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Abstract: Herein, we report the application of allyl acetate
to the palladium-catalysed dearomatising diallylation of in-
doles. The reaction can be carried out by using a readily
available palladium catalyst at room temperature, and can
be applied to a wide range of substituted indoles to provide
access to the corresponding 3,3-diallylindolinines. These
compounds are versatile synthetic intermediates that readily
undergo Ugi reactions or proline-catalysed asymmetric Man-

nich reactions. Alternatively, acylation of the 3,3-diallylindoli-
nines with an acid chloride or a chloroformate, followed by
treatment with aluminium chloride, enables 2,3-diallylindoles
to be prepared. By using ring-closing metathesis, functional-
ised spirocyclic indoline scaffolds can be accessed from the
Ugi products, and a dihydrocarbazole can be prepared from
the corresponding 2,3-diallylindole.

Introduction

Medicinal chemistry has traditionally focused on the synthesis
of aromatic heterocycles and related derivatives as lead com-
pounds due to their drug-like physical properties and synthetic
accessibility. However, it is widely considered that an increasing
focus on three-dimensional structures, which incorporate
a greater proportion of sp3 carbons, is probably desirable,[1] in
order for medicinal chemistry programmes to be successful
against more complex drug targets. Whilst natural products
can provide suitable three-dimensional functionalised architec-
tures, such compounds are often highly complex, difficult to
synthesise, and display undesirable physical properties. As
a consequence, there is considerable interest in the develop-
ment of synthetic routes to access small chiral saturated rings
including cyclopropanes,[2] oxetanes[3–4] and azetidines,[5] as
well as benzofused heterocyclic systems, such as indolines[6]

and dihydrobenzofurans.[7] In addition, the incorporation of
these motifs into spirocyclic frameworks can lead to increased
molecular complexity whilst maintaining a relatively low mo-
lecular weight.[4, 8] Such systems can potentially provide a struc-
turally rigid three-dimensional core, which can be functional-
ised at several sites to provide a library of drug-like com-
pounds. Herein, we report a short synthetic route to convert

readily available indoles into polyfunctionalised spirocyclic in-
dolines,[9] which enables the incorporation of functional groups
at a variety of different positions in the scaffold.

We envisaged that introduction of two allyl groups at the 3
position of an indole core, with concomitant dearomatisation,
would enable the formation of a diallylindolinine. Such a com-
pound is potentially a very versatile synthetic intermediate
that can undergo reactions with a variety of nucleophiles and
electrophiles at the imine moiety, cross-coupling/C�H function-
alisation reactions on the aromatic ring, and can be readily
converted into a spirocyclic alkaloid-like structure by ring-clos-
ing metathesis (Scheme 1). Given the large number of indoles

that are readily available commercially, a diverse range of func-
tionalised spirocylic scaffolds could readily be constructed. The
spirocyclic ring structure embedded in these scaffolds has not
been widely explored in existing drugs,[10] though it forms part
of the polycyclic frameworks of the ajmaline alkaloid natural-
product family,[11] which contains compounds possessing anti-
arrhythmic[12] and antiplasmodial activity,[13] some of which
have found application in medical treatment.

Our synthetic plan involved the development of a Pd-cata-
lysed allylation procedure to achieve regioselective introduc-

Scheme 1. Proposed synthetic route to spirocyclic indolines (RCM = ring-
closing metathesis).
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tion of the allyl groups in a dearomatising reaction, to gener-
ate the desired isoindolinine. Whilst there is good precedent
for the Pd-catalysed allylation of indoles with a range of allyl
sources,[14–18] and even for the dearomatising allylation of 3-
substituted indoles with allyl carbonates, with allyl alcohols in
combination with organoboranes[15] or by rearrangement of N-
alloc protected indoles,[14, 19–22] the direct use of allyl acetate in
such reactions has proved challenging to date.[23] Although
highly activated allylic esters containing two conjugated aro-
matic rings can be successfully used in Pd-catalysed allylation
reactions,[24] there is only a single report of the Pd-catalysed re-
action of indole 1 a with allyl acetate 2, and the reaction was
reported to produce a relatively complex mixture of N and C
allylated products 3 a–6 a from which 3-allylindole 4 a was iso-
lated in up to 54 % yield.[23] Allyl acetate is a considerably
cheaper starting material than the carbonates and carbamates
typically employed, because it is a bulk chemical that can be
prepared on an industrial scale by direct acetoxylation of pro-
pene.[25] Therefore, we decided to explore whether it could be
successfully employed in the direct Pd-catalysed diallylation of
indole.

Results and Discussion

An initial test reaction of indole with Pd catalyst, 1,1’-bis(diphe-
nylphosphino)ferrocene (dppf) ligand, allyl acetate 2 and K2CO3

led to the formation of a mixture of the desired product 3 a, 3-
allylindole 4 a, as well as traces of 1,3-diallylindole 6 a
(Scheme 2; Table 1, entry 1). By increasing the number of
equivalents of allyl acetate, a higher conversion was observed

(entry 2), though large quantities of allyl acetate appeared to
significantly slow down the reaction (entry 3). In the absence
of base, no conversion to either 3 a or 4 a was seen (entry 4).
By increasing the quantity of base in the reaction to three
equivalents, and by employing five equivalents of allyl acetate,
almost complete conversion of indole into 3 a and 4 a was ob-
served with 3 a becoming the major product (entry 5). The
choice of ligand proved to be critical to controlling both the
reactivity and the product distribution. A range of bidentate
phosphines were explored, with ethylenebis(diphenylphos-
phine) (dppe) proving to be very ineffective (entry 6) and both
(2,2’-bis(diphenylphosphino)-1,1’-binaphthyl) (BINAP) and 4,5-
bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos) lead-
ing to lower conversions and selectivity in comparison to dppf
(entries 7 and 8). However, with bis-[2-(diphenylphosphino)-
phenyl]ether (DPEPhos), we were able to obtain an excellent
conversion to the desired diallylindolinine 3 a with very high
selectivity (entry 9). Pleasingly, an 82 % isolated yield of 3 a
could be obtained with only 5 mol % palladium catalyst at
room temperature.

With practical conditions in hand, we went on to explore
the scope of this dearomatising double allylation reaction
(Scheme 3). A wide range of substituted indoles 1 a–o were

Scheme 2. Screening of reaction conditions for the diallylindolinine forma-
tion.

Table 1. Screening of reaction conditions.

Entry K2CO3 [equiv] 2 [equiv] Ligand (5 mol %) Conv. [%]
(yield [%] 3 a)

Ratio
3 a/4 a[a]

1[b] 2 1.5 dppf 53 (15) 1:2
2[b] 2 2.2 dppf 62 1:1
3[b] 2 7 dppf 29 1:5
4[b] 0 5 dppf 0 –
5[c] 3 5 dppf >95 2:1[d]

6[c] 3 5 dppe 13 –
7[c] 3 5 rac-BINAP 63 (45) 1:1
8[c] 3 5 Xantphos 76 (47) 5:3
9[c] 3 5 DPEPhos >95 (82) >10:1[d]

[a] Determined by 1H NMR. [b] Reaction was performed at 40 8C. [c] Reac-
tion was performed at RT. [d] Small quantities of 6 a were also observed. Scheme 3. Scope of the Pd-catalysed diallylation reaction. [a]Reaction per-

formed at 50 8C for 8–24 h.
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converted to the corresponding diallylindolenines 3 a–o in
generally good to excellent yield. Notably, the reaction was tol-
erant of alkoxy or alkyl substituents at any position on the
benzene ring (3 b–g). However, the allylation reactions of sev-
eral haloindoles were somewhat sluggish at room temperature,
requiring heating at 50 8C in order to obtain reasonable yields
of the desired product (3 h-.j).[26] Pleasingly, the presence of
a substituent at C-2 did not impair the reaction, despite the
potential steric crowding around the reaction site (3 l–o). The
presence of a tert-butyldimethylsilyl(TBS)-protected alcohol at
C-2 was compatible with the reaction, giving a good yield of
the diallylindolinine 3 o considering the presence of this rela-
tively large substituent so close to the newly formed quaterna-
ry carbon centre. As was anticipated, electron-rich indoles
were generally better substrates for the reaction (3 b, d, f, m).
In contrast, highly electron-deficient systems did not form the
diallylindolinine at all, with the N-allylindoles 7 a and 7 b being
obtained as the major product from reactions of 5-nitroindole
and 2-methyl-5-nitroindole, respectively. No allylation or dially-
lation of N-methylindole was observed under these conditions,
demonstrating that a free NH is essential for the reaction to
take place.

Given the difficulties initially encountered with achieving se-
lectivity in the indole allylation reaction, we recognised that
several different reaction pathways may be operative
(Scheme 4). A likely possibility is that the reaction proceeds di-
rectly through allylation at C-3 to give 4 a, followed by
a second allylation at C-3 to give the diallylindolinine 3 a. How-
ever, it was also possible that 4 a might undergo N-allylation to
give 6 a, followed by a (potentially Pd-catalysed) rearrange-
ment to generate diallylindolinine 3 a. Conversely, the by-prod-
uct 6 a may be formed by rearrangement of 3 a. In this latter
case, the yield of 3 a would be eroded during prolonged expo-
sure to the reaction conditions as it was gradually converted
into the undesired by-product 6 a. Furthermore, initial N-allyla-
tion of 1 a to give 5 a, could be followed by (potentially, Pd-
catalysed) rearrangement to generate 4 a. Therefore, we syn-
thesised pure samples of 4 a,[27] 5 a[27] and 6 a and resubmitted
them to the reaction conditions to determine, which of these

compounds, if any, are plausible reaction intermediates. Nei-
ther 5 a nor 6 a apparently underwent rearrangement under
the reaction conditions, but small quantities of 6 a were pro-
duced from 5 a. This indicates that 5 a and 6 a are not plausible
intermediates in the formation of diallylindolinine 3 a. However,
3-allylindole 4 a was completely converted into a mixture of
3 a and 6 a upon resubmission to the reaction conditions. The
diallylindolinine 3 a did not undergo conversion into 6 a upon
resubmission to the reaction conditions, but some degradation
of 3 a did take place suggesting that prolonged exposure of
the product to the reaction conditions will have a detrimental
effect on the reaction yield. These observations suggest that
only 4 a is an intermediate in the reaction, and that the forma-
tion of by-products 5 a and 6 a is solely a result of competing
N-allylation on reaction of 1 a or 4 a with the electrophilic p-
allyl complex. The use of K2CO3 as base in related reactions has
been reported to promote N-allylation over C-allylation due to
the formation of a looser ion pair,[24] but this is obviously not
a significant factor in our reaction. It should be noted that the
use of lithium or sodium carbonates in this diallylation reaction
was ineffective.

With these useful diallylindolinine building blocks in hand,
we then began to investigate the reactivity of these com-
pounds in further transformations (see Scheme 5). To rapidly

Scheme 4. Identification of possible reaction pathways by resubmission of
potential intermediates to the reaction conditions. Conditions: [Pd(allyl)Cl]2

(2.5 mol %), 2 (5 equiv), DPEPhos (5 mol %), K2CO3 (3 equiv), MeCN, 24 h, RT.
Scheme 5. Ugi reactions of the diallylindolinines (d.r. = diastereomeric ratio).
[a]Reaction at 50 8C; [b]7 d reaction time.
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introduce diverse functionality onto the indoline core, we ex-
plored the use of the diallylindolinines 3 in multicomponent
reactions. Multicomponent reactions offer a highly efficient
route to construct functionalised molecules based on a central
core structure.[28] The use of imines and their derivatives, in
combination with isonitriles and a range of different nucleo-
philes, has often proved to be a highly effective strategy for
constructing bioactive small molecules of potential interest.
Indeed, the classical Ugi reaction and closely related processes
have proved to be of great value in the synthesis of a vast
array of medicinally relevant structures containing an a-amino-
amide core.[29] We envisaged that the highly stable imine unit
present in the indolinine core should be an excellent building
block for use in Ugi reactions, and surprisingly, the use of such
compounds in these multicomponent reactions does not seem
to have previously been explored. The diallyl indolinines 3
proved to be excellent substrates for Ugi reactions under stan-
dard conditions (Scheme 5). Reaction of selected indolinines
with a diverse selection of carboxylic acids and isocyanides in
MeOH gave access to a wide range of multicomponent prod-
ucts 8 a–n (Scheme 5). As well as simple aliphatic and aromatic
groups (8 a–d), products containing heterocyclic rings (8 e–g),
primary amides (8 h), activated chlorides (8 i) and carbamate-
protected amines (8 j–k) could be prepared. Remarkably, even
unprotected a-aminoacids (8 l–m) and a-hydroxyacids (8 n)
could be used directly in the multicomponent reactions, al-
though, as with many other Ugi reactions using chiral compo-
nents, only low levels of diastereoselectivity were observed.[30]

An alternative strategy for functionalisation of the indolinine
was devised by reaction of the imine unit with a chloroformate
or acid chloride[31] to give access to 2-chloroindolines, which
after hydrolysis during work-up gave the corresponding 2-hy-
droxyindolines 10 a–c in good yield (Scheme 6). Alternatively,
acylation with an acid chloride, followed by quenching with
methanol could be used to access a 2-methoxyindoline 11 d.
Acylation of 2-methylindolinine 3 l with methyl chloroformate
resulted in the formation of N-acylenamine 12 in good yield.
The 2-hydroxyindolines 10 a and 10 c readily underwent rear-
rangement to the corresponding 2,3-diallylindoles 13 a and
13 c upon treatment with aluminium trichloride, providing
a convenient route to an alternative structural motif. The acyla-
tion and rearrangement reactions could be conveniently com-
bined into a single process to provide access to the 2,3-dially-
lindoles 13 d–f without the need to isolate the intermediate 2-
hydroxyindolines.

A strategy for desymmetrising the achiral diallylindolines 3
through asymmetric addition of a nucleophile to the imine
group was also explored (Scheme 7). Gratifyingly, we found
that l-proline-catalysed Mannich reaction of acetone with
three diallylindolinines (3 a, d, j) gave the corresponding 3-ami-
noketones 14 a–c in good yield and with very high enantiose-
lectivity. During the preparation of this manuscript, similar con-
ditions were reported for the asymmetric Mannich reaction of
closely related 3,3-disubstituted indolinines,[32] so this reaction
was not explored in further detail.

With a range of different substituted indolines in hand, the
synthesis of the corresponding spirocyclic indolines via ring

closing metathesis was studied (Scheme 8).[33] A selection of
the Ugi products (8 a–c, e, i–k, n) underwent efficient ring-clos-
ing metathesis by using Grubbs’ first-generation catalyst in di-
chloromethane as solvent. The corresponding spirocyclic indo-
lines 15 were isolated in good to excellent yield. The 2-hydrox-
yindolines 10 a and b could also be smoothly converted into
the corresponding spirocyclic indolines 16 in good yield. A di-
hydrocarbazole 17 d could also be accessed by a ring-closing
metathesis reaction of 2,3-diallylindole 13 d.

Conclusion

We have described the application of the bulk chemical allyl
acetate to the palladium-catalysed dearomatising diallylation
of indoles. The choice of ligand was found to be critical to con-

Scheme 6. Acylation of diallylindolinines to give 2-hydroxyindolines and 2,3-
diallylindoles by subsequent rearrangement. [a]From purified 10 a/10 c ; yield
for the rearrangement step.

Scheme 7. Asymmetric Mannich reactions of diallylindolinines (e.r. = enantio-
meric ratio). For compound 14c, the reaction was carried out in Acetone/
DMSO.
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trolling the product distribution, and under the optimised con-
ditions, the reaction proceeds efficiently and selectively at
room temperature by using 5 mol % of a readily available palla-
dium catalyst. This procedure enables the rapid assembly of
a range of substituted indolines from readily available indoles
by short synthetic sequences, including a selection of com-
pounds containing the spirocyclic indoline motif. A diverse
array of functional groups can be introduced into the scaffold
through Ugi multicomponent reactions, and the achiral scaf-
fold can also be desymmetrised by an asymmetric Mannich re-
action. Many of these molecules incorporate hydrogen-bond
donor and acceptor groups and possess potentially useful
drug-like properties (Figure 1). Furthermore, the indolinines
generated from the diallylation reaction can also be used to

access a variety of 2,3-diallylindoles via acylation and rear-
rangement.

Experimental Section

General methods

All chemicals were purchased from Sigma–Aldrich, Acros, Alfa
Aesar or Santa Cruz Biotechnology and used without further purifi-
cation. Samples of functionalised carboxylic acids for the Ugi reac-
tions were provided by GlaxoSmithKline. 1-Allyl-1H-indole (5 a), 3-
allyl-1H-indole (4 a), 1,3-diallyl-1H-indole (6 a) were synthesized ac-
cording to literature procedures.[27] Anhydrous THF, dichlorome-
thane and acetonitrile were purchased from Fisher Scientific. All
other solvents were used as received. PE refers to petroleum ether.
Flash-column chromatography was carried out by using normal-
phase silica gel (33–70 mm) supplied by VWR. Thin-layer chroma-
tography was carried out by using Merck TLC Silica gel 60 F254

plates and products were visualized by using combinations of UV
light (l= 254 nm) and potassium permanganate (KMnO4) when re-
quired.

General procedure A: Synthesis of 3,3-diallyl-3H-indolinines
(3)

The indole (1 equiv), [Pd(allyl)Cl)]2 (2.5 mol %), DPEPhos (5 mol %)
and K2CO3 (3 equiv) were placed in an oven-dried carousel tube.
After three vacuum/Ar cycles, acetonitrile (C�0.025 mol L�1) and
allyl acetate (5 equiv) were successively added. The heterogeneous
mixture was stirred at RT for 18–24 h before addition of water. The
solution was extracted with Et2O and washed with water. The com-
bined organic layers were dried with Na2SO4, filtered, and volatiles
were removed under vacuum. Purification by flash chromatogra-
phy on SiO2 gave the corresponding 3,3-diallyl-3H-indole com-
pound 3.

General procedure B: Synthesis of Ugi products (8)

The carboxylic acid (1 equiv) and the isocyanide (1 equiv) were
added to a solution of 3,3-diallyl-3H-indole (1 equiv) in MeOH (ca.
0.25 mol L�1). The reaction mixture was stirred for 2–24 h at RT,
before evaporation of the volatiles under vacuum. Pure com-
pounds were obtained by washing the crude residue with PE, or
by purification by column chromatography on SiO2.

General procedure C: Synthesis of 3,3-diallyl-2-hydroxyindo-
lines (10)

The chloroformate or acid chloride (1 equiv) was added to a solu-
tion of the 3,3-diallyl-3H-indole in CH2Cl2 (ca. 0.07 mol L�1), and the
reaction was left to stir for 30 min at RT, before addition of saturat-
ed NaHCO3. After extraction with CH2Cl2 (three times), the com-
bined organic layers were washed with water, dried over Na2SO4

and filtered through cotton wool. Pure compounds were obtained
by evaporation of the volatiles under reduced pressure or by purifi-
cation by column chromatography on SiO2.

General procedure D: Preparation of 2,3-diallylindoles (13)
from 2-hydroxy-3,3-diallylindolines (10)

Aluminium chloride (1.1 equiv) was added to a solution 3,3-diallyl-
2-hydroxyindoline (1.0 equiv) in CH2Cl2 (ca. 1 mol L�1) at RT. The
mixture was stirred for 30 min before addition of NEt3 (2 equiv).Figure 1. Calculated properties of selected indolines.

Scheme 8. Synthesis of spirocyclic indolines and a carboazole by ring-closing
metathesis.
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After 5 min at RT, water was added, and the product was extracted
with CH2Cl2 (three times). The combined organic layers were dried
over Na2SO4. After evaporation, the crude material was purified by
filtration through a small pad of SiO2 to give the rearranged prod-
uct.

Preparation of 2,3-diallylindoles (13) from 3,3-diallylindoli-
nines (3)

General procedure E: Using an acyl chloride

The acyl chloride (1 equiv) was added to a solution of 3,3-diallyl-
3H-indole (1 equiv) in CH2Cl2 (ca. 0.3 mol L�1) at room temperature.
After 30 min, the reaction was quenched by addition of water and
the mixture was extracted with CH2Cl2 (three times). The combined
organic layers were dried over Na2SO4 and filtered. Evaporation of
the volatiles give the 3,3-diallyl-2-hydroxyindoline which was di-
rectly dissolved in CH2Cl2 (ca. 0.3 mol L�1) and AlCl3 (1.1 equiv) was
added. After 30 min at room temperature, the reaction was
quenched with saturated NaHCO3 before extraction with CH2Cl2

(three times). The combined organic phases were washed with
water, dried over Na2SO4 and filtered. After evaporation of the vola-
tiles under vacuum, the crude residue was purified by a filtration
on a small pad of SiO2 using PE/Et2O (90:10) as eluent.

General procedure F: Using a chloroformate

The chloroformate (1 equiv) was added to a solution of 3,3-diallyl-
3H-indole (1 equiv) in CH2Cl2 (ca. 0.2 mol L�1) at room temperature.
After 30 min, the reaction was quenched by addition of saturated
NaHCO3, and the mixture was extracted with CH2Cl2 (three times).
The combined organic layers were washed with water and dried
over Na2SO4 before filtration. Evaporation of the volatiles gave the
3,3-diallyl-2-hydroxy-indoline derivative which was directly dis-
solved in CH2Cl2 (ca. 0.2 mol L�1) and AlCl3 (1.1 equiv) was added.
After 30 min at RT, NEt3 (2 equiv) was added. The solution was left
to stir for 5 min before addition of a saturated solution of K2CO3

and extraction with CH2Cl2 (three times). The combined organic
phases were washed with water, dried over Na2SO4 and filtered.
After evaporation of the volatiles under vacuum, the crude residue
was purified by filtration through a small pad of SiO2 using PE/Et2O
(100:0 to 90:10) as eluent.

Asymmetric synthesis of Mannich reaction products (15)

General procedure G

l-Proline (30 mol %) was added at 0 8C to a solution of 3,3-diallyl-
3H-indole (1 equiv) in a mixture of acetone/CHCl3 (4.5:1, ca.
0.022 mol L�1). The reaction mixture was allowed to warm up
slowly to RT and stirred for two days. Evaporation of the solvent
followed by purification by column chromatography on SiO2 gave
the Mannich product.

General procedure H

l-Proline (30 mol %) was added at 0 8C to a solution of 3,3-diallyl-
3H-indole (1 equiv) in a mixture of acetone/DMSO (4:1, ca.
0.016 mol L�1). The solution was allowed to warm up slowly to RT
and stirred for two days. The reaction mixture was diluted with di-
ethyl ether and washed with saturated NaHCO3. The product was
extracted with Et2O (three times), and the combined organic layers
were washed with water, brine and dried with MgSO4. After filtra-
tion and removal of the solvents under reduce pressure, the crude
product was purified by column chromatography on SiO2.

General procedure I: Synthesis of spirocyclic indolines (16)

First-generation Grubbs’ catalyst (15 mol %) was added to a de-
gassed solution of the corresponding Ugi product (1 equiv) in
CH2Cl2 (ca. 0.06 mol L�1) at 45 8C. The reaction mixture was heated
at reflux for 24 h under argon before evaporation of the solvent
under reduced pressure. The crude residue was purified by column
chromatography on SiO2 to give the desired product.

General procedure J: Synthesis of spirocyclic indolines (17)

The corresponding substituted 3,3-diallyl-2-hydroxyindoline com-
pound was added to a refluxing solution of first generation
Grubbs’ catalyst (15 mol %) in CH2Cl2 (ca. 0.04 mol L�1) under argon.
The reaction was heated at reflux for 24 h before evaporation of
the volatiles under vacuum. The crude material was purified by
column chromatography on SiO2 to yield the desired product.

General procedure K: Synthesis of dihydro-1H-carbazole (18)

Grubbs’ first-generation catalyst (5 mol %) was added to a dried
and degassed solution of 2,3-diallyl-1H-indole in CH2Cl2. The mix-
ture was heated overnight at 55 8C before evaporation of the vola-
tiles under reduced pressure. The residue obtained was purified by
column chromatography on SiO2.
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