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In this issue, Costello et al.1 provide a meta-analysis for associa-
tions between per- and polyfluoroalkyl substances (PFAS) and
human clinical biomarkers for liver injury. They simultaneously
considered PFAS effects on liver biomarkers and histological
data from rodent experimental studies. This integrative assess-
ment addresses an important need.

Based on concordance between population and experimental
findings, the authors concluded there is convincing evidence that
perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid
(PFOS), and perfluorononanoic acid (PFNA) are hepatotoxic to
humans. The authors note that, although the exact mechanisms of
toxicity are uncertain, they likely feed into pathways that induce
nonalcoholic fatty liver disease (NAFLD)—a reasonable hypoth-
esis, given the abundant literature concerning PFAS and lipid dis-
ruption. Others have called attention to the similarity of
experimental PFAS-induced steatosis and human biomarkers fol-
lowing PFAS exposure2,3; Costello et al.1 are the first to provide
a needed methodical approach to literature-wide statistical assess-
ment of liver data.

An important consideration is that the global epidemic of
NAFLD is estimated to affect ∼ 25% of the human population,4

although this figure may still be an underestimation of the preva-
lence of early preclinical stages, which do not invariably pro-
gress.4,5 Because the diagnosis requires clinical suspicion along
with laboratory and imaging studies, and because it is formally
made with invasive techniques, NAFLD is underdiagnosed and
preventive opportunities are often lost.5 The strong association of
NAFLD to alanine amino transferase (ALT), the biomarker of
choice in this systematic review by Costello et al.,1 diminishes
the possibility that population findings are attributable to unmeas-
ured confounding by alcohol intake.6 This work firmly puts
PFAS exposure on the list of persistent pollutants, such as poly-
chlorinated biphenyls,7 that cause hepatotoxicity and whose
mechanism is linked to steatosis.8

Global PFAS risk evaluations have sometimes minimized the
potential importance of PFAS associations to liver (or lipid) bio-
markers because the mean is still within the normal range, or
because findings lack consistency.9 Because of underlying experi-
mental and human study design heterogeneity, the work by
Costello et al.1 conveys more about the consistency than the
strength of association within and across species. Population
research naturally features inconsistency, but this systematic

review paints a picture of consistency of effect. We hope the total-
ity of evidence will encourage thoughtful future use of character-
izations of consistency or its absence.

Characterizations about the size and importance of biomarker
findings are most logically framed as data. ALT in populations
has a positively skewed distribution.10 The adverse modification
of this distribution with PFAS exposure is illustrated in the mas-
sive population evaluated by the C8 Health Project, wherein a 6%
mean population-wide increase in ALT attributed to PFOA after
multiple adjustments led to a 16% increase in above-normal ALT
across five quintiles of PFOA exposure.11 Further, as noted by
Costello et al.,1 experimental PFAS studies have documented
adverse histological liver findings (often sex-specific) in the ab-
sence of large adverse changes in clinical biomarkers. From a
public health perspective, changes in liver transaminases are con-
sistently relevant to the health of populations and are also part of
the algorithmic approach to liver disease diagnoses.5,6

Two recent papers underline the ongoing importance of PFAS
hepatotoxicity. Developmental exposure to low doses of PFOA
and GenX caused enhanced histological liver lesions, vesicular
fat content, and insulin resistance in young adult mice on a nor-
mal diet in a sex- and dose-dependent manner, without altering
serum ALT or aspartate aminotransferase (AST).12 Further, an
analysis of liver biopsy material from people undergoing bariatric
surgery showed that some PFAS were significantly correlated
with liver fat content, insulin resistance, and liver disease status
in a sex-dependent manner.3 As suggested by Costello et al.,1

future PFAS research should report data on both males and
females for the various health outcomes.

The conclusion that PFAS cause hepatoxicity in humans in no
way contradicts the advocacy by Costello et al.1 for needed
research. Important knowledge gaps in the population literature
include whether the documented higher transaminases, disrup-
tions in lipid/bile acid metabolism, and higher uric acid represent
PFAS-induced liver damage from steatosis per se or from some
other liver processes. This damage will be difficult to study,
because the diagnosis of NAFLD is seldom made during early
disease.5 Other important questions raised by this review are a)
whether overweight/obese individuals and those with diabetes are
more susceptible to PFAS hepatoxicity, b) which “replacement”
or emerging PFAS can cause liver damage, and c) whether high
vs. low doses cause different kinds of liver toxicity. GenX, a cur-
rent replacement for PFOA, has shown significant hepatotoxicity
in several recent experimental studies,12–14 suggesting it may not
be a safe replacement. A significant challenge will be deciding
which of the multiple metabolic pathways altered by PFAS13 are
most important and predictive for induction of liver damage and
for progression of liver disease, so that emerging PFAS may be
screened for hepatotoxicity prior to entering the market.

Looking beyond these stated research needs, people living or
working in communities with high exposure to PFAS want to
know what can be done to protect themselves right now. For
existing exposures, promising PFAS research suggests that
lifestyle interventions, useful for NAFLD in general, may be
helpful.15 This work needs to be replicated, because affected pop-
ulations are aware that the pace of our research is not addressing
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their legitimate concerns. The meta-analysis by Costello et al.1

underscores the urgent need for further research and for immedi-
ate and reasonable public health action.
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