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Objective. Individuals with inflammation have a myriad of pregnancy aberrations including increasing their preterm birth risk.
Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE) and their ligands were all found to play a key
role in inflammation. In the present study, we reviewed TLR and RAGE expression, their ligands, and signaling in preterm birth.
Research Design and Methods. A systematic search was performed in the electronic databases PubMed and ScienceDirect up to
July 2010, combining the keywords “preterm birth,” “TLR”, “RAGE”, “danger signal”, “alarmin”, “genomewide,” “microarray,” and
“proteomics” with specific expression profiles of genes and proteins. Results. This paper provides data on TLR and RAGE levels
and critical downstream signaling events including NF-kappaB-dependent proinflammatory cytokine expression in preterm birth.
About half of the genes and proteins specifically present in preterm birth have the properties of endogenous ligands “alarmin” for
receptor activation. The interactions between the TLR-mediated acute inflammation and RAGE-mediated chronic inflammation
have clear implications for preterm birth via the TLR and RAGE system, which may be acting collectively. Conclusions. TLR and
RAGE expression and their ligands, signaling, and functional activation are increased in preterm birth and may contribute to the
proinflammatory state.

1. Introduction

Preterm birth (delivery prior to 37 weeks gestation) occurs in
around 10% of all deliveries and is the most significant prob-
lem encountered in obstetrics including neonatal morbidity
and mortality [1]. This disorder is a complex cluster of prob-
lems associated with socioeconomic, sociodemographic,
sociobehavioral, environmental, medical, biological, and
genetic risk factors [2, 3]. Infection and inflammation are
important etiological factors in the development of preterm
birth, since nearly 30% of preterm deliveries are associated
with intrauterine infection [1, 4]. Maternal infection (e.g.,
chorioamnionitis) is often followed by a systemic fetal
inflammatory response characterized by elevated levels of
proinflammatory cytokines in the fetal circulation [1, 5].

A comprehensive mapping of the proteome and microar-
ray analysis was provided by several investigators [6–15].

Recent studies demonstrated associations between elevated
levels of circulating proinflammatory cytokines, particularly
interleukin (IL) 6, IL-1beta, and tumor necrosis factor alpha
(TNF-alpha), and preterm birth [1, 5]. These inflammatory
cytokines might link the pathology of uterine contraction,
uterine cervical ripening, and preterm premature rupture of
membrane (pPROM).

The harmful effects of cytokines are mediated by spe-
cific receptors for inflammation. Toll-like receptors (TLRs)
are the most extensively studied signaling receptors that
participate in the initiation of inflammation [16]. Several
researchers have pursued the association of TLRs and
cytokines with preterm labor. Stimulation of TLRs with
their ligands has been shown to induce proinflammatory
cytokine release in uterine epithelial cells, fetal membranes
and placenta [17–20]. Activation of the innate immune
system via TLRs might be implicated in the pathogenesis of
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Table 1: Genes differentially expressed in preterm birth.

Inflammation and immune system

IL-1beta (interleukin-1beta), IL-6, IL-8, TNF-alpha (tumor necrosis factor-alpha),
S100A5 (S100 calcium-binding protein A5), P4HA2 (prolyl 4-hydroxylase, alpha
polypeptide II), PTGDS (prostaglandin D2 synthase 21 kDa), VEGF (vascular
endothelial growth factor), ABCB9 (ATP-binding cassette, subfamily B
(MDR/TAP), member 9), and FCER1A (Fc fragment of IgE, high affinity I, receptor
for; alpha polypeptide)

Transcription factor and signal
NF-kappaB (nuclear factor-kappaB), MAPK (mitogen-activated protein kinase),
P38 MAPK, Akt, Egr-1 (early growth response-1), and HOX (homeobox)

Metabolism and cytokine

IL-1beta, TNF-alpha, ABP1 (amiloride-binding protein 1 or amine oxidase
(copper-containing)), CBS (cystathionine-beta-synthase), SLC2 (solute carrier
family 16, member 7 (monocarboxylic acid transporter 2)), and CCL2 chemokine
(C-C motif) ligand 2 (MCP-1)

Protease Ggt (gamma-glutamyl transpeptidase)

Ion channel
KCNH2 (potassium voltage-gated channel, subfamily H, member 2) and KCNMB4
(potassium large conductance calcium-activated channel, subfamily M, beta
member 4, ion channel)

Hormone Progesterone and Thyroid hormone

uterine contraction, uterine cervical ripening and pPROM
in the process of preterm birth. Recent studies demonstrated
that, besides TLRs, specific receptors can interact with
other endogenous ligands generated by cell death and tissue
injuries. However, there have been relatively few studies
on such receptors and results have not been consistent
[1]. Therefore, the precise molecular mechanisms by which
cytokine expression cause preterm birth are not clear. In
this paper, we have tried to summarize recent findings on
TLRs, specific receptors, their ligands and their implications
in preterm birth.

2. Materials and Methods

The present paper reviews the English language literature for
biological, pathogenetic, and pathophysiological studies on
preterm birth. We searched MEDLINE (PubMed) electronic
databases for a 20-year period (1990–2010), combining the
keywords “preterm birth”, “TLR”, “RAGE”, “danger signal”,
“alarmin”, “genome-wide,” “microarray,” and “proteomics”
with specific expression profiles of genes and proteins.
Several recent studies are discussed in the context of patho-
genesis of preterm birth. Additionally, references in each
paper were searched to identify potentially missed studies
for a 20-year period. Here, we discuss promising molecular
candidates for preterm birth.

3. Factors Predictive of Preterm Birth

Recent advances in the application of various platforms have
facilitated the process of discovery of novel biomarkers of
preterm birth. These analyses include the DNA microarray
experiment, principal component analysis, pathway analysis,
signaling networks analysis, or proteomics analysis using
matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (MALDI-TOF MS) techniques. Recent
progress in the microarray, or proteomics-based technologies

allows researchers to perform screening to detect differen-
tially expressed genes and proteins in preterm birth subjects.
Maternal serum and plasma, amniotic fluid, cervicovaginal
fluid, urine, or placental trophoblasts, fetal membranes or
cord blood have been used to develop markers for preterm
birth.

3.1. Genes Differentially Expressed in Preterm Birth. The first
aim of this study was to review molecular factors predictive
of preterm birth by reviewing biochemical research iden-
tifying gene and protein expression profiles. Specific genes
differentially expressed in preterm birth subjects are shown
in Table 1. Many genes that participated in inflammation
and immune system, transcription factors and signals,
metabolism and cytokines, proteases, ion channel, hormone,
extracellular matrix, and coagulation were overexpressed
in patients with preterm birth [21–38]. Furthermore, we
have reviewed genome-wide analytical methods and high-
throughput computational tools to determine whether spe-
cific gene “signatures” can be identified among preterm
birth subjects and controls. The “inflammatory signature”
of molecular events seems to be associated with subsequent
preterm birth. We named this specific gene “signature”
“preterm birth signature”.

A number of “preterm birth signature” genes involved
in inflammation and immune system were specifically
expressed, suggesting that excessive induction of the inflam-
matory response is a well-characterized cause of preterm
birth. The expression of cytokines (notably interleukin 1beta
[IL-1beta], IL-6, IL-8, and tumor necrosis factor alpha [TNF-
alpha]) by either the maternal, fetal, or placental tissues has
been demonstrated to upregulate the activity of a number
of uterine and cervical factors (e.g., prostaglandins and their
receptors and several proteases such as matrix metallopro-
teinases), leading to premature initiation and progression of
the parturition process [22]. The analysis of “preterm birth
signature”-dependent signaling network provides evidence
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Table 2: Proteins specifically present in preterm birth.

Extra cellular matrix and cell structure
CLSTN1 (calsyntenin 1), DSP (desmoplakin), FN1 (fibronectin 1), IGFBP-1
(insulin-like-growth-factor-binding protein 1), LAMA3 (laminin alpha 3), LUM
(lumican), and THSD1 (thrombospondin 1)

Protease

CTSL2 (cathepsin L2), CST (cystatin), PAI-1 (plasminogen activator inhibitor-1),
TIMP1 (tissue inhibitor of metalloproteinase 1), uPA (urokinase plasminogen
activator), F2 (prothrombin fragment 2), and SLPI (secretory leukocyte peptidase
inhibitor)

Innate immunity
defensin-1, defensin-2, S100A8 (Calgranulin A), S100A9 (Calgranulin B), and
S100A12 (Calgranulin C)

Transporter Transthyretin (TTR)

for genes such as Nuclear Factor (NF)-kappaB, mitogen-
activated protein kinase (MAPK), P38MAPK, Akt, and Early
growth response (Egr)-1.

The S100A5 gene is a member of the S100 family
of proteins containing 2 EF-hand calcium-binding motifs.
Some members are secreted from cells upon stimulation,
exerting cytokine- and chemokine-like extracellular activities
via the Receptor for Advanced Glycation End products,
RAGE (see below) [24]. S100 proteins also activate NF-
kappaB by inducing phosphorylation of IKKalpha/beta,
leading to increased IkappaBalpha phosphorylation. NF-
kappaB is a transcription factor family classically associated
with inflammation. Premature activation of NF-kappaB
through exogenous or endogenous stimuli might contribute
to preterm birth [28].

3.2. Proteins Specifically Present in Preterm Birth. Uterine
cervix is composed of extracellular matrix components such
as collagen, elastin, proteoglycans, hyaluronan, and others.
Cervical remodeling includes softening, ripening, dilatation,
and repair. New insights propose that infection-induced
premature cervical remodeling is distinct from the normal
process [39–42]. The molecular mechanisms and pathways
governing preterm and term cervical ripening are analogous,
but distinctly heterogeneous and diverse [43].

Systemic or local inflammatory effects can influence
cervical tissue remodeling [21, 44]. Morphological and
biochemical changes are as follows: increased expression
of matrix metalloproteinases and relaxin receptor, decline
in collagen content, and loosening of the connective tissue
structure [45–47]. Labor is associated with “decidual activa-
tion” with increased proteolysis and subsequent degradation
of extracellular matrix [48, 49]. It has been reported that
expression of laminin alpha 3 (LAMA3), fibronectin, and
collagen IV mRNA was low during early gestation but
increased dramatically at preterm birth [48, 50]. Several
proteins and peptides were present specifically in preterm
birth subjects. They were classified into several functional
pathways that were involved with preterm labor/birth: extra
cellular matrix, cell structure, protease, innate immunity,
and transporter [51, 52]. Specific biomarkers relevant for
preterm birth are shown in Table 2. The development of
an assay to detect cervicovaginal oncofetal fibronectin 1
(FN1) can be helpful in selecting women at risk for preterm
delivery [48, 53, 54]. This assay lies in the high negative

predictive values of the tests for reducing preterm delivery
risk. Furthermore, phosphorylated IGFBP-1 is clinically
useful for prediction of preterm birth [7, 55].

Tissue remodeling in the uterine cervix depends on
precise networks to fine tune the balance between proteases
and inhibitors. The balance between plasminogen activator
inhibitor-1 (PAI-1) and urokinase (uPA) and tissue-type
plasminogen activator (tPA) is an important determinant
of proteolytic activity at the maternal-fetal interface [48,
49]. Cathepsins (CTPs) are peptidases that have biologi-
cal roles in degrading extracellular matrix, catabolism of
intracellular proteins, and processing of prohormones [48].
CTSL2 is predominantly involved in the turnover of the
extracellular matrix [56]. Cystatin C, a cysteine protease
inhibitor, is involved in processes such as degradation of
collagen and inflammatory processes [48, 57]. Cystatin is a
candidate marker of inflammation. A human prothrombin
fragment-2 (F2) inhibits the release of nitric oxide (NO),
PGE2, and pro-inflammatory cytokines through suppres-
sion of expression of inducible NO synthase (iNOS) and
cyclooxygenase (COX)-2 mRNA [58, 59]. F2 also suppresses
the LPS-induced NF-kappaB activation [59]. These results
suggest that F2 inhibits the inflammatory responses through
suppression of NF-kappaB activation [59].

Key mediators of the innate immune system during
pregnancy are the natural antimicrobial peptides, including
secretory leukocyte peptidase inhibitor (SLPI), elafin and the
defensins, may account for some of the antimicrobial activity
of amniotic fluid [5, 7, 60]. The higher levels of defensins in
cervicovaginal fluid had a greater risk of delivering before 32
weeks, demonstrating that midpregnancy human levels were
more informative to preterm birth risk [7, 60, 61]. The S100
family members, including S100A8 (Calgranulin A), S100A9
(Calgranulin B), and S100A12 (Calgranulin C), are highly
predictive of intrauterine inflammation and preterm birth
[7, 60, 62].

4. Exogenous and Endogenous
Ligands (Danger Signals, and Alarmins)
in Preterm Birth

The purpose of the second aim of this study was to undertake
a comprehensive review of exogenous and endogenous lig-
ands, their receptors, and downstream signaling in preterm
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birth subjects. The innate immune system possesses pat-
tern recognition receptors (PRRs) that recognize pathogen-
associated molecular patterns (PAMPs) that are specific to
microbes. These PRRs include Toll-like receptors (TLRs),
nucleotide-binding domain leucine-rich repeat containing
receptors (NLRs), RIG-I-like RNA helicases (RLHs) and C-
type lectin receptors (CLRs) [63].

4.1. Toll-Like Receptor (TLR). TLRs are evolutionarily pre-
served pattern-recognition receptor molecules that recognize
the molecular patterns of pathogens [64]. TLR activation has
been implicated in the regulation of the innate immune sys-
tem and inflammation as well as the pathology of a number
of inflammatory diseases including infectious diseases, tissue
injury and damage, inflammatory bowel diseases, ischemia-
reperfusion conditions, autoimmune and neurodegenerative
diseases, and cancer [64–66]. TLRs were expressed on
several cell types including monocytes, macrophages, and
leukocytes [67]. They have been linked to the perpetuation of
chronic inflammatory responses. Each TLR family member
recognizes a specific pathogen component, upon activation,
triggers a signaling cascade leading to cytokine production
and adaptive immune response [64].

Interestingly, TLRs 1-10 are expressed in the female
reproductive tract [68]. The TLR gene expression levels in
endometrial tissues are high in the perimenstrual period and
low in the periovulatory period [69]. The TLR2 expression
is compatible in epithelial cells and stromal cells, while
the TLR4 expression is higher in stromal cells. They are
also present in the pregnant uterus, placenta and amniotic
membranes. Also, TLR2 and TLR4 are widely reported to be
present on trophoblast cells [70]. Activation of TLRs on tro-
phoblast cells influences immune cell recruitment, cytokine
secretion, and decidual responses to invading pathogens
[71]. Among the TLRs, TLR1, TLR2, TLR4, and TLR6 may
contribute to several pregnancy pathologies associated with
preeclampsia, intrauterine growth restriction, and preterm
labor/birth (see TLR Ligands section) [71–76].

Experimental evidence in animals demonstrates that
TLR4 activation leads to the development of preterm birth
[77]. While these important observations from animal model
data suggest a role for TLRs in preterm birth, it remains
unknown whether alterations in TLR pathway activation
contribute to systemic or local inflammation in preterm
birth subjects. The important studies implicating TLRs were
derived using small sample size, and the association with
respective TLR2/TLR4 ligands, downstream signaling, and
functional activation remains to be properly addressed. We
highlight recent data that assign a role to TLR ligands in the
pathophysiology of preterm birth [71].

In addition, the NLR (also known as NOD-like receptors)
family of intracellular sensors is a crucial component of
the innate immune system [63]. The cytoplasmic pattern
recognition receptors, NOD1 and NOD2, are important
for detecting intracellular bacteria. NOD mRNA expression
was upregulated following treatment of trophoblast cells
with LPS. The NOD activation in trophoblasts triggers an
inflammatory response [78]. In relation to TLRs, there is

relatively little in the literature suggesting a role for NLRs and
other receptors in pregnancy complications.

4.2. TLR Ligands. The most frequently involved pathogens
are thought to originate from the genital flora (Gardnerella
vaginalis, Mycoplasma hominis, Ureaplasma, Peptostrepto-
coccus, Fusobacterium, Prevotella, and Bacteroides species)
[79, 80] (Figure 1). Although TLR2, and TLR4 bind to
components of the gram-positive and -negative bacteria,
respectively [81], they recognize not only infectious agents
(exogenous ligands) but also other endogenous ligands [71].
Ureaplasma species are commonly isolated pathogens from
the female reproductive tract of women with preterm birth.
Cell membrane lipoproteins from Ureaplasma can activate
NF-kappaB through TLR1, TLR2, and TLR6 [76]. Thus,
exogenous ligands for TLRs include LPS, lipoproteins, and
peptidoglycan [72, 81].

4.2.1. Lipopolysaccharide (LPS). A number of animal studies
have described a role of TLRs for controlling bacterial
infection and its impact on preterm birth [82, 83]. Infection,
including bacteria, viruses, fungi, and protozoa (e.g., sexually
transmitted diseases or Gardnerella vaginalis), is thought to
induce preterm birth through activation of inflammatory
responses in both maternal and fetal tissues [82, 83]. This
process initiates via signals through TLRs expressed by a wide
spectrum of infectious microorganisms [83]. For example,
the classic ligand that TLR4 recognizes is lipopolysaccharide
(LPS) from gram-negative bacteria.

4.2.2. Peptidoglycan. In placenta, gram-positive bacteria cell
wall component peptidoglycan induces trophoblast apopto-
sis [84]. Furthermore, intraperitoneal peptidoglycan induced
preterm delivery [84]. Peptidoglycan is a ligand of TLR2
[84]. Thus, activation of TLR2 can induce preterm delivery
in mice.

4.3. Receptor for Advanced Glycation End-Products (RAGE).
Based on the proteomic discoveries, it has been propose
that not only acute phase (IL-6 or PAMPs) but also
chronic phase of the inflammatory and stress response is
associated with preterm birth [7]. The chronic inflamma-
tory biomarkers, also known as “alarmins”, may be more
important for the development of preterm birth (Figure 1).
Intracellular “alarmins” are known as damage-associated
molecular patterns (DAMPs), which include HMGB1, HSPs,
S100 proteins, and altered matrix proteins [7]. They rep-
resent important danger signals that mediate inflammatory
responses through TLRs and importantly through RAGE.
It is recognized that DAMPs mediate the late response to
infection [7]. RAGE interacts with diverse ligands, including
advanced glycation end products (AGEs), several members
of the S100 protein family (S100B, S100P, S100A4, S100A6,
S100A8/9, and S100A11–13), and high-mobility group box-
1 (HMGB1) [85]. Increased expression of RAGE has been
documented in a variety of acute and chronic inflammatory
diseases [85].
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Figure 1: The inflammatory biomarkers, alarmins, involved in the development of preterm birth. The most frequently involved pathogens
are thought to originate from the genital flora. Although TLR2 and TLR4 bind to components of the gram-positive and -negative bacteria,
respectively, they recognize not only infectious agents (exogenous ligands) but also other endogenous ligands. Each TLR family member
recognizes a specific pathogen component, upon activation, triggers a signaling cascade leading to pro-inflammatory cytokine production
and adaptive immune response. Exogenous ligands for TLRs include bacteria, viruses, fungi, and protozoa as well as their components LPS,
HSP and peptidoglycan. The downstream signaling network analysis provides evidence for genes such as NF-kappaB, MAPK, P38MAPK,
Akt, and Egr-1. The expression of pro-inflammatory cytokines (notably IL-1beta, IL-6, IL-8, and TNF-alpha) by either the maternal, fetal, or
placental tissues has been demonstrated to upregulate the activity of a number of uterine and cervical factors (e.g., prostaglandins and their
receptors and several proteases such as matrix metalloproteinases), leading to premature initiation and progression of the parturition process.
Activation of the pro-inflammatory and innate immune system via TLRs might be implicated in the pathogenesis of uterine contraction and
pPROM in the process of preterm birth. The chronic inflammatory biomarkers, also known as “alarmins”, may be more important for the
development of preterm birth. Intracellular “alarmins” are known as DAMPs, which includes HMGB1, HSPs, S100 proteins, and altered
matrix proteins. “Alarmins” are secreted from cells upon stimulation, exerting cytokine- and chemokine-like extracellular activities via
the RAGE. Increased expression of RAGE has been documented in preterm birth subjects. “Alarmins” might be more important for the
development of preterm birth, leading to a chronic and persistent pro-inflammatory state by the activation of TLRs and RAGEs. TLR, Toll-
like receptor; LPS, lipopolysaccharide; HSP, heat shock porotein; NF-kappaB, Nuclear Factor-kappaB; MAPK, mitogen-activated protein
kinase; Egr-1, Early growth response-1; IL-1beta, interleukin-1beta; TNF-alpha, tumor necrosis factor-alpha; pPROM, preterm premature
rupture of membrane; DAMPs, damage-associated molecular patterns; HMGB1, High-mobility group box 1; and RAGE, Receptor for
advanced glycation end-products.

4.4. RAGE Ligands

4.4.1. Heat-Shock Protein 70 (HSP70). Heat shock proteins
(HSPs) such as HSP60, HSP 70, HSP72, and HSP 90 are
representative endogenous ligands for TLRs or RAGE [86].
In general, HSPs are intracellular proteins with molecular
chaperone and cytoprotective functions [73]. They play
important roles in antigen presentation and activation of
macrophages and lymphocytes [87]. HSP70 is present in the
peripheral circulation of healthy nonpregnant and pregnant
individuals. Elevated intracellular and extracellular HSP70
levels in healthy pregnant women at term might play a role
in the onset of labor. Fukushima et al. reported that since
HSP70 levels were particularly high in treatment-resistant
preterm birth women, it may prove to be a useful marker for
evaluating the effects of treatment or outcome [88].

Increased circulating HSP70 level may not only be a
marker of these conditions but might also play a role in their
pathogenesis [89]. Increased expression of HSP70 mRNA
gene transcription has been observed in LPS-stimulated
amniotic membranes [67]. Intra-amniotic infection, histo-
logic chorioamnionitis, and term parturition are associated
with elevated amniotic fluid HSP concentrations [67]. Extra-
cellular HSP70 could engage with TLRs or RAGE to activate
NF-kappaB and induce the production of pro-inflammatory
cytokines including IL-1, IL-6, and TNF-alpha leading to
prostaglandin production and preterm delivery [90, 91]
(Figure 1). Also, HSP70 may stimulate the expression of
prostaglandins and MMPs possibly through the TLR- and
RAGE-mediated activation of COX-2 expression and result
in the development of preterm labor and pPROM. The
mechanisms of preterm and term parturition in humans may
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involve extracellular HSP70 [16]. Excess of the capacity of
HSP70 to elicit the Th1-type immune responses might be
harmful in pregnancy and leads to the rejection of the fetus.

4.4.2. S100 Calcium-Binding Protein A4/A6. With great
advancements in proteomics, new preterm birth biomarkers
have been, and continue to be, discovered. Amniotic fluid
biomarkers relevant for preterm birth are S100A12, S100A8,
S100A9, defensin-1, defensin-2, and IGFBP-1 [7]. S100
proteins are ligands for the RAGE100A12 that has the
strongest association with histological chorioamnionitis and
funisitis [7]. Measurement of urine S100B protein levels in
preterm newborns could be useful to identify newborns at
higher risk of neonatal death [92].

4.4.3. High-Mobility Group Box-1 (HMGB1). Immune acti-
vation represents an adaptive reaction triggered by both
exogenous (microbes) and endogenous inducers of inflam-
mation [93]. High-mobility group box-1 protein (HMGB1),
an evolutionarily conserved chromosomal protein, is one
of the endogenous ligands [94]. HMGB1 was recently re-
discovered to act as a “danger signal” (alarmin) to alert the
innate immune system for the initiation of host defense or
tissue repair [94]. Alarmin is a damage-associated molecular
pattern molecule. Cell stress or necrosis leads the release
of HMGB1 in the extracellular matrix, where it acts as
an alarmin by engaging the RAGE [93]. HMGB1 levels
correlated with levels of inflammatory markers, IL-6 and
S100, in human fetus [93]. Animal model of LPS-induced
preterm birth has demonstrated that inflammation induces
a significant change in expression of RAGE and HMGB1 at
sites of tissue damage [93]. These data suggest that RAGE and
HMGB1 are important mediators of inflammation-induced
preterm birth.

4.4.4. Breakdown Products of Tissue Matrix—Extracellular
Matrix Components. Proteins specifically present in preterm
birth may have the properties of an endogenous alarmin.
They include fibrinogen, fibronectin, heparan sulfate
proteoglycan, hyaluronic acid, low-molecular weight
hyaluronic acid, tenascin-C, neutrophil defensin 1, defensin
2, eosinophil-derived neurotoxin (EDN), lipocalin 2, fatty
acid, apolipoprotein A-I, E and H (beta-2-glycoprotein
I), oxidized LDL, lipoprotein, lipopeptides, annexin A2,
amyloid beta A4 protein precursor, interferon- (IFN-)
gamma, and lung surfactant protein, surfactant protein A
(Table 2). Among them, endogenous ligands such as low-
molecular weight hyaluronic acid, fibronectin, fibrinogen,
HSP70, and heparin sulfate were found to be cleaved in the
inflamed tissue and to activate their receptors.

Recent study on genetic polymorphism and contribu-
tions to disparities in preterm birth demonstrated that
candidate genes include those involved in the host response
to inflammation and those involved in the degradation
of the extracellular matrix [95]. They include TNF-alpha,
IL-1beta, IFN-gamma, and MMP-9. TNF-alpha is a pro-
inflammatory cytokine that promotes an enhanced MMP
(matrix metalloproteinases)/TIMP-1 (tissue inhibitors of

metalloproteinases) ratio in the inflammatory states of
preterm birth and points to potential mechanisms for
cervical ripening and membrane rupture. Both TLRs- and
AGEs/RAGE-dependent NF-kappaB signalings play key roles
in TNF-alpha expression. These results suggest that the
binding of “alarmins” to TLRs or RAGE activates various
second-messenger systems including NF-kappaB, subse-
quently leading to the production of inflammatory cytokines
such as TNF-alpha and MMPs. These findings may prompt
new directions for targeting and treating preterm birth in
future therapies.

5. Conclusions

This paper provides key evidence for increased TLR and
RAGE expression, activation, exogenous and endogenous lig-
ands, and downstream signaling contributing to inflamma-
tion seen in preterm birth subjects [74, 75, 88]. Associations
have already been documented between TLR polymorphisms
in man and TLR deficiency in animals and an increased
susceptibility to infection and inflammation [96]. However,
the functional state of the various components of RAGE and
its ligands is largely unknown and only recently some studies
have assessed this feature of the innate immune system.
Therefore, the AGEs/RAGE system provides little critical
insight into either the functional roles of the inflammatory
signals or their downstream implications for preterm birth.

The paper largely consists of a series of summaries
reporting experimental or clinical evidence for the involve-
ment of each particular receptor, factor, or downstream
signaling system. “Alarmins” might be more important for
the development of preterm birth, leading to a chronic pro-
inflammatory state by the activation of TLRs and RAGE.
RAGE has been implicated in chronic diseases such as
diabetes, atherosclerosis, neurodisorders, cancers, and aging.
Signalling pathways downstream of RAGE are activated by
the accumulation of its ligands “alarmins.” A major event
in the functional activation of TLRs and RAGE results
in NF-kappaB activation and cytokine production [88].
RAGE binds a broad repertoire of ligands and may mediate
responses to cell damage and stress conditions during
preterm birth. A pro-inflammatory microenvironment is
established by the secretion of cytokines, such as TNF-
alpha, IL-1beta, and IL-6, and the production of RAGE
ligands. Thus, RAGE ligands and subsequent signaling might
stimulate uterine contraction, cervical ripening, and PROM
by autocrine and paracrine feed-forward loops.

In conclusion, the interactions between the TLR-
mediated acute inflammation and RAGE-mediated chronic
inflammation might have clear implications for preterm
birth via the innate immune system. Taken together, the basic
findings of this comprehensive review suggest that there is
significant elevation of TLRs and RAGE, endogenous ligands,
and cofactors in preterm birth patients, which contributes
to the increase in chronic stress signaling and persistent
pro-inflammatory state of preterm birth. These genes and
proteins significantly elevated in preterm birth subjects
may provide a foundation for further validation in larger
patient cohorts. Future studies will address the mechanism of
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synergistic effects of endogenous ligands on TLR and RAGE
signaling.
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[26] Ö. Demirel, Z. Waibler, U. Kalinke et al., “Identification of a
lysosomal peptide transport system induced during dendritic
cell development,” The Journal of Biological Chemistry, vol.
282, no. 52, pp. 37836–37843, 2007.

[27] J. P. Luyendyk, G. A. Schabbauer, M. Tencati, T. Holscher, R.
Pawlinski, and N. Mackman, “Genetic analysis of the role of
the PI3K-Akt pathway in lipopolysaccharide-induced cytokine
and tissue factor gene expression in monocytes/macrophages,”



8 Mediators of Inflammation

The Journal of Immunology, vol. 180, no. 6, pp. 4218–4226,
2008.

[28] T. M. Lindström and P. R. Bennett, “The role of nuclear factor
kappa B in human labour,” Reproduction, vol. 130, no. 5, pp.
569–581, 2005.

[29] J. L. Sarno, F. Schatz, C. J. Lockwood, S.-T. J. Huang,
and H. S. Taylor, “Thrombin and interleukin-1β regulate
HOXA10 expression in human term decidual cells: implica-
tions for preterm labor,” Journal of Clinical Endocrinology and
Metabolism, vol. 91, no. 6, pp. 2366–2372, 2006.

[30] J. Sarno, F. Schatz, S. J. Huang, C. Lockwood, and H. S.
Taylor, “Thrombin and interleukin-1β decrease HOX gene
expression in human first trimester decidual cells: implications
for pregnancy loss,” Molecular Human Reproduction, vol. 15,
no. 7, pp. 451–457, 2009.

[31] S. Hauguel-de Mouzon and M. Guerre-Millo, “The placenta
cytokine network and inflammatory signals,” Placenta, vol. 27,
no. 8, pp. 794–798, 2006.

[32] S. M. Keeler, D. G. Kiefer, O. A. Rust et al., “Comprehensive
amniotic fluid cytokine profile evaluation in women with a
short cervix: which cytokine(s) correlates best with outcome?”
American Journal of Obstetrics and Gynecology, vol. 201, no. 3,
276 pages, 2009.

[33] R. C. Austin, S. R. Lentz, and G. H. Werstuck, “Role
of hyperhomocysteinemia in endothelial dysfunction and
atherothrombotic disease,” Cell Death and Differentiation, vol.
11, no. 1, pp. S56–S64, 2004.
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