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High doses of tumor necrosis factor-α (TNF-α) suppress osteogenic differentiation of human dental pulp stem cells (hDPSCs). In
the present study, we aimed to explore the role and potential regulatory mechanism of microRNA-138 (miR-138) in the
osteogenic differentiation of hDPSCs after treatment with a high dose of TNF-α. The hDPSCs were cultured in osteogenic
medium with or without 50 ng/ml TNF-α. The miR-138 levels were upregulated during osteogenic differentiation of the
hDPSCs following TNF-α treatment. The miR-138 overexpression accelerated but miR-138 knockdown alleviated the TNF-α-
induced suppression of the alkaline phosphatase activity, calcium deposition, and protein abundance of dentin
sialophosphoprotein, dentin matrix protein 1, bone sialoprotein, and osteopontin during osteogenic differentiation induction of
hDPSCs. Additionally, miR-138 overexpression accelerated but miR-138 knockdown alleviated the suppression of the focal
adhesion kinase- (FAK-) extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway during osteogenic differentiation
induction of hDPSCs under TNF-α treatment. In conclusion, miR-138 accelerates TNF-α-induced suppression of osteogenic
differentiation of hDPSCs. Inactivation of the FAK-ERK1/2 signaling pathway may be one of the mechanisms underlying the
effect of miR-138. Inhibition of miR-138 expression may be a strategy to weaken the inhibitory effect of high-dose TNF-α on
the osteogenic differentiation of hDPSCs.

1. Introduction

Periodontitis refers to chronic inflammation of periodontal
tissue. Its main characteristic is the destruction of periodon-
tal tissues, which ultimately leads to tooth loss [1]. Inflam-
mation affects the recovery of periodontal tissue, specifically
the repair of alveolar bone defects [1, 2]. Conventionally,
periodontitis is treated with basic treatments and ancillary
drugs to control inflammation [3]. However, repair of peri-
odontal bone tissue defects in patients with periodontitis
remains a major challenge for oral clinicians. Recently, tis-
sue engineering technology has developed rapidly and has
been gradually applied to oral disease research. The combi-
nation of growth factors, seed cells, and three-dimensional
scaffold materials provides new possibilities for the regener-

ation of alveolar bone defects. Dental pulp stem cells
(DPSCs) are a type of seed cells with strong self-renewal
ability and multidirectional differentiation capacity in vivo
and in vitro [4, 5]. Inflammation of periodontal tissue can
cause a series of changes that affect the regenerative repair
capabilities of DPSCs. The differentiation ability of DPSCs
can be enhanced in a weak inflammatory environment but
can be weakened in a strong inflammatory environment
[6, 7]. Therefore, it is necessary to study the treatment of
alveolar bone defects and understand how they contribute
to the changes and mechanisms underlying the osteogenic
differentiation ability of DPSCs in a strong inflammatory
environment.

MicroRNAs (miRNAs) (approximately 20–24 nucleo-
tides) are important post-transcription regulators of gene
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expression that bind to sequences in the 3′-untranslated
region of the target messenger RNA [8]. MicroRNAs play
a vital role in regulating osteogenic differentiation of stem
cells [9, 10]. Moreover, some miRNAs, such as miR-17,
miR-21, and miR-148a, are involved in osteogenic differenti-
ation of stem cells in inflammatory microenvironments
[11–13]. In this study, we aimed to investigate the role of
miR-138 in the osteogenic differentiation of DPSCs in an
inflammatory microenvironment. The role of miR-138 in
regulating cancer pathogenesis has been widely studied
[14]. In addition, miR-138 is involved in regulating stem cell
differentiation, especially osteogenic differentiation [15–18].
miR-138 overexpression is believed to suppress while miR-
138 knockdown promotes osteogenic differentiation of stem
cells [17, 19]. To date, the role and regulatory mechanisms of
miR-138 in osteogenic differentiation of human DPSCs
(hDPSCs) have not been reported.

In the present study, we aimed to explore the effect of
miR-138 on the osteogenic differentiation of hDPSCs fol-
lowing treatment with tumor necrosis factor-α (TNF-α),
an important proinflammatory cytokine produced during
the periodontal inflammatory response that plays a key
role in regulating bone formation [20]. Subsequently, we
analyzed the effect of miR-138 on osteogenic differentia-
tion of hDPSCs following treatment with TNF-α and the
underlying potential regulatory mechanism.

2. Materials and Methods

2.1. Isolation and Identification of hDPSCs. hDPSCs were
successfully isolated as described previously [21]. Dental
pulp tissues were collected from the decayed teeth of
healthy individuals (aged 19–29 years old). Informed con-
sent was obtained from all participants. All experimental
protocols were carried out in accordance with the guide-
lines established by the Declaration of Helsinki and were
approved by the Institutional Research Ethics Committee
of the Second Affiliated Hospital of Guangzhou Medical
University. After washing with 0.01M sterilized phosphate
buffer saline, dental pulp tissues were cut into small pieces
(approximately 1:0 × 1:0 × 1:0mm). After digestion with
0.3% type I collagenase and 0.4% dispase (1 : 1) at 37°C
for 1 h, the pulp was filtered through a 100μm Falcon Cell
Strainer to obtain a cell suspension. After centrifugation at
800 rpm for 5min and washing with 0.01M phosphate
buffer saline, the cell pellet was resuspended in minimal
essential medium containing 20% fetal bovine serum and
cultured in a humidified atmosphere of 5% CO2 at 37°C.
Fresh minimal essential medium with 20% fetal bovine
serum was replenished every three days.

Cells isolated from the third passage were identified
using flow cytometry based on hDPSC surface antigens.
The harvested cells were incubated in phosphate-buffered
saline containing 0.1% fetal bovine serum with fluorescein-
conjugated monoclonal antibodies against CD73, CD90,
CD105, CD34, and CD45 (BD Biosciences, San Jose, CA,
USA). After incubation for 45min, flow cytometry was
performed using a FACSCalibur flow cytometer (BD
Biosciences).

2.2. Cell Transfection. The negativemiRNA control (miR-NC,
5′-UCACAACCUCCUAGAAAGAGUAGA-3′), miR-138
mimic (5′-AGCUGGUGUUGUGAAUCAGGCCG-3′), and
miR-138 inhibitor (5′-CGGCCUGAUUCACAACACCAG
CU-3′) were purchased from Suzhou GenePharma (China).
hDPSCs were seeded in 6-well plates (2 × 105 cells/well) and
cultured overnight at 37°C in a 5% CO2 incubator. The next
day, oligonucleotide transfection (50nM for miR-NC and
miR-138 mimic; 100nM for miR-138 inhibitor) was
performed using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA).

2.3. Treatment Protocol of hDPSCs. For subsequent experi-
ments, hDPSCs were seeded in 6-well plates (1 × 105 cells
per well). To induce osteogenic differentiation, hDPSCs were
cultured in osteogenic medium (minimal essential medium
with 10% fetal bovine serum, 100mmol/L dexamethasone,
10mM β-glycerophosphate, and 0.05mmol/L ascorbic acid).
To investigate the expression of miR-138 in TNF-α-treated
hDPSCs during the induction of osteogenic differentiation,
hDPSCs were cultured in osteogenic medium with or with-
out TNF-α (50 ng/mL) for 3, 5, 7, and 14 days. Previous
studies have shown that TNF-α suppresses the osteogenic
differentiation of hDPSCs at high concentrations (50 ng/
mL) [7]. Therefore, 50 ng/mL TNF-α was chosen to treat
hDPSCs and create a strong inflammatory environment
in vitro. To investigate the effect of miR-138 on TNF-α-
induced changes during the induction of osteogenic differ-
entiation and the underlying mechanism, hDPSCs were
divided into five groups. Cells in the blank group were cul-
tured in osteogenic medium for 7 days, and cells in the
TNF-α group were cultured in osteogenic medium with
TNF-α (50 ng/mL) for 7 days. Cells in the miR-NC+TNF-
α group were pretransfected with miR-NC for 24h and cul-
tured in osteogenic medium with TNF-α (50 ng/mL) for 7
days. Cells in the miR-138+TNF-α group were pretrans-
fected with miR-138 for 24 h and cultured in osteogenic
medium with TNF-α (50 ng/mL) for 7 days, and the cells
in the miR-138 inhibitor +TNF-α group were pretransfected
with the miR-138 inhibitor for 24 h and cultured in osteo-
genic medium with TNF-α (50 ng/mL) for 7 days. For the
abovementioned experiments, the culture medium was
changed every 2 days.

2.4. Alkaline Phosphatase (ALP) Activity Assay. The ALP
activity assay was performed using the total protein of the
treated cells according to the instructions of the ALP Activ-
ity Kit (Beijing Solarbio Science & Technology Co. Ltd., Bei-
jing, China). The total protein concentration was quantified
using the Pierce™ Rapid Gold BCA Protein Assay Kit
(Pierce, Rockford, IL, USA). The absorbance was measured
at 510nm. The ALP activity of each microgram of protein
was measured according to the total protein concentration.
The ALP activity in the blank group was normalized to 1.

2.5. Alizarin Red S Staining. After treatment, the hDPSCs
cultured on coverslips were fixed with 4% paraformaldehyde
for 20min. After washing with phosphate buffer saline, aliz-
arin red S staining solution was added dropwise to cover the
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cells and they were stained for 1–5min. After washing twice
with phosphate buffer saline, the cells were observed under a
light microscope and photographs were taken. The calcium
deposition-positive cells were stained orange-red.

2.6. RNA Extraction and Reverse Transcription Quantitative
Polymerase Chain Reaction (RT-qPCR) Analysis. Total RNA
was extracted from cells using TRIzol (Invitrogen, Carlsbad,
CA, USA). One microgram RNA was reverse transcribed using
the ImProm-II™ Reverse Transcription System (Promega,
Madison,WI, USA).miR-138 expression was detected by qPCR
using SYBR Green qPCR SuperMix (Invitrogen), and qPCR
was performed on a 7500 Real-Time PCR System (Applied Bio-
systems). RNAU6 small nuclear 1 (U6) was used as the internal
reference. Gene expression was measured in triplicates and
quantified using the 2−ΔΔCT method. The reverse transcription
primers (5′-3′) for miR-138 and U6 were CTCAACTGGTG
TCGTGGAGTCGGCAATTCAGTTGAGCGGCCTGA and
AACGCTTCACGAATTTGCGT, respectively. The forward
and reverse primers (5′-3′) for the qPCR reaction of miR-138
were ACACTCCAGCTGGGAGCTGGTGTTGT and CTCA
ACTGGTGTCGTGGA, respectively. The forward and reverse
primers (5′-3′) for the qPCR reaction of U6 were CTCGCT
TCGGCAGCACA and AACGCTTCACGAATTTGCGT,
respectively.

2.7. Western Blot Analysis. Total protein isolation from the
abovementioned cells and Western blot analysis were per-
formed using the conventional approach. Thirty micrograms
of protein was loaded per lane. The dilutions of the primary
antibodies were as follows: anti-glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (1 : 5000), anti-TNF-α (1 : 800),
anti-RUNX family transcription factor 2 (RUNX2) (1 : 1000),
anti-dentin sialophosphoprotein (DSPP) (1 : 1500), anti-
dentin matrix protein 1 (DMP-1) (1 : 1000), anti-osteopontin
(OPN) (1 : 1000), anti-bone sialoprotein (BSP) (1 : 1500),
anti-focal adhesion kinase (FAK) (1 : 1000), anti-extracellular
signal-regulated kinase (ERK) 1/2 (1 : 1000), and anti-
phosphorylated (p)-ERK1/2 (1 : 2000). The secondary anti-
body used in this study was goat anti-mouse IgG H&L
(HRP) at a dilution of 1 : 10000. All the antibodies were pur-
chased from Abcam (Cambridge, MA, USA). The integrated
optical density of the protein bands was measured using the
Pro-Plus software (version 6.0; Media Cybernetics, Rockville,
MD, USA). The integrated optical density ratio of the target
protein (except p-ERK1/2) and GAPDH was expressed as rel-
ative protein abundance. The relative abundance of p-ERK1/2
was normalized to that of GAPDH and total ERK1/2. The rel-
ative protein abundance in the control group was 1.

2.8. Statistical Analyses. The Statistical Package for the Social
Sciences (SPSS) version 19.0 software (IBM Inc., Armonk,
NY, USA) was used for statistical analyses. After verification
using the Shapiro-Wilk test and Levene test, all data in this
study conformed to a normal distribution and satisfied the
homogeneity of variances. Differences between more than
two groups were analyzed using one-way analysis of vari-
ance, followed by a post hoc LSD test. The differences
between the two groups on the same day in Figure 1 were

analyzed using an independent t-test. The correlation
between TNF-α treatment duration and miR-138 expression
level was analyzed via linear regression analysis using
GraphPad Prism (version 7.0; GraphPad Software, San
Diego, CA, USA). Statistical significance was set at P < 0:05.

3. Results

3.1. Isolation and Culture of hDPSCs. Microscopy images
showed that hDPSCs from the third passage were long fusi-
form fibroblast-like or polygonal (Figure 2(a)). Moreover,
hDPSCs from the third passage were positive for mesenchy-
mal stem cell surface markers CD90 (99.9%), CD73 (99.8%),
and CD105 (99.5%) and lacked the expression of endothelial
cell markers CD34 (1.46%) and CD45 (1.64%) (Figure 2(b)).

3.2. miR-138 Expression Was Increased during the Osteogenic
Differentiation of hDPSCs by TNF-α. miR-138 levels were
increased in hDPSCs treated with TNF-α (50 ng/mL) com-
pared to those in hDPSCs treated without TNF-α after treat-
ment for 3, 5, 7, and 14 days (Figure 1), suggesting that TNF-
α treatment can induce miR-138 expression. Linear regres-
sion analysis showed that the increase in miR-138 levels
induced by TNF-α treatment was not time dependent
(P = 0:1249).

3.3. Effect of miR-138 on the Osteogenic Differentiation of
hDPSCs under TNF-α Treatment. Because there was a slight
change in miR-138 levels from day 7 to 14, treatment with
TNF-α for 7 days was chosen for the following assays. Next,
we analyzed the osteogenic differentiation of hDPSCs in the
blank, TNF-α, miR-NC+TNF-α, miR-138 +TNF-α, and
miR-138 inhibitor +TNF-α groups. RT-qPCR analysis
revealed that the miR-138 level was upregulated in the
miR-138 +TNF-α group, while it was downregulated in the
miR-138 inhibitor +TNF-α group compared with that in
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Figure 1: Expression of miR-138 cultured in osteogenic medium
with or without treatment with 50 ng/mL TNF-α for 3, 5, 7, and
14 days, as detected via RT-qPCR. The bar graphs are means of
relative miR-138 expression from three independent experiments.
The error bars are standard deviations. ∗P < 0:05, when compared
to the without TNF-α group.
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the miR-NC+TNF-α group (Figure 3(a)). The ALP activity
decreased (Figure 3(b)), calcium deposition was reduced
(Figure 3(c)), and the protein abundance of DSPP, DMP-1,
OPN, and BSP was decreased (Figure 3(d)) in the TNF-α
group compared with the values in the blank group. These
effects of TNF-α treatment were enhanced by miR-138
mimic transfection but were weakened by miR-138 inhibitor
transfection (Figure 3). These results indicate that miR-138
overexpression can accelerate the TNF-α-induced suppres-
sion of osteogenic differentiation of hDPSCs, while miR-
138 knockdown can alleviate this effect.

3.4. Effect of miR-138 on the FAK-ERK1/2 Signaling Pathway
in hDPSCs under TNF-α Treatment. miR-138 can target FAK
during osteogenic differentiation of human stromal stem cells
[17]. Hence, we predicted that miR-138 may play a role in reg-

ulating the osteogenic differentiation of hDPSCs in an inflam-
matory microenvironment by targeting FAK and its
downstream signaling proteins, ERK1/2 and RUNX2. We
found that the protein levels of FAK, p-ERK1/2, and RUNX2
gradually decreased in hDPSCs treated with TNF-α compared
with those in hDPSCs treated without TNF-α (Figure 4(a)).
The expression level of ERK1/2 did not change in hDPSCs
after TNF-α treatment. These results indicate that TNF-α
treatment can suppress the FAK-ERK1/2 signaling pathway
during the osteogenic differentiation of hDPSCs.

We found that the protein abundances of FAK, p-ERK1/2,
and RUNX2 were significantly lower in the TNF-α group than
in the blank group, lower in the miR-138+TNF-α group than
in the miR-NC+TNF-α group, and higher in the miR-138
inhibitor+TNF-α group than in the miR-NC+TNF-α group
(Figure 4(b)). The expression level of ERK1/2 did not change
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Figure 2: Isolation and culture of hDPSCs. (a) hDPSCs of first passage, second passage, and third passage were observed using an inverted
microscope (magnification: 100x). (b) hDPSCs identified via flow cytometry analysis.
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Figure 3: Effect of miR-138 on the osteogenic differentiation of hDPSCs under TNF-α treatment. hDPSCs were divided into 5 groups: the
blank group (cultured in osteogenic medium), TNF-α (cultured in osteogenic medium with 50 ng/mL TNF-α), miR-NC+TNF-α group
(pretransfected with miR-NC for 24 h and cultured in osteogenic medium with 50 ng/mL TNF-α), miR-138 +TNF-α group
(pretransfected with miR-138 for 24 h and cultured in osteogenic medium with 50 ng/mL TNF-α), and miR-138 inhibitor + TNF-α group
(pretransfected with miR-138 inhibitor for 24 h and cultured in osteogenic medium with 50 ng/mL TNF-α) and cultured for 7 days.
After culturing for 7 days, cells were harvested for RT-qPCR and the detection of miR-138 expression levels (a), ALP activity assay (b),
alizarin red S staining (c), and Western blotting to analyze the expression of DSPP, DMP-1, OPN, and BSP (d, e). Representative images
of Western blotting (d). Bar graph demonstrating the relative protein levels (e). The bar graphs are means from three independent
experiments. The error bars are standard deviations. ∗P < 0:05, when compared to the blank group; #P < 0:05, when compared to the
miR-NC+TNF-α group.
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Figure 4: Effect of miR-138 on the FAK-ERK1/2 signaling pathway in hDPSCs under TNF-α treatment. (a, b) Protein expression of FAK,
ERK1/2, p-ERK1/2, and RUNX2 in hDPSCs cultured in osteogenic medium with or without TNF-α (50 ng/mL) for 3, 5, 7, and 14 days.
∗P < 0:05, TNF-α group vs. blank group (same day). (c, d) Protein expression of FAK, ERK1/2, p-ERK1/2, and RUNX2 in the blank
group (cultured in osteogenic medium), TNF-α group (cultured in osteogenic medium with 50 ng/mL TNF-α), miR-NC+TNF-α group
(pretransfected with miR-NC for 24 h and cultured in osteogenic medium with 50 ng/mL TNF-α), miR-138 +TNF-α group
(pretransfected with miR-138 for 24 h and cultured in osteogenic medium with 50 ng/mL TNF-α), and miR-138 inhibitor + TNF-α group
(pretransfected with miR-138 inhibitor for 24 h and cultured in osteogenic medium with 50 ng/mL TNF-α) for 7 days. (a, c)
Representative images of Western blotting. (b, d) Bar graph demonstrating the relative protein levels. The bar graphs are means from
three independent experiments. The error bars are standard deviations. ∗P < 0:05, when compared to the blank group; #P < 0:05, when
compared to the miR-NC+TNF-α group.
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significantly among the five groups (Figure 4(b)). These results
revealed that miR-138 overexpression accelerated but miR-
138 knockdown alleviated the suppression of the ERK1/2 sig-
naling pathway in hDPSCs following TNF-α treatment.

4. Discussion

Periodontitis is an important contributing factor to alveolar
bone defects. Members of the IL-1, IL-6, and TNF families
are key proinflammatory cytokines involved in periodontitis
[22]. Among these families, only the binding between TNF
family members and their related receptors plays a role in
suppressing osteoblastic activity and inducing osteoclastic
activity [22]. TNF-α belongs to the TNF/TNFR cytokine
superfamily and is a proinflammatory cytokine involved in
various biological processes. Liao et al. reported higher
TNF-α protein levels in periodontal tissues of a rat peri-
odontitis model than those in the control group [23]. TNF-
α levels were higher in the serum of patients with chronic
periodontitis than those in control subjects with minimally
inflamed periodontal tissues [24]. Furthermore, TNF-α was
found at higher levels in both saliva and serum of subjects
with periodontitis compared to the levels in healthy subjects
[25]. Periodontal therapy can decrease TNF-α levels [26].
Moreover, high doses of TNF-α have been reported to
suppress osteogenic differentiation of hDPSCs, which are
key cells in alveolar bone defect repair [7]. These studies
suggest that alleviation of TNF-α-induced suppression of
osteogenic differentiation of hDPSCs may be a way to treat
alveolar bone defects induced by periodontitis. Therefore,
we focused on studying TNF-α-induced suppression of oste-
ogenic differentiation of hDPSCs. In this study, we explored
the function and mechanism of miR-138 in osteogenic
differentiation of hDPSCs following treatment with high-
dose TNF-α.

We found that TNF-α treatment upregulated miR-138
levels and suppressed osteogenic differentiation of hDPSCs,
indicating that miR-138 may play a role in the suppression
of osteogenic differentiation induced by TNF-α treatment.
Our results showed that miR-138 overexpression accelerated
the TNF-α-induced suppression of osteogenic differentiation
of hDPSCs and miR-138 knockdown alleviated this effect.
Based on these results, we hypothesized that miR-138 plays
a suppressive role in regulating the osteogenic differentiation
of hDPSCs following TNF-α treatment. In addition, miR-
138 overexpression decreased whereas miR-138 knockdown
increased the expression of DSPP, DMP-1, OPN, and BSP.
DSPP, DMP-1, OPN, and BSP belong to the small
integrin-binding ligand, n-linked glycoprotein (SIBLING)
family, which plays important developmental regulatory
roles in bone tissue formation and tooth development [27].
DSPP and DMP-1 are dentin-specific proteins [28, 29],
and OPN and BSP are osteogenic differentiation markers
[30]. Therefore, the effect of miR-138 on these proteins fur-
ther supports our hypothesis. Previous studies have also
revealed that miR-138 is involved in osteogenic differentia-
tion of MSCs. Zhang et al. confirmed that miR-138-5p
knockdown promotes osteogenic differentiation through
FOXC1 upregulation in human bone mesenchymal stem

cells [18]. Eskildsen et al. showed that the overexpression
of miR-138 inhibits osteogenic differentiation of human
mesenchymal stem cells [17]. Our present study is the first
to suggest a suppressive role of miR-138 in the osteogenic
differentiation of hDPSCs following TNF-α treatment. Our
results may provide a new method for treating periodontal
bone. However, the inflammatory environment in the dental
pulp is complex. The role of miR-138 in osteogenic differen-
tiation of hDPSCs in an inflammatory environment should
be confirmed in animal models.

MicroRNAs play a role in suppressing the protein levels
of their target genes. Therefore, the identification of the
target gene is necessary to elucidate the regulatory mecha-
nism of miR-138. Previous studies have revealed that FAK
is a direct target of miR-138. Overexpression of miR-138
inhibits the osteogenic differentiation of hMSCs by repres-
sing FAK expression, thus suppressing the FAK-ERK1/2 sig-
naling pathway [17]. We found that the inhibition of miR-
138 resulted in the upregulation of FAK, p-ERK1/2, and
RUNX2 at the protein level, whereas the overexpression of
miR-138 downregulated these proteins during the induction
of osteogenic differentiation of hDPSCs under TNF-α treat-
ment. These results indicate that miR-138 may regulate oste-
ogenic differentiation of hDPSCs under TNF-α treatment by
activating the FAK-ERK1/2 signaling pathway.

In summary, treatment with 50ng/mL TNF-α induced
miR-138 expression during the induction of osteogenic dif-
ferentiation in hDPSCs, while miR-138 inhibition promoted
the osteogenic differentiation of hDPSCs after treatment
with 50ng/mL TNF-α. miR-138 may be a key regulator of
the osteogenic differentiation of hDPSCs following TNF-α
treatment. However, the detailed mechanism and clinical
application of miR-138 require further study. In addition
to TNF-α, IFN-γ is also a major and potent proinflamma-
tory cytokine that strongly inhibits osteogenic differentiation
[31]. We did not discuss whether miR-138 has any effect on
IFN-γ-induced suppression of osteogenic differentiation.
This is a limitation of this study. In a future study, we will
focus on this issue.
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