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Abstract
Waldenström macroglobulinemia (WM) is characterized by the expansion of clonal lymphoplasmacytic cells; the

MYD88L265P somatic mutation is found in >90% of patients, but malignant B cells may still display intra‐clonal hetero-
geneity. To assess clonal heterogeneity in WM, we generated and performed single‐cell RNA sequencing of CD19+ sorted

cells from five patients with MYD88L265P and two patients with MYD88WT genotype as well as two healthy donors. We

identified distinct transcriptional patterns in the clonal subpopulations not only between the two genetically distinct

WM subgroups but also among MYD88L265P patients, which affected the B cell composition in the different subgroups.

Comparison of clonal and normal/polyclonal B cells within each patient sample enabled the identification of patient‐specific
transcriptional changes. We identified gene signatures active in a subset of MYD88L265P patients, while other sig-

natures were active in MYD88WT patients. Finally, gene expression analysis showed common transcriptional features

between patients compared to the healthy control but also differentially expressed genes between MYD88L265P and

MYD88WT patients involved in distinct pathways, including NFκΒ, BCL2, and BTK. Overall, our data highlight the intra‐tumor

clonal heterogeneity in WM with potential prognostic and therapeutic implications.

INTRODUCTION

Waldenström's macroglobulinemia (WM) is a low‐grade B‐cell
lymphoproliferative disorder characterized by bone marrow (BM)
infiltration by lymphoplasmacytic lymphoma (LPL) cells that secrete
IgM immunoglobulin.1,2 Our understanding of the pathogenesis of
WM has improved significantly by the discovery that the vast ma-
jority of WM patients harbor the somatic mutation L265P in
the MYD88 gene in their clonal cells.3–8 However, a small fraction
of patients (3%–10%) who lack mutations in MYD88 may have a

different clinical course and disease characteristics, with an in-
creased risk of disease transformation.9–11 MYD88L265P is asso-
ciated with tonic activation of the BCR pathway and the first FDA‐
approved anti‐WM therapeutic, ibrutinib, which blocks BTK and
HCK activity, has shown to be less effective in MYD88WT, suggest-
ing differences between the two WM variants.12–14 In addition,
WM is a clonal disease but there is heterogeneity in the depth of
response to BTK inhibition suggesting that there may be significant
heterogeneity within the clone, which has not been extensively
explored. A thorough characterization of these genetically distinct
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subgroups of WM patients could be useful to distinguish the clonal
architecture of WM, the molecular mechanisms that underlie re-
sistance to therapy, and the risk of disease transformation as well as
to identify potential therapeutic targets.

Recent advances in single‐cell RNA sequencing (scRNA‐seq)
technologies have allowed to sequence and analyze thousands of
cells delivering insights into a tumor's cellular heterogeneity and the
biological features that distinguish different cell populations. In this
study, we generated and analyzed scRNA‐seq data from 40,562
single B cells representing seven patients with WM, of which five
harbored MYD88L265P (MYD88MUT) and two harbored MYD88WT

genotype. Our analysis also included two healthy donors (HDs).
We explored transcriptional changes within clonal cells, utilized
computational methods for separating clonal cells from polyclonal
cells, and highlighted gene signatures that are prominent in each
subgroup of patients. This revealed insights into the intratumor
heterogeneity within and between MYD88WT and MYD88MUT WM
patients.

MATERIALS AND METHODS

Bone marrow aspirates were collected from five newly diagnosed
MYD88MUT symptomatic WM patients, two newly diagnosed
MYD88WT symptomatic WM patients, and two HDs (patient char-
acteristics in Supporting Information S1: Table 1); Sorting of CD19+

cells was performed as previously described15 (Supporting Informa-
tion S1: Supplemental Methods). The samples for the single‐cell
analysis were then prepared following the protocol from 10x Geno-
mics and loaded on the Chromium platform for library preparation
according to the manufacturer's instructions. Next‐generation se-
quencing was performed on the 10x Genomics Chromium Illumina
NextSeq. 550 platform according to Illumina standard procedures.
The Cell Ranger software (version 4.0.0) was used to demultiplex raw
sequencing data and align reads to the GRCh38 human reference
genome using default parameters, and feature count matrices for a
single library were produced.16 Each single‐cell expression matrix was
further analyzed in the R program environment (version 4.0.5) with

F IGURE 1 Single‐cell RNA‐seq of human CD19+ bone marrow B cells in Waldenström's macroglobulinemia (WM) patients. (A) Schematic overview of the

experimental strategy. (B) Box plot representing the distribution of the number of genes detected per cell in each data set (left) and Uniform Manifold Approximation

and Projection (UMAP) visualization of the panoramic integration of the nine single‐cell data sets (right) with cells colored according to the donor ID or patient ID.

(C) Bar plot of the number of cells per sample (left) and UMAP visualization of the panoramic integration of the nine single‐cell data sets (right) with cells colored

according to the condition of each individual (healthy, MYD88MUT, and MYD88WT WM patients).
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the package “Seurat” (version 4.0.2).17 Detailed descriptions of the
methods can be found in the Supporting Information.

RESULTS

Single‐cell transcriptional profiles of the two
genetically distinct WM patients

We performed droplet‐based single‐cell RNA sequencing of the nine
CD19+ sorted BM samples (MYD88MUT, n = 5), MYD88WT, n = 2 and
HDs, n = 2) (Figure 1A). After filtering cells using standard quality
controls, we analyzed a total of 40,087 single CD19+ B cells (26,976
from MYD88MUT patients, 8155 from MYD88WT patients, and 4956
from the HD), with an average of 4454.11 (range: 1956–7731) cells
for each sample. A total of 19,734 different gene transcripts with an
average of 116,688 (median: 1099, range: 202–2499) genes for each
cell were identified (Figure 1B).

We applied Scanorama to merge nine scRNA‐seq data sets: two
from healthy donors (n = 1956, n = 3000 cells), five from MYD88MUT

WM patients (n = 3080, n = 6455, n = 4478, n = 5232, n = 7731 cells),
and two from MYD88WT WM patients (n = 3242, n = 4913 cells).
Merging patient data sets using Scanorama's18 integrative framework
and visualizing cells using Uniform Manifold Approximation and
Projection (UMAP) plots, we observed that cells were grouped by
condition: the majority of the cells originating from HD samples
grouped together, the majority of the cells originating from MYD88WT

patients also grouped together while the majority of the cells origi-
nating from MYD88MUT patients formed different clusters with a
smaller amount of overlapping cells with the other data sets, sug-
gesting heterogeneity within the MYD88MUT cohort (Figure 1C).

Light chain restriction distinguishes clonal from
polyclonal B cell population

To further distinguish the clonal (malignant) from the polyclonal
(nonmalignant) B cell population in each patient, we characterized
each B cell as kappa or lambda positive according to its (IGKC) fraction
IGLC‐fraction (IGKC/(IGLC2+IGKC)), based on the expression of IGKC
and IGLC2 genes. The reason we selected IGLC2 isotype is due to the
fact that it was the only informative IGLC isotype among the rest
(IGLC1, IGLC3, IGLC4, IGLC5, IGLC6, and IGLC7) (Supporting In-
formation S2: Figure 1A). The IGLC2 gene is one of the functional
isotypes among the constant lambda genes in the human genome. Its
specific expression plays a significant role in immunoglobulin light
chain formation.19,20 We identified each patient's B cell sub‐clusters,
and we calculated the ratio of kappa positive to lambda positive B
cells (κ/λ ratio) in each B cell subcluster, in order to characterize each
patient's subclusters as clonal or nonclonal (healthy). According to
serum immunofixation, three out of seven patients were of lambda
while four were of kappa isotype. This analysis validated the im-
munofixation results and clonal B‐cells from kappa and lambda

patients clustered uniformly highly expressing kappa and lambda light
chain, respectively (Figure 2A,B, Supporting Information S2: Fig-
ure 1B–H). As expected, cells from HDs were evenly distributed along
the IGKC‐fraction axis with an average ratio of 53.86% of kappa‐
positive B cells (B cells expressing the IGKC gene with IGKC‐
fraction > 0.5) expression typically seen in normal B cells (Figure 2C,
Supporting Information S2: Figure 1Ι–K). Of note, in one IgMλ
MYD88MUT patient (Patient_1, Figure 2A), a small cluster of B cells
expressing the kappa light chain gene (IGKC) was also observed. In
retrospect, a reevaluation of immunofixation electrophoresis in-
dicated that a faint k‐light chain may have been present. Overall, our
results show high rates of tumor cell purity (Figure 2D) (mean: 0.941,
median: 0.935, range: 0.888–1) with only a small fraction of poly-
clonal B cells within the patient samples (Figure 2E). Clonality as-
sessment using κ:λ ratios was also concordant with the FACS results
(data not shown). Overall, our results show high rates of tumor cell
purity (Supporting Information S2: Figure 2A) (mean: 0.941, median:
0.935, range: 0.888–1) with only a small fraction of polyclonal B cells
within the patient samples.

We visualized the expression levels of the heavy chain genes

across clusters from both patients and HDs using a heatmap. Hier-

archical clustering was also conducted row‐wise (gene‐wise) and

column‐wise (cluster‐wise), utilizing the scaled and averaged gene

expression values. The outcome of our clustering revealed a uniform

expression of IGH and IGL genes among clusters within each patient

(Supporting Information S2: Figure 2B). Furthermore, we have se-

lected the most aberrantly expressed IGH and IGL genes for each

patient and produced violin plots, indicating their expression among

the healthy and malignant clusters (Supporting Information S2:

Figure 2C).
Annotation of malignant and normal cells was further validated

by calculating copy number variations (CNV) using inferCNV scores of

each cell. InferCNV is used to explore tumor single‐cell RNA‐Seq data

to identify evidence for large‐scale chromosomal CNVs, such as gains

or deletions of the entire chromosome or large segments of chro-

mosomes. Our analysis showed that inferCNV scores were sig-

nificantly higher in malignant cells (inferCNV score = 51.89) compared

with healthy B cells (for HD samples and patients, inferCNV score =

38.70) (Supporting Information S2: Figure 2C). Unpaired Wilcoxon's

test was performed between the inferCNV scores of malignant and

healthy clusters. These findings highlight the ability of sc‐RNA seq

analysis to dissect clonality.

Sc RNA‐seq identifies multiple B cell stages within
patients and HDs

To identify shared cell populations among patients and HD, char-
acterize potential intra‐cluster cell state changes, and identify the B
cell composition of WM patients, we performed an integrated ana-
lysis of the B and pro/pre‐B cells of all samples. Using Harmony
integration analysis and applying Louvain clustering (with resolution

F IGURE 2 Identification of malignant and healthy cells in MYD88MUT and MYD88WT Waldenström's macroglobulinemia (WM) patients and healthy donors. For

each healthy donor (HD) and WM patient, we present two plots: On the left, a Uniform Manifold Approximation and Projection (UMAP) dimensionality reduction plot

coloring each single B cell according to its IGKC‐fraction: IGKC/(IGKC+IGLC2): kappa‐positive B cells (IGKC‐fraction > 0.5) are colored in blue and lambda‐positive B

cells (IGKC‐fraction < 0.5) are colored in red. On the right, a scatter plot displays the IGKC‐fraction of each cell along the y axis, with cells assigned to donor/patient

clusters along the x axis. The malignant clusters contain B cells homogeneously expressing the kappa or lambda light chain in each patient and are annotated as

“Clonal clusters.” The nonmalignant healthy B cell (hB) clusters contain both kappa‐positive and lambda‐positive B cells; these variably colored clusters are circled on

the UMAP plots (left) and annotated on the scatter plot (right) as “Healthy B cells.” The generated plots of (A) the patients expressing IGLC, (B) the patients expressing

IGKC, and (C) the HDs are presented.
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0.4) based on the single‐cell RNA expression profile of pro/pre‐B‐
cells and B cells from all nine samples we jointly visualized them in the
UMAP plot (Figure 3A). A heatmap graph showing the scaled average
expression of the 10 marker genes in each cluster is shown in Fig-
ure 3B, providing a visual representation of clusters that share highly
expressed markers. We used unsupervised clustering to partition B
cells into transcriptionally distinct subsets, which were then anno-
tated by differentially expressed marker genes. Most cells corre-
sponded to the B cell repertoire based on the gene expression of
MS4A1 (CD20) and CD79A genes. Specifically, we identified pro B
cells (accounting for 1.31% of total cell counts, characterized by the
overexpression of VPREB1 and MME genes, pre B cells (accounting
for 2.86% of total cell counts) characterized by the expression of
VPREB1, MME, DNTT, and RAG1 genes, a naïve B cell subpopulation
characterized by the overexpression of IGHD and IGHM, which ac-
counted for 15.42% of the total cell counts, a nonswitched (ac-
counting for 55.07% of total cell counts) characterized by the
expression of IGHM but not IGHD and CD27, a switched memory B
cell subpopulation (accounting 19.31% of total cell counts) char-
acterized by the expression of CD27 and JCHAIN and a plasmablast
subpopulation characterized by the overexpression of JCHAIN and
XBP1 genes (Figure 3C). Memory B cells (switched and nonswitched)
represented the majority of the B cell population with a frequency of
74.38% of total cells. Based on the expression of known marker
genes in addition to the top differentially expressed genes for each
cluster, we classified our clusters within 10 broad B cell subpopula-
tions, ranging from pro‐B cells to plasmablasts (Figure 3D). A detailed
bar plot representing the frequency of each cell type in all samples is
shown in Figure 3E.

Pseudotime analysis of B cell development trajectory

To understand the relationship between B cell developmental
states and changes in gene expression over the time trajectory, we
performed single‐cell trajectory analysis using Monocle.21 Trajec-
tory analysis allowed the determination of the B‐cell stage com-
position within the integrated analysis. Pseudotime values were
calculated to establish a developmental trajectory (Figure 4A). The
analysis showed that two principal stages, distributed in four
branches, took place. More specifically, in the first principal stage,
which is only seen in MYD88MUT patients, naïve B cells originate
from pro/pre‐B cells, and transit through the nonswitched memory
B cells and the mature/switched memory B‐cell state into plasma-
blasts. In the second stage (seen in HDs and MYD88WT patients),
naïve B cells still originate from pro/pre‐B cells, they proceed to
nonswitched memory B cells, however, they do not proceed to
switched memory B cells and plasmablasts (only a few cells appear
in these stages) (Figure 4B). Once the cells were placed in order
according to their pseudotime values, we searched for genes whose
expression changes as the cells move along the pseudotime and
we grouped together genes that have similar trends. We con-
structed a heatmap to explore dynamic expression changes of
genes associated with cellular transitions (Figure 4E). The group of

genes in group 1 is mainly differentially expressed at the early
stages of the pseudotime with a gradual decrease as we move along
to the next stages and is mainly involved in STAT6, JUNB, and MYC
signaling pathways. The group of genes differentially expressed in
the middle of pseudotime is mainly involved in IL‐2 signaling,
TCF4, and MYC signaling pathways. Almost all genes differentially
expressed at later stages of the pseudotime (mostly seen in
MYD88MUT patients) primarily driven by RPL genes are involved in
the MYC pathway. Finally, at the last stage of the pseudotime,
which is mainly seen in MYD88MUT patients, the differentially
expressed genes are mainly involved in KRAS, TNFα, and p53
pathways. The top 25 Gene Ontology (GO) biology processes are
shown in Figure 4F that demonstrate significant enrichment in
protein localization to endoplasmic reticulum, protein targeting, and
RNA catabolic process.

B cell composition in MYD88WT and MYD88MUT

patients

We next aimed to determine the transcriptional differences seen
between the two genetically distinct WM patient groups. To this end,
we split the samples into condition‐based cohorts (HD, MYD88MUT,
MYD88WT) within the integrated data set to identify distinct cell po-
pulations among patients and HD and to characterize potential intra‐
cluster cell state changes (Figure 5A). Our results show that the B cell
composition of the MYD88MUT cohort of patients comprises six B cell
subtypes, as described above, while the B cell composition of the
MYD88WT cohort is mainly restricted to four B cell subtypes.
MYD88WT cohort seems to resemble the HD cohort, where clusters
comprising the switched memory B cells are restricted and the naïve
B cell composition is overexpressed compared with other cell types.
To further demonstrate the observable differences seen between the
two genetically distinct WM groups, we split the samples into in-
dividual patients and HDs within the integrated data set (Figure 5B,
Supporting Information S2: Figure 3). Our results show that the B cell
composition of the HDs and the MYD88WT patients (patients 2 and 7)
share almost the same transcriptional profile where both HDs mostly
express naïve B cell population accompanied with a moderate ex-
pression of pre‐B cells and a cluster of nonswitched memory B cells
while both MYD88WT patients mostly express pre/pro, naïve and
nonswitched memory B cells with a median expression of plasma-
blasts. In contrast, MYD88MUT patients seem to have a more het-
erogeneous transcriptional profile, which can be divided into two
subgroups. Three out the five MYD88MUT patients (patients 3, 4,
and 6) have an enriched population of switched memory B cells and
plasmablasts in addition to a cluster of nonswitched memory B cells
but with a minimal population of naïve B cells while two out of the
five MYD88MUT patients (patients 1 and 5) have no population of
switched memory B cells and plasmablasts but are more enriched in
naïve and part of nonswitched memory B cells. Pro/pre‐B cells in all
five MYD88MUT patients are almost absent. Switched memory B cells
demonstrated significant expression for genes, such as NEB, PCDH9,
MAN1A1, FGL2 HCK, CCND2, and MARCKS (Figure 5C).

F IGURE 3 Integration analysis of human CD19+ bone marrow B cells fromWaldenström's macroglobulinemia patients and healthy donors and identification

of B cell types present in all data sets. Uniform Manifold Approximation and Projection (UMAP) visualizations after integration (Harmony) of the nine scRNA‐seq
data sets and clustering (Seurat3 Louvain algorithm) on the integrated data set. (A) Each point represents a cell that is colored according to its cluster.

(B) Expression heatmap of the top 10 markers (or all markers if less than 10) for each cluster. Purple to yellow indicates low to high levels of gene expression.

(C) Gene feature plots show the expression of significant gene expression markers for each cell. (D) Each cluster is classified into one of the broad B cell

subpopulations, ranging from pro‐B cells to plasmablasts using canonical markers to match the unbiased clustering to known B cell types. (E) Bar plot

representing the percentage of each cell type in all samples.
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F IGURE 5 B cell type composition of the MYD88MUT and the MYD88WT Waldenström's macroglobulinemia patients. Uniform Manifold Approximation and

Projection (UMAP) visualization of the integrated data set (A) according to the condition (healthy donor [HD], MYD88MUT, or MYD88WT) and (B) in individual patients

and HDs. Each point represents a cell colored according to its B cell type. Violin plots display the expression of representative B cell markers in each cell type.

F IGURE 4 Single‐cell trajectories inWaldenström's macroglobulinemia (WM) patients and healthy donors (HDs). Cells are ordered along a pseudotime trajectory

(assigned by the Monocle 2 algorithm) and the trajectory is visualized in the reduced dimensional space. Each point represents a cell colored according to: (A) its

pseudotime value (pseudotime values establish a developmental trajectory, bold blue indicates the earliest pseudotime of the trajectory while lighter blue the latest)

and (B) the condition (HD, the MYD88MUT and the MYD88WT WM patients). (C) The differentially expressed genes (rows) along the pseudotime (columns) were

clustered hierarchically into five gene groups. (D) Enrichment analysis of pseudotime‐dependent genes in all gene groups.
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Transcriptional differences between clonal and normal
B cells across patients and HDs

To investigate the differences between clonal and normal B cells, we
performed differential expression (DE) analysis to detect differences
in gene expression between the clonal and the normal B cells pre-
viously identified. We compared the clonal to normal/polyclonal
subpopulation using Seurat's function FindMarkers and found 132
differentially expressed genes (DEGs) excluding genes that are related
to Ig chains with log2FoldChange < −0.6 (downregulated genes),
log2FoldChange > 0.6 (upregulated genes), and p value < 0.05. Our
analysis showed upregulation of genes typically expressed in WM B
cells, such as MS4A1, CD79A, CD79B, and BCL2. In addition to these
genes, our analysis identified genes that have been less well char-
acterized in WM. The top five upregulated DEGs by log2FC value
included JCHAIN, SYNE2, ITM2B, NEB, and TTN (Figure 6A).
The JCHAIN gene is involved in creating the binding site for pIgR/SC
in the Ig polymers by interacting directly with the receptor pro-
tein.22,23 Therefore, JCHAIN plays a key role in secretory immunity.24

SYNE2 is involved in cyclin‐dependent kinase inhibition and poten-
tially associated with B cell signaling or B cell malignancy. ITM2B is a
target of BCL6 repression in lymphoma, which is crucial for germinal
center B cell development.25 The top downregulated genes are SOX4,
NEIL1, BCL7A, CD83, and HIF1A (Figure 6A). SOX4 is important in
maintaining the survival of pro‐B cells26 while the NEIL1 gene parti-
cipates in the DNA repair pathway and deficiency of the NEIL1 gene
has demonstrated reduced germinal center B cell activity.27 BCL7A
protein is highly expressed in the nuclei of GC B lymphocytes, while
mutations in the BCL7A gene are recurrently found in DLBCL.28–30

CD83 gene is located in chromosome 6q and is commonly affected in
WM10 while HIF1A expression is high in pro‐B and pre‐B cells and
decreases at the naive B cell stage.31 Heatmap analysis showed that
the main biological processes of the DE genes include B cell activa-
tion, B cell differentiation, and regulation of hemopoiesis (Figure 6B).
GO comparative analysis showed that distinct pathways, including
NFκΒ, BCL2, BTK, and MYD88 pathways display differentially regu-
lated genes in the MYD88MUTcompared with the MYD88WTclones,
which could provide better insights into specific genes within these
pathways that may be involved in disease transformation and re-
sponse to therapy (Figure 6C).

MYD88MUT and MYD88WT clonal B cells are
transcriptionally distinct from normal B cells within
patients

In order to evaluate intratumor heterogeneity, we performed DE
analysis of malignant and normal B cell populations within our patient
cohort; that is, for each patient we compared the malignant B cells to
their own healthy B cells. This allowed us to individually characterize
the unique transcriptional landscape of each patient, which may not

be shared across all patients, giving the ability to reduce potential
confounding effects that would occur when comparing neoplastic
cells to normal cells of HDs. Six patients (four MYD88MUT and two
MYD88WT) had both malignant and normal B cell populations; one
MYD88MUT patient had only clonal B cells. From the above six pa-
tients, five had significant DEGs between populations with log2-
FoldChange < −0.6 (downregulated genes) or log2FoldChange > 0.6
(upregulated genes) and p value < 0.05) (Figure 7A). Overall, our
analysis identified 899 DEGs, of which only 92 genes (10.2%) were
found in the bulk malignant versus normal DE analysis described
above (Figure 7B). We found the PCDH9 gene to be exclusively dif-
ferentially expressed in individual patients but also genes that are
mutually affected across a number of patients, such as the upregu-
lation of JCHAIN, the upregulation of NEB, and the downregulation of
SOX4 and BCL7A. PCDH9 gene has been previously reported as being
downregulated in nonnodal mantle cell lymphoma and glioblastoma
as a result of gene copy number alterations.32,33 Furthermore, 16
common genes were identified to be commonly expressed in
MYD88WT patients, including genes, such as CD84, FGR, PTMA,
H3F3A, FCRL3, EGR1, FCRER2, and PLD4, which were not found in
MYD88MUT patients (Figure 7C). Notably, in comparison to the gen-
eral malignant versus normal DEG analysis, we identified DEGs that
were commonly upregulated or downregulated inMYD88MUT patients
and were not affected in MYD88WT patients and vice versa. Hence,
we identified the upregulation of JCHAIN in two out of four
MYD88MUT patients which was downregulated in both MYD88WT

patients. Furthermore, we identified that ITM2B, SYNE2, MAN1A1,
FGL2, and GLCC1 were upregulated (log2FC > 0.6) in three out of four
MYD88MUT patients and in none of the MYD88WT patients. MAN1A1
gene is located in chromosome 6q and has been found to be com-
monly affected in WM patients due to the 6q clonal loss. Regarding
the FGL2 gene, it has been shown to be highly overexpressed in a
subset of WM cases, suggesting that WM cells may be responsive to
cytokine signaling through T‐cell receptors.34,35 From this analysis,
we also identified the downregulation of the NEIL1 gene in MYD88WT

patients but not in MYD88MUT patients. Furthermore, the ARID5B
gene was downregulated in three out of four MYD88MUT patients and
in none of the MYD88WT patients. Finally, the CXCR4 gene was up-
regulated in two out of four MYD88MUT patients and downregulated
in one out of two MYD88WT patients although all patients harbored
CXCR4WT genotype.

Furthermore, using Bayesian Non‐Negative Matrix Factorization
(BNMF), we extracted gene expression signatures that were active in
our cohort. The BNMF approach helped us to identify groups of
genes with shared activity in single cells and examine how signature
activity varies between patient samples and between subpopulations
of cell clusters in our data set. We highlighted three interesting gene
signatures across all B cells in our cohort, each of which represents a
pattern of gene expression recurrently occurring across cells in our
data set (Figure 7D, Table 1). In addition, we observe a higher ex-
pression of the BCL2L11 gene in the cell populations of HDs while the

F IGURE 6 Differential gene expression across neoplastic and healthy cells (pseudobulk approach). (A) MA plot representing log2 fold‐change (y axis) versus log2

mean expression (x axis) between healthy and neoplastic cells. Each point represents a gene; the genes with log2 fold‐change > 0.25 or log2 fold‐change < −0.25 have

been plotted. Genes with log2 fold‐change within the range −0.25 to 0.25 are not shown. Red lines show differential expression thresholds for upregulated genes

(log2FoldChange > 0.6) and downregulated genes (log2FoldChange < −0.6). p Value threshold: p value < 0.05. (B) Heatplot visualization of the Functional Enrichment

analysis of the differentially expressed genes between healthy and neoplastic cells. Enrichment Gene Ontology categories after false discovery rate control are shown

on the x axis. Genes involved in these significant categories are shown on the y axis. (C) Network visualizations of distinct genes involved in WM biology and

pathogenesis (BCL2, MYD88, NFKB1, and BTK) and their interactions with other differentially expressed genes across cells from MYD88WTand MYD88MUT patients.

Gray lines indicate protein–protein interactions of gene products using experimentally validated interactions from the STRING database.
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F IGURE 7 (See caption on next page).
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distribution probability of patient cells expressing BCL2L11 is
extremely low (Figure 7E).

DISCUSSION

In this study, we have used sc‐RNA sequencing technology to in-
vestigate the intratumor heterogeneity of WM B cells in MYD88MUT

and MYD88WT patients. To the best of our knowledge, few studies
have performed single‐cell transcriptome analysis in WM pa-
tients; however, this is the first study to focus on the transcriptome of
MYD88WT and MYD88MUT patients at the single‐cell level.36,37 Most
importantly the characterization of MYD88WT WM, an infrequent
subtype of WM, is particularly interesting as it has been shown to be
associated with increased risk for disease transformation and relative
resistance to ibrutinib. Hence understanding the molecularly driven
underlying mechanisms of these distinct genetic subtypes of WM
patients is critical for developing informed criteria for patients who
would benefit from alternative therapies and frequent monitoring.
We analyzed the transcriptomes of individual cells from seven WM
and two HD, sampling on average 4500 cells per sample. This allowed
significant observations regarding clonal heterogeneity. Notably,
among MYD88MUT patients the transcriptome profile was more het-
erogeneous compared with that of patients with MYD88WT genotype
as visualized by the clustering proximity where the majority of the
cells originating from the MYD88MUT samples formed three relatively
remote clusters while cells from the MYD88WT patients almost clus-
tered in one group of cells.

Precise labeling of normal and neoplastic B cells in each WM
patient is a significant challenge since conventional sorting of B cells
from the BM will almost always include some normal B cells with the
same Ig light chain as the tumor. However, using the sc‐RNA seq‐
based tumor B cell classification with the kappa/lambda light chain
fraction ratio restriction, we were able to directly compare the tran-
scriptomes of a purely malignant to a normal B cell population from
the same sample. This overcomes to a significant degree the limita-
tions of studies performing bulk analysis, which are likely influenced
by the contamination from normal B cells. With sc‐RNA seq the
distinction of normal versus neoplastic B cells within individual pa-
tients was applicable. Through the distinction of clonal from poly-
clonal cells, we were able to identify genes that were differentially

expressed, which were not discovered by the “bulk” clonal versus
normal B cell DE analysis, such as FGR, CD84, and FCER2, which are
involved in the BTK pathway.

To characterize potential intra‐cluster cell state changes, using
the integrated analysis in the entire cohort of patients and HDs, we
identified ten clusters representing six transcriptionally distinct B cell
stages. We observed that the B cell composition in the MYD88MUT

patients varies: a group of patients is characterized by the expression
of all six B cell stages while another group mainly expresses four B
cell stages, almost missing the switched memory B cell and plasma-
blast population. From the clinical point of view, our MYD88MUT pa-
tients (n = 2) with restricted switched memory B cell and plasmablast
population seem to have a more inferior response to ibrutinib therapy
(in terms of IgM response) compared with the MYD88MUT patients
expressing all six B cell stages (n = 3). In contrast, the B cell compo-
sition in MYD88WT in the two patients was almost homogeneous and
transcriptionally comparable to the subgroup of MYD88MUT patients
with restricted switched memory B cell and plasmablast population,
mainly through the expression of CD27 and JCHAIN genes. CD27, one
of the top genes of the switched memory B cell signature, has been
previously discussed inWM literature with variable expression inWM
cells.38 Studies have shown that WM malignant B cells are scattered
throughout CD20+CD27+ and CD20+CD27− B‐cell compartments,
with the most residing in the CD20+CD27− subset.39 Another study
showed that somatically hypermutated WM tumor cells can lack
CD27 expression, raising suggestions of unusual memory B‐cell
origins.40 On the other hand, JCHAIN is expressed mainly in plasma
cells regardless of immunoglobulin isotype;41–43 however, this
molecule has not been studied extensively, partly due to technical
limitations. The role of JCHAIN is to join the five monomeric subunits
of secreted pentamer IgM in humans. Hexameric IgM was discovered
in patients with different disorders like WM44,45 and unlike the
pentameric IgM, hexamer is characterized by the absence of
JCHAIN.46 Hence the DE of JCHAIN and CD27 genes between tumor
cells in our cohort of patients might provide some clinical insights into
these patients; however, a larger cohort with sc‐data needs to be
tested to verify these results.

CXCR4 is a key gene in WM biology and mutations are present in
almost 40% of patients with WM10,47,48 with important clinical im-
plications, including ibrutinib resistance.49 Our sc‐data show that
CXCR4 expression varies not only among MYD88WT and MYD88MUT

TABLE 1 Highlighting signatures associated with disease biology.

Signature top genes Description Patients

JCHAIN, MZB1, FKBP11, TXNDC5 KLF12 and FOXP1 function All

MACF1, FGR, TNFRSF1B, ECE1, HIVEP3 RUNX1 function MYD88WT

LMO4, GADD45A, CAMK2N1, KCNN3,
TAS1RE, IL6R

Normal hematopoiesis MYD88MUT: Patient_3, Patient_4,
Patient_6.

F IGURE 7 Quantification of DEGs within each patient's neoplastic versus healthy cells and in the general neoplastic versus normal cells. (A) Volcano plot to

represent log2 fold‐change (x axis) versus statistical significance (−log10(p‐adjusted value)—y axis) between healthy and neoplastic cells from only the WM

patients. Each point represents a gene; the genes with log2 fold‐change > 0.25 or log2 fold‐change < −0.25 have been plotted. Genes with log2 fold‐change
within the range −0.25 to 0.25 are not shown. Red lines show our differential expression thresholds for upregulated genes (log2FoldChange > 0.6) and

downregulated genes (log2FoldChange < −0.6) and the significance threshold: −log10(p‐adjusted‐value) < 0.05. (B) Venn diagram representing the overlap of

DEGs using the within‐patient DE approach with the DEGs found using the pseudobulk DE approach comparing all neoplastic to healthy cells (derived from the

patients only). (C) UpSet plot displays the intersections between the DE gene sets in each patient and in all cells. The rows correspond to the sets and the

columns correspond to the intersections. (D) Top 10 genes for three selected gene signatures. Each gene's strength of contribution is plotted on the x axis.

Signatures with top contributions from JCHAIN, MZB1, MACF1, LMO4. Violin plots indicate in which patients each gene is most active. (E) Violin plot indicating

BCL2L11 gene activity in healthy donors and patients.
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patients but also among MYD88MUT patients. CXCR4 expression is
mainly detected in the switched memory B cell subpopulation with
minimal expression in the naive and pro/pre‐B cell subpopulations.
Hence two out of the three MYD88MUT patients with distinct ex-
pression of switched memory B cell subpopulation were coupled with
high CXCR4 expression while in one out of the two MYD88WT pa-
tients, CXCR4 expression was downregulated. Given the fact that
patients harboring MYD88L265P mutation express significantly higher
levels of CXCR4 compared with MYD88WT patients,50,51 this might
provide us some biological insights on CXCR4 expression‐dependent
ibrutinib response since all patients included in this analysis were wild
type for CXCR4 mutations.

In terms of B cell development trajectory, our analysis showed
that the harmony integrated and the monocle data set platforms have
a high degree of overlap in terms of the B cell composition and ex-
pected timing of the developmental stages, but more importantly,
that specific pathways are activated at earlier stages of B cell dif-
ferentiation, such as MYC, JUNB, and STAT6, whereas pathways in-
volving TP53, KRAS, and TNFα are activated at late stage
differentiation of B cell development.

In summary, our single‐cell data in WM indicates unique gene
expression signatures differentiating the two major genetically dis-
tinct types of WM patients. It also reveals heterogeneity among the
intra‐tumor cell populations, which could explain differential re-
sponses to certain drugs (such as BTK inhibitors or anti‐CD20 MAbs).
Despite the small number of patients, we believe that our study is of
high clinical relevance. However, further studies are required to de-
cipher the clinical importance of the observed heterogeneity and to
provide further mechanistic insights into the differences in the biol-
ogy and clinical presentation of patients with MYD88WT versus those
harboring MYD88MUT.
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