating the biochemical basis of the reported sex differ-
ences and the link between hormones and cerebral perfusion may therefore lend important
insight into the neurobiological basis of various neuropsychiatric disorders, and brain recovery
processes.

Our finding of a negative relationship between DHEAS and cerebral perfusion is contrary
to our hypothesis, but consistent with studies showing higher DHEAS levels in men [20–23],
coupled with the known higher perfusion in women [5,6,8,9,12]. Additionally, the sex differ-
ence in DHEAS is most significant starting around puberty [21,48,49], and sex differences in
cerebral perfusion have been reported to become significant only in boys and girls older than
12 years of age [12]. Broadly, these results suggest that DHEAS may play a strong modulatory
role in explaining the sex difference in cerebral perfusion reported previously.

Sex differences have also been reported in cerebral autoregulation in healthy subjects [50].
The effects of DHEAS on endothelial function, blood flow [28], and its relationship with cere-
bral perfusion found in this study may point to a role for DHEAS in cerebral autoregulation.
While the precise mechanism underlying the regulation of cerebral perfusion is not yet fully
understood, DHEAS may play a differential role in cerebral autoregulation in men and women,
for example due to genetic influences varying between the sexes (see discussion in [23]). Future
studies examining both vascular flow and perfusion following DHEAS supplementation may
be able to elucidate further the role of DHEAS in blood flow regulation in men and women.
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Interestingly, in postmenopausal women, Akishita et al. [32] also observed DHEAS as the
only significant predictor of flow-mediated vasodilation in several multiple regression models
including plasma oestradiol, testosterone, and cortisol levels as well as age and coronary risk
factors as predictors. However, in their study DHEAS was positively associated with flow-
mediated vasodilation. While our finding of a negative relationship of DHEAS and perfusion
supports a role of DHEAS in the sex difference in cerebral perfusion, it also seems to contradict
the more frequently reported beneficial effects of DHEAS on a different parameters related to
blood flow. The reason for these seemingly contradictory results may lie in the differences in
the parameters and/or subject populations investigated and in the different methods applied in
other studies. For example, a peripheral measure of blood flow in the arm of postmenopausal
women was used in other studies, of which some found a positive association between DHEAS
and blood flow [31], while others did not [33]. In contrast to these non-cerebral and less direct
measurements of perfusion, Murialdo et al. [34] reported a positive correlation between
DHEAS levels and hippocampal SPECT findings in patients with Alzheimer's disease but not
in controls. Since DHEA(S) has been shown to be involved in numerous physiological func-
tions including endothelial function and blood flow but also including body composition, insu-
lin sensitivity, and cardiovascular disease risk [28], the effects of DHEA(S) might present
differently in patient groups or older subjects compared to healthy and younger subjects. Man-
inger et al. [27] discussed the scarcity of evidence for beneficial effects of DHEA(S) treatment
in healthy subjects and argued that benefit from such treatments may be more likely observed
in medically or neuropsychiatrically ill patients. Thus, while our results may seem surprising in
the light of previous literature, the mechanisms of action of DHEA(S) may differ depending on
the subject group investigated, and results may depend on the investigational methods. The
precise underlying mechanisms and their differences remain unclear and warrant further
study. However, our observation of a negative relationship between DHEAS and cerebral per-
fusion is consistent with the higher perfusion observed in women and the higher DHEAS levels
typically observed in men.

Our other hypotheses regarding the association between cerebral perfusion and oestradiol
and testosterone were partly confirmed. As hypothesised, cerebral perfusion correlated nega-
tively with testosterone in women. In men, however, no significant correlation between
perfusion and testosterone was found. Although more modest, the negative correlation of tes-
tosterone with global and local perfusion in women suggests a partial role of this hormone in
accounting for sex differences in cerebral perfusion, at least in women. The results of the sex
steroid analyses in men, however, do not imply a strong modulatory role of testosterone on
cerebral perfusion or a predominant role as an underlying factor for the sex differences in per-
fusion. Oestradiol also does not appear to have a strong modulatory role on cerebral perfusion,
which was surprising and contrary to our hypothesis. Oestrogens have been hypothesised to
underlie the increased rates of cerebral glucose and oxygen metabolism seen in women, which
in turn have been suggested to underlie the sex difference in perfusion [11,51], under the
assumption that a higher perfusion is required to support a higher level of metabolism. In the
present study neither oestradiol nor testosterone exerted a large effect on global perfusion, but
these results might also reflect the absence of a direct association between circulating levels of
testosterone and oestradiol and their local concentration in the brain [18]. Thus, apart from
DHEAS, the circulating levels of steroid hormones investigated in this study seem less likely to
represent direct or primary modulators of perfusion and major factors underlying the sex dif-
ference in cerebral perfusion.

One factor not considered in the present study was the effect of sex hormone binding globu-
lin (SHBG), a glycoprotein which plays and important role in modulating the amount of free
oestradiol and testosterone. SHBG has been related to psychopathology in patients with eating
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disorders [52], who have also been reported to show reduced perfusion [53]. Since only a small
fraction of 1–2% of oestradiol and testosterone are free and unbound, SHBG binding (and to a
lesser extent serum albumin binding) is an important factor determining the bioavailable
fraction of these steroids and hence their uptake into the brain. In healthy participants, the
unbound and bound fractions of oestradiol and testosterone are in equilibrium, keeping the
concentration of the free (active) hormone relatively constant within the normal range. How-
ever, in future studies it would be interesting to examine individual differences in perfusion in
the context of SHBG and free (active) oestradiol and testosterone levels since these factors may
be more directly related to the cerebral concentrations of oestradiol and testosterone. DHEAS
is primarily bound to serum albumin, an abundant protein which shows a lower affinity and
a shorter dissociation time for steroid hormones relative to SHBG [54]. This shorter dissocia-
tion time is thought to account for the increased rate of transport of albumin-bound steroids
through the blood brain barrier relative to globulin-bound hormones, as the shorter dissocia-
tion time (probably on the order of milliseconds) for albumin-bound steroids is short relative
to the capillary transit time [54]. The stronger association observed between DHEAS and per-
fusion, relative to that between oestradiol and testosterone and perfusion, may therefore reflect
a more direct association between circulating and cerebral concentrations of DHEAS relative
to that of the sex steroids, but further studies investigating SHBG and free concentrations of
oestradiol and testosterone would be needed to confirm this hypothesis.

In addition, circulating levels of oestradiol, testosterone, and DHEAS may not completely
reflect their concentrations in the brain because these steroid hormones are not only secreted
by endocrine glands (i.e. ovaries, testes, adrenals), but also synthesised de novo in neuronal tis-
sue from their respective precursor hormones. It has been estimated that this local synthesis in
peripheral tissue from inactive adrenal precursors might be as high as 30 to 50% for the total
androgens in men and up to 75% for oestrogens in premenopausal women [55]. Thus, the
intracellular levels in the brain may not translate into parallel changes in circulating levels of
these hormones [56]. Labrie et al. [56] suggested that future studies should additionally investi-
gate the levels of the derivates of the hormones of interest since these might be the most reliable
estimate of the total androgen pool. Future studies in healthy human subjects additionally
investigating these derivates in combination with other known vasomodulatory factors like
nitric oxide [13,57,58] may help to elucidate further the modulatory influence of the different
steroid hormones on perfusion and their role as factors explaining the sex difference in cerebral
perfusion.

Limitations
Given the higher perfusion values in GM relative to white matter, structural differences in
brain volume between men and women could confound the assessment of perfusion differ-
ences. However, in our sample no significant differences in GM volume were observed with a
corrected significance threshold. Therefore, the results of the present study are unlikely to be
driven by differences in GM between men and women.

Hematocrit differences present another potential confound in the analysis of sex differences
in perfusion between men and women, since the longitudinal relaxation time T1 of blood is
related to Hct [47], and the blood T1 is an important parameter in the quantification of perfu-
sion (see Eq (1) above). In the present study, Hct data were only available for a subset of 18 par-
ticipants, but in this subgroup DHEAS remained the strongest predictor of perfusion both
before and after correcting the whole brain perfusion values for Hct differences. However, the
sex difference in perfusion between men and women was no longer significant in this smaller
subsample, either correcting for Hct effects or using the uncorrected perfusion values, probably
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due to the lower statistical power and smaller sample size. In the full sample, assuming litera-
ture values for the Hct in men (0.42) and women (0.40) for the missing Hct values, the Hct-cor-
rected whole brain perfusion remains significantly higher in women (M = 33.3 ml/min/100 ml,
SD = 4.9) than in men (M = 29.1 ml/min/100 ml, SD = 6.0, p = .03). Therefore, the sex differ-
ence in whole brain perfusion between men and women appears to be at least partially inde-
pendent from hematocrit, but the extent to which Hct affects apparent perfusion differences
between men and women should be explored in a larger sample.

DHEAS was selected as a measurement target in preference to DHEA on the basis of its
diurnal stability and longer half-life [28,59] and availability at our institution, but the effects of
DHEA on perfusion would also be interesting to measure, since it crosses the blood brain bar-
rier directly. Additionally, we did not measure progesterone levels, so it is not known to what
extent progesterone affects cerebral perfusion. Female participants were asked for the date of
their last period, but due to the variability in cycle length and ovulation time, it was not possible
to confirm the menstrual cycle phase accurately. Future studies examining serum progesterone
as well as oestradiol, testosterone, and DHEAS levels, with optimal control for menstrual cycle
effects would be needed to further corroborate the findings of this study.

Conclusion
This study has replicated the well known sex difference in cerebral perfusion, with women
showing significantly higher global perfusion. Moreover, the correlation analyses between per-
fusion and the steroid hormones revealed a strong modulatory effect of DHEAS on perfusion,
with modest sex-dependent correlations with testosterone. These results demonstrate for the
first time that steroid hormones contribute to the observed sex difference in perfusion, and
that DHEAS in particular may play an important role as an underlying factor accounting for
the sex difference in cerebral perfusion.
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