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Neuroblastoma is a major cause of cancer death in early childhood, and its timely and cor-
rect diagnosis is critical. Gene expression datasets have recently been considered as a pow-
erful tool for cancer diagnosis and subtype classification. However, no attempts have yet 
been made to apply deep learning using gene expression to neuroblastoma classification, 
although deep learning has been applied to cancer diagnosis using image data. Taking the 
International Neuroblastoma Staging System stages as multiple classes, we designed a 
deep neural network using the gene expression patterns and stages of neuroblastoma pa-
tients. Despite a small patient population (n = 280), stage 1 and 4 patients were well dis-
tinguished. If it is possible to replicate this approach in a larger population, deep learning 
could play an important role in neuroblastoma staging. 
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Introduction 

In addition to careful analyses of clinical symptoms, numerous diagnostic methods have 
been used to diagnose cancer [1]. In particular, cancer is currently staged using various 
visual methods, such as radiography, computed tomography, bone scans, and positron 
emission tomography scans [1]. 

With the increasing amount of available data from visual images over recent years, nu-
merous diagnostic techniques for cancer have been developed through machine learning 
methods such as convolutional neural networks (CNNs) [2,3]. Moreover, methods for 
improving the performance of CNNs are being studied, and many models with effective 
architectures for classifying images have been developed [4]. In recent years, categorical 
classification models that predict cancer stages or types of cancer have been constructed 
on the basis of image data [4,5]. 

In addition to image data, basic classifications, such as a diagnosis of cancerous versus 
healthy tissue, can be performed through gene expression data, and models have been de-
veloped using traditional machine learning methods. However, AI-based deep neural net-
works (DNNs) can be developed using classification models with data matrices of con-
tinuous values such as expression data. Unlike image data, genomic data can be used as a 
proxy for the early diagnosis of cancer, meaning that models based on gene expression 
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data can also be useful for identifying or predicting the diagnosis 
or progression of cancer and for providing timely and appropriate 
cancer treatment [6]. 

However, to construct a DNN model, a sufficient dataset is re-
quired [7]. Although data can be obtained individually, it is possi-
ble to secure a sufficiently large dataset to build a model through 
the Gene Expression Omnibus (GEO) [8] and The Cancer Ge-
nome Atlas (TCGA) [9]. 

In addition to furnishing genomic data, these sources also pro-
vide data indicating patients’ medical status, allowing us to exam-
ine the correlations between clinical variables and specific genom-
ic data of interest [8,9]. 

Neuroblastoma is an extracranial solid tumor that most com-
monly occurs in childhood [10,11]. The specific traits of neuro-
blastoma include its early age of onset, a tendency for spontaneous 
regression of the tumor in infancy, and the high frequency of met-
astatic disease at diagnosis [10]. 

Neuroblastoma is staged using the International Neuroblastoma 
Staging System (INSS) [12]. This system classifies tumors in terms 
of their appearance upon an analysis of surgical biopsy findings, but 
this staging system alone cannot help doctors to determine a plan 
for neuroblastoma treatment, since it is dependent upon surgical 
biopsy findings and its results are obtained post-surgery [12,13]. 

However, as increasing amounts of data on neuroblastoma have 
become available, and suitable genomic data can be obtained from 
public databases (e.g., GEO and TCGA), it is now possible to ex-
plore whether a correlation exists between INSS stages and genom-
ic traits such as the mutation profile or gene expression data [14]. 

In this study, in order to identify such correlations, we developed 
a simple DNN model using a data set of neuroblastoma patients 
including gene expression data and clinical data (i.e., INSS stages). 
We investigated whether our DNN model with gene expression 
data could classify the INSS stages. 

Methods 

Dataset and data handling 
As a public neuroblastoma dataset, we downloaded accession 
GSE85047 [15] from the GEO database (https:// www.ncbi.nlm.
nih.gov/geo/). GSE85047 contains 280 samples of neuroblasto-
ma clinical data and the data matrix includes INSS stage and ex-
pression array data. An expression array was performed using an 
Affymetrix Human Exon 1.0 ST Array (Affymetrix, Santa Clara, 
CA, USA) (Fig. 1). The INSS stages (1, 2, 3, 4, and 4S) were con-
sidered as classes. 

In order to convert the array ID into the HUGO gene symbol, 
we used the GPL5175 probe-gene symbol mapping annotation 
file. Next, we edited the matrix containing only INSS stage and 
gene expression array data for data feeding into the DNN architec-
ture. The data matrix was 280 patients by 13,091 gene symbols. 
We split this data matrix into a training set and test set at a ratio of 
8:2, using scikit-learn train_test_split (Fig. 1). 

Model construction and validation 
To construct our DNN model, we utilized TensorFlow 1.13.1 as 
our machine learning library with Python 3.6.0 [16].  

Fig. 1. Overview of our model. Our model utilized a simple deep neural network architecture with GSE85047 gene expression data. The 
classes are the International Neuroblastoma Staging System stage of each patient from GSE85047. False positive rate (FPR), it is the 
calculated number of predicted false positives divided by the total number of negatives in the test set.; true positive rate (TPR), it is obtained 
as the number of predicted true positives divided by the total number of positives in the test set.
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We chose tf.contrib.learn.DNNClassifier for model construc-
tion. For the hyperparameters of our model, we set the dropout 
rate at 0.15, we chose the Adam optimizer, and we fixed the learn-
ing rate at 1e-5. The activation function was leaky_relu and the 
number of layers was 4. The numbers of neurons of the layers were 
512, 256, 128, and 16, respectively (Fig. 2). When we constructed 
our model under these hyperparameter settings, we set the num-
ber of learning steps as 5,000. An Nvidia Titan RTX 24GB was 
used for the GPU. 

In order to obtain measurements for the performance of our 
model, accuracy was calculated using the predicted values from 
the training set and the test set; then, receiver operating character-
istic curves and the area under the curve (AUC) were obtained by 
the roc-curve function in the scikit-learn package. 

Results 

After 5,000 iterations with the training set, the accuracy was calcu-
lated from each training set and test set, with values of 100% and 
55.56%, respectively. 

In the training set, the macro-average AUC, micro-average AUC, 
and all the AUC values for one-versus-rest (OVR) decisions were 
all 1 (Fig. 3A). In the test set, we observed a macro-average AUC 
of 0.71, and a micro-average AUC of 0.77 for five-class classifica-
tion and prediction using our model. The OVR AUCs for stages 
(equivalently, classes) 1, 2, 3, 4 and 4S were 0.8, 0.66, 0.59, 0.85, 
and 0.58, respectively (Fig. 3B). Overall, we observed that our 
model predicted stage 1 and 4 patients well. 

Fig. 2. Deep neural network architecture of our model.

Fig. 3. Model performance. (A) Receiver operating characteristic 
(ROC) curves and the area under the ROCs (AUROCs) of micro-, 
macro-, and one-versus-rest (OVR) decisions obtained from 
the training set. (B) The ROC curves and the AUROCs of micro-, 
macro-, and OVR decisions obtained from the test set.
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Discussion 

From these results, we could distinguish stages 1 and 4 in neuro-
blastoma patients. Considering the poor prediction of the other 
stages in the test set, it is likely that overfitting occurred for stages 
2, 3, and 4S. Alternatively, there may be no distinguishable genes 
between stages 2, 3, and 4S in terms of gene expression. 

Our study was performed using data from a relatively small 
number of patients (280 cases). Increasing the number of patients 
to the order of 103 or 104 would be appropriate, since successful 
DNN construction requires several thousand labeled cases in bio-
logical problems [7,17]. 
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