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Abstract: Mercapto (or sulfanyl)-coumarins are heterocycles of great interest in the development of
valuable active structures in material and biological domains. They represent a highly exploitable
class of compounds that open many possibilities for further chemical transformations. The present
review aims to draw focus toward the synthetic applicability of various forms of mercapto-coumarins
and their representations in pharmaceuticals and industries. This work covers the literature issued
from 1970 to 2021.
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1. Introduction

Coumarins (2H-1-benzopyran-2-ones) are an elite class of compounds present in var-
ious natural products, and they have wide applications, viz., as additives in food [1,2],
perfumes [3], cosmetics [4], and pharmaceuticals [5,6], as well as in the preparation of
optical brighteners [7], dispersed fluorescent [8–10] and laser dyes [11], and useful medic-
inal products [12,13]. On the other hand, the carbon–sulfur bond formation plays an
important role in organic synthesis [14–17]. The introduction of the thiol group to organic
structures has emerged as an important tool in medicinal chemistry and chemical biol-
ogy [18–21]. It plays a distinguished role in the fabrication of applicable substances in the
field of advanced functional materials [22], structural frameworks of natural products [23],
and the pharmaceutical industry [24–26]. Therefore, there is an increasing demand to
investigate thiol-based coupling reactions focusing on their chemoselectivity and their
tolerance of various functional groups in order to provide feasible access to new chemical
architectures [27,28].

The incorporation of a thiol functional group into coumarin results in mercapto-
coumarins. Although mercapto-coumarins have been relatively less extensively stud-
ied [18–21], their chemistry and bioactivity appear to be interesting. This functionalization
of coumarin allows a special reactivity due to the implication of the thiol group in different
types of organic reactions. This facilitates access to various series of derivatives that may
have special applications or biological activities.

By exploring mercapto-coumarin derivatives, we found that four common forms of
functional thiol group integrate into the coumarin moiety that occupies different positions,
either on the pyrone ring or on the benzene ring. The common four mercapto-coumarins
are 3-mercapto-coumarin, 4-mercapto-coumarin, 6-mercapto-coumarin, and 7-mercapto-
coumarin (Figure 1).

The present review is concerned with the period from 1970 to 2021 to shed light on
the different pathways of mercapto-coumarin synthesis, while also covering their broad
applications at both industrial and biological levels. In addition, it is a groundbreaking
release on these compounds, to open a platform for researchers to progress the development
of this chemistry.
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Figure 1. The four common mercapto-coumarin derivatives.

2. 3-Mercapto-Coumarin

By analyzing the synthesis of 3-mercapto-coumarin, we found that the source of sulfur
was a heterocyclic compound not an inorganic reagent. In addition, the coumarin was
formed in situ from primary sources, which were salicylaldehydes.

Qiyi et al. reported the synthesis of 3-mercapto-coumarin (4) from 2-hydroxybenzylide
nerhodanine (3). The latter was produced in situ from salicylaldehyde (1) and 2-thioxothiazo
lidin-4-one (2). The reaction proceeded to the final target by refluxing of compound 3 in
diluted ethanolic sodium hydroxide solution (Scheme 1) [18].
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Scheme 1. The synthesis of 3-mercapto-coumarin (4). Reagents and conditions: (a) EtOH, reflux,
TEA, 80% yield; (b) EtOH, NaOH, reflux, 88% yield.

In 2009, a green catalyst-free synthetic protocol for synthesizing varieties of the target
3-mercapto-coumarins was reported. In this protocol, refluxing of 2-methyl-2-phenyl-1,3-
oxa-thiolan-5-one (5) and salicylaldehyde derivatives in water afforded the formation of
corresponding 3-mercapto-coumarins (4) in excellent yields (82–97%) (Scheme 2) [22].
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conditions: water; reflux; 8–10 h; 8 outputs with 82–97% yield.

3. Reactivity of 3-Mercapto-Coumarin

3-Mercapto-coumarin (4) contributed to the synthesis of many chain and fused com-
pounds. Accordingly, the reaction of 3-mercapto-coumarin (4) with some acrylonitriles and
acrylates under the Michael addition condition created S-acetonitrile 6a, S-propanenitrile 6b,
S-ethayl acetate 6c, and S-propanoate 6d coumarin derivatives, respectively (Scheme 3) [18].
In another publication on the Mannich reaction, 3-mercapto-coumarin (4) condensed with
formaldehyde and produced 3-hydroxy-methylthio-coumarin (7). The latter reacted with
diphenylamine to give the corresponding α-aminomethylated thioether (8) (Scheme 3) [23].
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In a Chinese patent (2016), the author disclosed a method to fabricate benzothiophene-
2-carboxylic acid (9) via a phase-transfer catalyst of 3-mercapto-coumarin (4) under high-
pressure, 0.8–1.2 MPa (Scheme 4) [24].
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N-Acetyl-S-(3-coumarinyl)cysteine (11), which could be isolated from rat urine [25],
was synthesized by the reaction of 3-mercapto-coumarin (3) and N-acetyl-3-chloro-D,L-
alanine methyl ester (10) (Scheme 5) [26].
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4. 4-Mercapto-Coumarin

The synthesis of 4-mercapto-coumarin by methods based on 4-hydroxycoumarin has
already been discussed [19,27–30].

In 1970, Peinhardt and Reppel allowed 4-hydroxycoumarin (12) to react with phos-
phorus oxychloride to get 4-chlorocoumarin (13). The latter, under reaction with potassium
hydrosulfide in situ prepared from potassium hydroxide with methanol saturated with
hydrogen sulfide (H2S), gave the corresponding 4-mercapto-coumarin (14) in a good yield,
90% (Scheme 6) [27].
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Recently, the synthesis of 4-mercapto-coumarin (14) occupied the scope of interest of
Ghosh’s work as an in situ transformed intermediate to synthesize different coumarin-fused
heterocycles via 4-hydroxycoumarin (12) [19,28–30]. Dissolving the 4-hydroxycoumarin (12)
in pyridine followed by the addition of toluene-4-sulfonyl chloride led to the formation
of the tosyl derivative (15). Treatment of the latter with NaSH in ethanol furnished the
corresponding 4-mercapto-coumarin (14), which succeeded by transformation to the final
product (Scheme 7).
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yield was recorded as the product was used in the subsequent reaction without further purification.

5. Reactivity of 4-Mercapto-Coumarin

In 1975, Eiden and Zimmermannhe synthesized diphenylacetyl thioester (16) and
biscoumarinyl sulfide (17) via the reaction of 4-mercapto-coumarin with 2,2-diphenylethen-
1-one according to Scheme 8 [31].
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Scheme 8. The reaction of 4-mercapto-coumarin (14) with 2,2-diphenylethen-1-one. Reagents and
conditions: (a) 2,2-diphenylethen-1-one, benzene, 16 h, reflux, 59% yield; (b) 2,2-diphenylethen-1-one,
benzene, 5 h, 6.2% yield.

In the previous example of Ghosh’s work, 4-mercapto-coumarin served as a transi-
tional compound to produce different coumarin-fused heterocycles employing
4-hydroxycoumarin (12) as a starting reactant. As the compound (14) was produced,
it converted immediately to the final products (Scheme 7).

Accordingly, various 2H-thiopyrano[3,2-c][1]benzopyran-5-ones (19) [28,29] and 4-
aryloxymethylthiopyrano[3,2-c][1]benzopyran-5(2H)-ones (21) [19,30] were prepared through
the thio-Claisen rearrangement of 4-propargylthio[1]benzopyran-2-ones (18) and 4-[4-
aryloxybut-2-ynylthio][1]benzopyran-2-ones (20) (Scheme 9). Compounds 18 and 20 were
prepared based on a two-phase mixture of 4-mercapto-coumarin (14) with propargyl halides
and 1-chloro-4-aryloxybut-2-yne, respectively (Scheme 9).
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benzyltriethyl ammonium chloride (BTEAC) or tetrabutylammonium bromide (TBAB); (b,d) chloroben-
zene, reflux, 30 min–4 h, six derivatives of 79–85% yield.
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Regioselective synthesis of coumarin-annulated sulfur heterocycles, cis-benzothiopyrano[3,2-
c]benzopyran-7(2H)-ones (24), was reported through aryl radical cyclization. The corre-
sponding 4-[(2-bromobenzyl)sulfanyl]-2H-chromen-2-ones (23) was in situ prepared from
a reaction between 4-mercapto-coumarin (14) and tributyltin hydride (22) in the presence
of a radical initiator (AIBN) (Scheme 10) [32].
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Scheme 10. Regioselective synthesis of coumarin-annulated sulfur heterocycles. Reagent and con-
ditions: (a) 1% aq. NaOH–CHCl3, benzyltriethyl ammonium chloride (BTEAC), 1 h, r.t., R=H 83%
yield, R=OCH3 85% yields; (b) Bu3SnH, AIBN, benzene, N2, reflux, 1 h, R=H 72% yield, R=OCH3

75% yield.

In another publication, some thieno[3,2-c][1]benzopyran-4-ones (27) were synthesized
by thermal thio-Claisen rearrangement of 4-allylthio[1]benzo-pyran-2-ones (26) (Scheme 11).
Compounds 26 resulted from a basic catalyzed reaction between 4-mercapto-coumarin (8)
and different allylic halides (25). Without being separated from the reaction medium, com-
pounds 26a–d ended in four different derivatives via phase-transfer-catalyzed alkylation
using TBAB or BTEAC as a catalyst. The differentiation of the end products depended on
the alkyl substitutions (R1, R2) on the allyl halide, which influenced the mechanism of the
cyclization during the final step (Scheme 11) [33].
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Scheme 11. Regioselective synthesis of thieno[3,2-c][1]benzopyran-4-ones (27). Reagent and con-
ditions: (a) 1% aq. NaOH-CHCl3, benzyltriethyl ammonium chloride (BTEAC), stirring, 4 h, r.t.,
four products, 75–85% yield; (b) reflux, 0.5 h, HCl, four products, 65–80% yield.

Nematollahi et al. investigated the electrochemical oxidation of catechols (28) in the
presence of 4-mercapto-coumarin (14) as the nucleophile in water/acetonitrile (50/50)
solution. Through an EC mechanism and in a one-pot process, 4-(dihydroxyphenylthio)-
2H-chromen-2-one derivatives 29a and 29b were afforded (Scheme 12) [34]. In another
work of the same group, they explored the reactivity of catechol (28) and 4-mercapto-
coumarin (14) in the presence of potassium ferricyanide as an oxidizing agent (decker
oxidation) to develop thieno[3,2-c]chromen-6-onederivatives (30) (Scheme 12) [35].
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(Scheme 14). This reduction was achieved with zinc dust in acetic acid in the presence of 
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l-aryloxy-4-chloro- but-2-ynes (40) (Scheme 14) [37]. 

Scheme 12. Synthetic pathways for the reaction of catechol with 4-mercapto-coumarin. Reagents
and conditions: (a) sodium acetate solution (c = 0.2 M) in water/acetonitrile (50/50), undivided
cell equipped with graphite anode, a large stainless steel gauze cathode, 25 ◦C, R=CH3 isomer ratio
with 52.5%/47.5% yield, R=OCH3 isomer ratio with 96.5%3.5% yield; (b) sodium acetate solution
(0.2 M)/acetonitrile (70/30), stirring, r.t., 20–30 min, R=CH3 75% yield, R=OCH3 70% yield.

A series of 3-chloro-1-(5-((2-oxo-2H-chromen-4-yl)thio)-4-phenyl thiazol-2-yl)-4-
substituted phenyl azetidin-2-ones (36) were synthesized in five sequential steps with
the participation of 4-mercapto-coumarin (14) in addition to acetophenone (31), thiourea,
and chloroacetyl chloride [36] (Scheme 13). The synthesized compounds showed potent
antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa,
Streptococcus pyogenes, Aspergillus niger, Aspergillus clavatus, and Candida albicans [36].
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Scheme 13. 4-Mercapto-coumarin in the synthesis 3-chloro-azetidin-2-one derivatives (36). Reagents
and conditions: (a) iodine, thiourea, ethanol, 2–3 h; (b) bromine, acetic acid reflux, 2 h; (c) aro-
matic aldehyde, acetic acid, ethanol, reflux, 6 h; (d) ethanol, reflux, 5 h; (e) chloroacetyl-chloride,
triethylamine, 1,4-dioxane, reflux 7 h, 10 outputs 70–78% yields.

6. 6-Mercapto-Coumarin

The structure creation of 6-mercapto-coumarin was performed following the synthesis
of 3-SH and 4-SH-coumarin. This 6-SH-coumarin is an unstable compound that reacts
directly with halo-compounds to give S-alkyl coumarin derivatives.

In 1999, Majumdar and Biswas reported 6-mercapto-coumarin (39) as an unstable
compound [37]. 6-Mercapto-coumarin (39) was generated in situ from the disulfide (38)
(Scheme 14). This reduction was achieved with zinc dust in acetic acid in the presence
of 6 N sulfuric acid by heating at 80 ◦C until the solution became clear. 6-Mercapto-
coumarin (39) was used without further purification for the synthesis of 6-(4-aryloxybut-2-
ynylthio)[1]benzo-pyran-2-ones (41) by its reaction with l-aryloxy-4-chloro- but-2-ynes (40)
(Scheme 14) [37].
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One of the 7-mercapto-coumarin derivatives with the widest applications is 
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field of biology and material science. This substrate is considered as a frontier to synthe-
size varieties of bioactive compounds [38,39]. It is also indicated as a suitable matrix for the 
analysis of small molecular compounds [40]. The other described incorporation of this highly 
valuable scaffold is as a reporter molecule [41], reporters for thiol interactions at the nano-
particle surface [42], fluorescent probe [43–45], sugar acceptor [46], Raman reporter [47–56], 
an excellent substrate for fluorescence spectroscopy [57], photodimerizable and healable re-
actant [58], fluorescent dye [59,60], and probe molecule on gold-coated silicon nanowires 
[61]. 

7.1. Synthesis of 7-Mercapto-4-Methyl Coumarin (MMC) 
The general procedure for the synthesis of 7-mercapto-4-methyl coumarin (50, 

MMC) depends on 7-hydroxy-4-methyl coumarin (47). The reaction of 
7-hydroxy-4-methyl coumarin (47) with dimethylthiocarbamoyl chloride, was followed 
by a thermos-rearrangement that afforded the corresponding 
S-4-methyl-2-oxo-2H-chromen-7-yl dimethylcarbamothioates (49) (Newman–Kwart-type 
rearrangement) (Scheme 16). The latter, upon hydrolysis in the presence of 

Scheme 14. The synthesis of 6-mercapto-coumarin (33). Reagents and conditions: (a) HCl/NaNO2;
potassium ethyl xanthate, EtOH–KOH, 65% yield; (b) Zn/6 N H2SO4, AcOH, no yield was recorded
for compound 30 as the product was used in the subsequent reaction without further purification;
(c) Me2CO, K2CO3, NaI, 2 h, reflux, five outputs 85–91% yield.

7. 7-Mercapto-Coumarin

To our knowledge, only one article discussed the synthesis of 7-mercapto-coumarin (46) [20].
Therein, 7-hydroxycoumarin (42) was treated with sodium hydride and subsequently
reacted with dimethylthiocarbamoyl chloride (43) to yield the 2-oxo-2H-chromen-7-yl
dimethylcarbamate (44). The latter was subjected to a Newman–Kwart-type rearrange-
ment to form S-(2-oxo-2H-chromen-7-yl) dimethylcarbamothioate (45). Cleaving of the
carbamate group of 45 afforded 7-mercapto-coumarin (46) [20] (Scheme 15).
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(CH3)2NCSCl; (b) DMA, MW, 250 W, 260 ◦C; (c) KOH, MeOH, r.t., 7 h, then HCl, the product was
obtained as a viscous mustard liquid, which could not be recrystallized or purified due to its tackiness.

One of the 7-mercapto-coumarin derivatives with the widest applications is 7-mercapto-
4-methyl coumarin (MMC). MMC has a wide range of applications in the field of biology
and material science. This substrate is considered as a frontier to synthesize varieties of
bioactive compounds [38,39]. It is also indicated as a suitable matrix for the analysis of
small molecular compounds [40]. The other described incorporation of this highly valuable
scaffold is as a reporter molecule [41], reporters for thiol interactions at the nanoparticle
surface [42], fluorescent probe [43–45], sugar acceptor [46], Raman reporter [47–56], an
excellent substrate for fluorescence spectroscopy [57], photodimerizable and healable reac-
tant [58], fluorescent dye [59,60], and probe molecule on gold-coated silicon nanowires [61].

7.1. Synthesis of 7-Mercapto-4-Methyl Coumarin (MMC)

The general procedure for the synthesis of 7-mercapto-4-methyl coumarin (50, MMC) de-
pends on 7-hydroxy-4-methyl coumarin (47). The reaction of 7-hydroxy-4-methyl coumarin (47)
with dimethylthiocarbamoyl chloride, was followed by a thermos-rearrangement that af-
forded the corresponding S-4-methyl-2-oxo-2H-chromen-7-yl dimethylcarbamothioates (49)
(Newman–Kwart-type rearrangement) (Scheme 16). The latter, upon hydrolysis in the
presence of NaOCH3/CH3OH and acidification by HCl, produced the target 7-mercapto-4-
methyl coumarin (50, MMC) (Scheme 16) [21,62–66].
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iocarbamoyl chloride, DMAP/CH2Cl2, 86% yield; (b) heating, 87% yield; (c) (i) NaOCH3/MeOH,
(ii) HCl, 74% yield.

7.2. Reactivity of 7-Mercapto-4-Methyl Coumarin (MMC)
7.2.1. Utilization of 7-Mercapto-4-Methyl Coumarin in the Synthesis of Bioactive Compounds

Novel 7-mercapto-coumarin derivatives (53) were designed starting from 7-mercapto-
4-methyl coumarin (50). Most of compounds in 53 exhibited strong α1 antagonistic activ-
ity [65]. In particular, compound 53c showed excellent activity, which was better than that
of the reference compound prazosin [65]. 7-((4-(4-(2-Methoxyphenyl)piperazin-1-yl)butyl)
thio)-4-methyl-2H-chromen-2-one (53c) was synthesized via the reaction of 7-mercapto-
4-methyl coumarin (50) with 1,2-dibromoethane to give 51, which in turn reacted with
1-(2-methoxyphenyl)piperazine (52c) (Scheme 17) [65].
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(a) Br(CH2)nBr (n = 2–4), K2CO3, acetone, 4 h, reflux, five outputs 61–70% yield; (b) CH3CN, K2CO3,
8 h, reflux, five derivatives of 16–42% yield.

In an effort to find inhibitors of the bacterial enzyme DNA gyrase, Miller and his
co-workers developed a potential low-molecular-weight inhibitor of 7-[4-(4-tert-butyl-
benzyloxy)-1H-indazol-3-ylmethylsulfanyl] 4-methylcoumarin (57) (Scheme 18) [67]. The
protected and brominated product (56) was involved in thioether formation with MMC (50)
by nucleophilic substitution to give 56. The phenolic protection of 56 was removed and
formed ether linkage simultaneously with BnBr or p-tBu-BnBr in presence of fluoride ion.
The removal of the Boc protection was performed simply in acidic condition to give 57.
Compound 57 was 10 times more potent than the reference drug, novobiocin as a DNA
gyrase inhibitor [67].
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Lee and his co-workers synthesized analogs of DCK, which was known to be active
against HIV. In these new structures (thia-DCK), the sulfur atom was the isosteric equiv-
alent to the oxygen atom in the original structure. These derivatives (61a and 61b) were
synthesized by fusing the derivatized thiane ring within the benzene moiety of coumarin
through a four-step reaction (Scheme 19) [21,64]. They proved to be potent as an anti-HIV
agent with an EC50 value of 0.14 and 0.039 µM and a remarkable therapeutic index of 1110
and 1000 for 61a and 61b, respectively [21,64].

Molecules 2022, 26, x FOR PEER REVIEW 9 of 20 
 

 

Scheme 18. Synthesis of bacterial enzyme DNA gyrase inhibitor. Reagents and conditions: (a) (i) 
TBDMSCl, imidazole, DMF, 12 h, r.t.; (ii) (BOC)2O, Et3N, DMAP, MeCN, 3 h, r.t.; (iii) NBS, 
(PhCO2)2, CCl4, 4.5 h, 78 °C, 72% yield; (b) Et3N, CH2Cl2, 4 h, r.t., 90% yield; (c) (i) BnBr or 
p-tBu-BnBr, KF, DMF, 4 h, r.t.; (ii) TFA, CH2Cl2, 4 h, r.t., 90% yield. 

Lee and his co-workers synthesized analogs of DCK, which was known to be active 
against HIV. In these new structures (thia-DCK), the sulfur atom was the isosteric 
equivalent to the oxygen atom in the original structure. These derivatives (61a and 61b) 
were synthesized by fusing the derivatized thiane ring within the benzene moiety of 
coumarin through a four-step reaction (Scheme 19) [21,64]. They proved to be potent as 
an anti-HIV agent with an EC50 value of 0.14 and 0.039 µM and a remarkable therapeutic 
index of 1110 and 1000 for 61a and 61b, respectively [21,64]. 

 
Scheme 19. Synthesis of anti-AIDS agents. Reagents and conditions: (a) 3-bromo-1-propyne or 
3-chloro-1-butyne, K2CO3, KI, acetone, N2, 58a: R=H 89.13%, 58b: R=CH3 75% yield; (b) 
N,N-diethylaniline, reflux, 59a: R=H 77.6%, 59b: R=CH3 56% yield; (c) (i) K2OsO2(OH)4, K3Fe(CN)6, 
(DHQ)2–PHAL, K2CO3, (ii) Na2SO3, 60a: R=H 51.3% yield, 60b: R=CH3 (S configuration) 52% yield; 
(d) camphanic chloride, DMAP/CH2Cl2, 61a: R=H 95%, 61b: R=CH3 78% yield. 

Another 12 antiviral agents of S-substituted 7-mercapto-4-methyl coumarin analogs 
(62) were synthesized and evaluated against HBV in HepG2 cells (Scheme 20) [62]. These 
series of derivatives were prepared from reaction between MMC and halo compounds 
assisted by K2CO3/KI. The IC50 of 62a and 62b as anti-HBsAg activities was (0.01 µmol/L), 
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Scheme 19. Synthesis of anti-AIDS agents. Reagents and conditions: (a) 3-bromo-1-propyne or
3-chloro-1-butyne, K2CO3, KI, acetone, N2, 58a: R=H 89.13%, 58b: R=CH3 75% yield; (b) N,N-
diethylaniline, reflux, 59a: R=H 77.6%, 59b: R=CH3 56% yield; (c) (i) K2OsO2(OH)4, K3Fe(CN)6,
(DHQ)2–PHAL, K2CO3, (ii) Na2SO3, 60a: R=H 51.3% yield, 60b: R=CH3 (S configuration) 52% yield;
(d) camphanic chloride, DMAP/CH2Cl2, 61a: R=H 95%, 61b: R=CH3 78% yield.

Another 12 antiviral agents of S-substituted 7-mercapto-4-methyl coumarin analogs (62)
were synthesized and evaluated against HBV in HepG2 cells (Scheme 20) [62]. These series
of derivatives were prepared from reaction between MMC and halo compounds assisted
by K2CO3/KI. The IC50 of 62a and 62b as anti-HBsAg activities was (0.01 µmol/L), which
was 16-fold more potent than the reference (3TC). Compounds 62c–f exhibited interesting
inhibitory activity toward both HBsAg and HBeAg [62]. Another approach belonging to
Chen et al. was to prepare and evaluate the effectiveness of 63 as an antitumor agent [68].
This compound, which afforded by reduction of 62b, showed a broad spectrum of ac-
tivity against four tumor cells, as well as remarkably increased cellular apoptosis in a
concentration-dependent manner. Furthermore, it induced A549 cell cycle arrest at the
G2/M phase [68].
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Scheme 20. Synthesis of S-substituted 7-mercapto-4-methyl coumarin analogs. Reagents and condi-
tions: (a) halides, K2CO3, KI, acetone/N2; (b) 2,6-dichloropyridine N-oxide, pyridine, r.t., 48% yield;
(c) PCl3, CHCl3, reflux, 48% yield.

In 2014, Liu et al. aimed to prepare furoxan-based nitric oxide (NO) releasing S-
coumarin, 4-(2-(4-methyl-2-oxo- 2H-chromen-7-ylthio)ethanoxy)-3-(phenylsulfonyl)-1,2,5-
oxadiazole 2-oxide (66) (Scheme 21). It was attained by the formation of an ethyl linker be-
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tween MMC and the NO-releasing moiety (65). This linker was established by the reaction
of chloroethanol with MMC in a K2CO3-containing solvent. The resulting intermediate (64)
reacted with compound 65 in DCM, while DBU acted as a catalyst to deliver compound 66.
This latter showed antiproliferation activity on A549, HeLa, A2780, A2780/CDDP, and
HUVEC cell lines with IC50 (µM) of 0.12, 0.024, 0.036, 0.14, 0.22, respectively [69].
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Guo et al. synthesized 4-methyl-7-thiocyanato-2H-chromen-2-one (67), which may be
used as an inhibitor of monoamine oxidase A or anti-influenza drug [70]. Cutting off the
C–S bond through a photocatalysis of inorganic thiocyanates salt delivered the green “CN”,
which transformed 7-SH group of 7-mercapto-4-methyl coumarin (50) in the presence of a
10 W white light and 1 mol% Rose Bengal to 7-SCN (67) (Scheme 22) [70].
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7.2.2. 7-Mercapto-4-Methyl Coumarin as a Fluorophore Probe

Fluorescent probes based on 7-mercapto-4-methyl coumarin (MMC) are widely re-
ported in the literature [71–74]. In contrary to 7-mercapto-4-methyl coumarin’s poor
emission characteristic, its thiol-alkylated analog shows high fluorescence.

A specific fluorescent probe based on monosulfanyl-coumarin-BODIPY for the se-
lective detection of cysteine in living cells and artificial urine has been synthesized via
a simple substitution reaction on the 5-position of XDS-BOD-XDS:BODIPY-Cl2 (68) with
the thiol group generated from 7-mercapto-4-methyl coumarin (50) to yield MC-BOD-
XDS (69), XDS-BOD-XDS (70) (Scheme 23) [75]. The reactivity could be attributed to the
free SH-coumarin, which quickly binds to another MC-BOD-XDS and produces strong red
fluorescent XDS-BOD-XDS (70) [75].
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Özer et al. presented a new fluorescent chemosensor for some transition metals, which
was obtained by conjugating two molecules of 7-mercapto-4-methyl coumarin (50) through
a glyoxime bridge. This dimer was formed by a refluxing mixture of mercapto-coumarin,
(E,E)-dichloroglyoxime DCGO, and NaHCO3 in MeOH. The coumarin collaborates in this
conjugate by its fluorophore property while vic-dioxime acts as a metal-chelating moiety.
This chelating capability was expressed in the last step of the following scheme to deliver
72 (Scheme 24) [76].
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+2). X = NO3, Et3N, THF, 28–35% yield.

Hili et al. used the 7-mercapto-4-methyl coumarin (50) as a fluorescent tag, to demon-
strate the cyclic peptide conjugation strategy through the nucleophilic ring-opening of an
aziridine moiety during the macrocyclization of linear peptides enabled by amphoteric
molecules (Scheme 25) [77].
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Scheme 25. The fluorescent tag, 7-mercapto-4-methyl coumarin. Reagents and conditions: CHCl3,
NEt3, r.t., 77% yield.

Navarro et al. labeled the modified cellulose nanofibrils (CNFs) with furan and
maleimide moieties by the fluorescent probe, 7-mercapto-4-methyl coumarin, through
the thiol-Michael reaction (Scheme 26) [78]. The fluorescein/coumarin labeled cellulose
nano-fibrils (FC-CNFs) avoid a dye-to-dye interaction (for the same molecule) with an
expected wide biological application such as multimodality molecular imaging [78].
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Hajdu and his co-workers reported the synthesis and enzymological characterization
of three fluorogenic phosphatidylcholine analogs PC-1 (77), PC-2 (78), and PC-3 (79),
targeting the detection and the quantitative assays of phospholipase A2 (sPLA2) [79]. Each
demonstrated molecule contained a 7-mercapto-4-methyl coumarin fluorophore and 2,4-
dinitroaniline quencher on both tails (Scheme 27) [79]. The small size of these molecules
helps to not disrupt the natural membrane.
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Scheme 27. Structures of fluorogenic phosphatidylcholine analogs.

Gold(III)–thiolato complexes based on cyclometallated pyrazine-centered pincer lig-
ands form a new class of photoluminescent gold compounds. The luminescence behavior
of these gold-core compounds depends on the arrangement of supramolecule in the solid
and liquid forms [80]. (CˆNpzˆC)AuSR (81) was prepared by the described method and
isolated as a yellow to red solid (Scheme 28) [80]. In this formula, CˆNpzˆC represents
2,6-bis(4-ButC6H4)pyrazine dianion and R is 7-mercapto-4-methyl coumarin [80].

Molecules 2022, 26, x FOR PEER REVIEW 12 of 20 
 

 

Scheme 26. Thiol-Michael reaction between maleimide-CNF and 7-mercapto-4-methyl coumarin. 
Reagents and conditions: DMSO, phosphate buffer (pH = 7), stirring, 24 h, r.t. 

Hajdu and his co-workers reported the synthesis and enzymological characteriza-
tion of three fluorogenic phosphatidylcholine analogs PC-1 (77), PC-2 (78), and PC-3 (79), 
targeting the detection and the quantitative assays of phospholipase A2 (sPLA2) [79]. 
Each demonstrated molecule contained a 7-mercapto-4-methyl coumarin fluorophore 
and 2,4-dinitroaniline quencher on both tails (Scheme 27) [79]. The small size of these 
molecules helps to not disrupt the natural membrane. 

 
Scheme 27. Structures of fluorogenic phosphatidylcholine analogs. 

Gold(III)–thiolato complexes based on cyclometallated pyrazine-centered pincer 
ligands form a new class of photoluminescent gold compounds. The luminescence be-
havior of these gold-core compounds depends on the arrangement of supramolecule in 
the solid and liquid forms [80]. (C^Npz^C)AuSR (81) was prepared by the described method 
and isolated as a yellow to red solid (Scheme 28) [80]. In this formula, C^Npz^C represents 
2,6-bis(4-ButC6H4)pyrazine dianion and R is 7-mercapto-4-methyl coumarin [80]. 

 
Scheme 28. Gold(III)–thiolato complex. Reagents and conditions: (i) K2CO3, acetone, 18 h; (ii) po-
tassium t-butoxide, N2, dry toluene, 6 h, stirring, 84% yield. 

Choi and co-workers developed a naphthalimide–coumarin conjugate (NC) typi-
cally through thioether linkage (Scheme 29) [81]. 
6-Bromo-2-butyl-benzo[de]isoquinoline-1,3-dione (82) reacted with 7-mercapto-4-methyl 
coumarin (50) in the presence of potassium carbonate to give 
2-butyl-6-((4-methyl-2-oxo-2H-chromen-7-yl)thio)-1H-benzo- 
[de]isoquinoline-1,3(2H)-dione (83) (Scheme 29A) [81]. The molecular flexibility and the 
aggregation of the nanoparticles of the investigated compound (83) enhanced the ag-
gregation-induced emission (Scheme 29B) [81]. 

Scheme 28. Gold(III)–thiolato complex. Reagents and conditions: (i) K2CO3, acetone, 18 h; (ii) potas-
sium t-butoxide, N2, dry toluene, 6 h, stirring, 84% yield.

Choi and co-workers developed a naphthalimide–coumarin conjugate (NC) typically
through thioether linkage (Scheme 29) [81]. 6-Bromo-2-butyl-benzo[de]isoquinoline-1,3-
dione (82) reacted with 7-mercapto-4-methyl coumarin (50) in the presence of potassium car-
bonate to give 2-butyl-6-((4-methyl-2-oxo-2H-chromen-7-yl)thio)-1H-benzo-[de]isoquinoline-
1,3(2H)-dione (83) (Scheme 29A) [81]. The molecular flexibility and the aggregation of the
nanoparticles of the investigated compound (83) enhanced the aggregation-induced emis-
sion (Scheme 29B) [81].



Molecules 2022, 27, 2150 13 of 20
Molecules 2022, 26, x FOR PEER REVIEW 13 of 20 
 

 

 

Scheme 29. A. The synthesis of the naphthalimide coumarins (NCs). Reagents and conditions: 

DMF, K2CO3, N2, 90 °C, stirring 3 h, 74% yield. (Scheme 29B). Photographs were taken under 365 

nm UV-light in different THF/H2O mixtures (50 μM). 

7.2.3. 7-Mercapto-4-Methyl Coumarin as Photodimerizable and Healable Reactant 

Zhao et al. exploited the photodimerization character of 7-mercapto-coumarin to 

introduce a novel bio-sourced self-healing technique. The epoxidized cottonseed oil was 

used as the main reagent, and it was photocrosslinked in the presence of 0.25 equivalents 

of 7-mercapto-4-methyl coumarin (50) as a photodimerizable and healable reactant. The 

reaction was initiated with 2 wt.% of a photo-based generator porphobilinogen (PBG) 

(Scheme 30) [82]. 

 

Scheme 30. 7-Mercapto-4-methyl coumarin as a photodimerizable and healable reactant. 

7.2.4. 7-Mercapto-4-Methyl Coumarin for Thioglycosylation Reaction 

The reaction of 7-mercapto-4-methyl coumarin with glycosides and their possible 

applications have been in the scope of many researchers [83,84]. One such group was 

Tanaka et al., who investigated the synthesis of 4-methyl coumarin-7-yl-α-S-glycosides 

87 by Williamson condition starting from N-acetyl-neuraminic acid, 

N-glycolylneuraminic acid, or 3-deoxy-D-glycero-D-galacto-2-non-ulopyranosonic acid 

(KDN) (85) (Scheme 31). The product is efficient as fluorogenic substrates for tracking 

and quantitative analysis of the bacterial enzyme neuramidase [85]. 

Scheme 29. (A). The synthesis of the naphthalimide coumarins (NCs). Reagents and conditions:
DMF, K2CO3, N2, 90 ◦C, stirring 3 h, 74% yield. (B). Photographs were taken under 365 nm UV-light
in different THF/H2O mixtures (50 µM).

7.2.3. 7-Mercapto-4-Methyl Coumarin as Photodimerizable and Healable Reactant

Zhao et al. exploited the photodimerization character of 7-mercapto-coumarin to
introduce a novel bio-sourced self-healing technique. The epoxidized cottonseed oil was
used as the main reagent, and it was photocrosslinked in the presence of 0.25 equivalents
of 7-mercapto-4-methyl coumarin (50) as a photodimerizable and healable reactant. The
reaction was initiated with 2 wt.% of a photo-based generator porphobilinogen (PBG)
(Scheme 30) [82].
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7.2.4. 7-Mercapto-4-Methyl Coumarin for Thioglycosylation Reaction

The reaction of 7-mercapto-4-methyl coumarin with glycosides and their possible
applications have been in the scope of many researchers [83,84]. One such group was
Tanaka et al., who investigated the synthesis of 4-methyl coumarin-7-yl-α-S-glycosides 87
by Williamson condition starting from N-acetyl-neuraminic acid, N-glycolylneuraminic
acid, or 3-deoxy-D-glycero-D-galacto-2-non-ulopyranosonic acid (KDN) (85) (Scheme 31).
The product is efficient as fluorogenic substrates for tracking and quantitative analysis of
the bacterial enzyme neuramidase [85].
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Scheme 31. Synthesis of new fluorogenic substrates for neuramidase. Reagents and conditions:
(a) NaOH (1.0 N), MeOH, 60% yield; (b) DMF, overnight, r.t., stirring, three outputs 60–88% yield;
(c) NaOH (1.0 N), MeOH, three outputs 90% yield.

Enzymatic synthesis of S-glycosides (89) from the reaction of 7-mercapto-4-methyl
coumarin (50) as aromatic thiol acceptors and 4-nitrophenyl-β-D-glucuronide (pNP-GlcA) (88)
as a sugar donor (glucuronide donor) was reported (Scheme 32) [86]. The reaction was
efficiently glycosylated by DtGlcA-E396Q (the mutated form of β-D-glucuronidase DtGlcA)
as a biocatalyst with a 51% yield in pKa 5.03 [86].
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Scheme 32. Enzymatic synthesis of S-glycosides. Reagents and conditions: (a) DtGlcA-E396Q,
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Yoshida et al. developed a novel oligosaccharide-labeling with, 7-mercapto-4-methyl
coumarin (MMC) as the detachable fluorescent tag linked to the anomeric center of un-
protected sugar (92) (Scheme 33) [87]. The resulting MMC-labeled sugars (92) showed
a high sensitivity for fluorescence detection and could be used for the quantification of
oligosaccharide mixtures [87].
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7.2.5. 7-Mercapto-4-Methyl Coumarin as Metal Chelator (Complex Formation)

7-Mercapto-4-methyl coumarin (50) is characterized by its ability to accept transi-
tion metals and form metal chelates that play a prominent role in the development of
coordination chemistry [88,89].

A diironhexacarbonyl cluster covalently linked to S-4-methyl coumarin (93) was
synthesized (Scheme 34) [90]. The complex, 93, is electrochemically unstable and exhibited
photoinduced intramolecular electron transfer from coumarin to the iron-carbonyl unit [90].
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Scheme 34. Diironcarbonyl–coumarin complex. Reagents and conditions: THF, stirring, r.t.,
overnight, 77.5% yield.

Rank et al. demonstrated a bis(coumarin thiolate) complex (96) to constitute an inter-
esting building block for multimetal structures in a “complexes as ligands” approach [88].
The reaction of the terpyridine ligand, 4-tbutyl-4′-(4-pyridinyl)- 2,2′-bipyridine (94), with
[PtCl2(dmso)2] yielded the corresponding complex cis-[PtCl2(L)] (95). The coupling reaction
of with 7-mercapto-4-methyl coumarin led to the formation of the bis(coumarin thiolate)
complex [Pt(4-methyl-coumarin-7-thiolate)2(4-tbutyl-4′-(4-pyridinyl)-2,2′-bipyridine)] (96)
(Scheme 35) [88].
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Scheme 35. Bis(coumarin thiolate) complex. Reagents and conditions: (a) DMF, reflux, 20 h, 53% yield;
(b) KOH, MeOH, 5 min, stirring, 69% yield.

Carboni et al. synthesized novel (CˆNˆN) cyclometalated AuIII complexes with the
general formula [Au(bipydmb-H)X][PF6] (bipydmb-H is CˆNˆN cyclometalated 6-(1,1-
dimethylbenzyl)-2,2′-bipyridine) (Scheme 36) [91]. The [Au(bipydmb-H)(MeQS)][PF6]
(3-PF6) including coumarin expressed distinctive biological activity as an anticancer agent
against human lung epithelial cancer (A549) and human ovarian cancer (SKOV-3) cells [91].
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Scheme 36. [Au(bipydmb-H)(MeQS)][PF6] (3-PF6) complex. Reagents and conditions:
dichloromethane, stirring, r.t., 24 h, 88% yield.

Novel metal-free and metallophthalocyanines with 7-thioether-4-methyl coumarin
were prepared from the reaction of 7-mercapto-4-methyl coumarin (50) with 1,2-dicyano-4-
nitrobenzene (99) to give 7-(3,4-dicyanophenylthio)-4-methyl coumarin (100) (Scheme 37) [92].
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Cyclotetramerization of this structure under heating with dry 2-N,N-dimethylaminoethanol
in a sealed tube afforded 2,9,16,23-tetrakis(7-coumarinthio-4-methyl)-phthalocyanine (101a).
The latter chelated various metals in a reaction with their salts, Zn(CH3COO)2·2H2O,
NiCl2·6H2O, CuCl, and CoCl2·6H2O, and gave the corresponding metallophthalocyanines
101b–e (Scheme 37) [92].
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Scheme 37. Synthesis of metallophthalocyanines. Reagents and conditions: (a) DMF, K2CO3, r.t.,
93.3% yield; (b) (i) heat 145 ◦C, sealed tube, M = H (92a) with 63% yield; (ii) heat at 195 ◦C, dry
quinolone, sealed tube, stirring, 24 h, M = Zn (92b) 95.1% yield, M = Cu (92c) 95.2% yield, M = Ni (92d)
96% yield, M = Co (92e) 96% yield.

8. Conclusions

Coumarins are one of the heterocyclic structures of great interest in the development
of valuable structures with both biological and industrial applications.

Mercapto (or sulfanyl)-coumarins represent an interesting class of compounds that
open many possibilities for further chemical transformations. As a nucleophile, mercapto-
coumarin can be used to prepare derivatives with halides, activated halides, and in nucle-
ophilic aromatic substitutions with the appropriate aromatic halides. They can also be used
in Michael addition and Mannish reactions. Additionally, they can serve as an intermedi-
ate for the synthesis of thiophenes fused to coumarin as well as for the preparation of a
thiocoumarin or a thiochromone ring.

Remarkably, 7-mercapto-4-methyl coumarin (MMC) shows the most useful structure
for different applications. This substrate is considered as a starting compound to synthesize
varieties of bioactive compounds. In addition, it plays an important role in materials
science, where it serves as a reporter molecule, fluorescent probe, sugar acceptor, metal
chelator (complex formation), and Raman reporter.

Finally, 5 and 8 mercapto-coumarins leave a lot of space for further investigation as
there are not described in the literature. Even 8-mercapto-4,6-dimethyl coumarin was
claimed to have been obtained [93], no proof of this structure was given.
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Their Determination. Foods 2020, 9, 645. [CrossRef] [PubMed]
2. Ballin, N.Z.; Sørensen, A.T. Coumarin Content in Cinnamon Containing Food Products on the Danish Market. Food Control 2014,

38, 198–203. [CrossRef]
3. Coumarin Perfume Ingredient, Coumarin Fragrance and Essential Oils Benzopyrone. Available online: https://www.fragrantica.

com/notes/Coumarin-259.html (accessed on 25 February 2022).
4. Stiefel, C.; Schubert, T.; Morlock, G.E. Bioprofiling of Cosmetics with Focus on Streamlined Coumarin Analysis. ACS Omega 2017,

2, 5242–5250. [CrossRef] [PubMed]
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