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Optimization of spin‑lock 
times for  T1ρ mapping of human 
knee cartilage with bi‑ 
and stretched‑exponential models
Hector L. de Moura*, Rajiv G. Menon, Marcelo V. W. Zibetti & Ravinder R. Regatte

Two optimization criteria based on Cramér‑Rao Bounds are compared between each other and 
with non‑optimized schedules for  T1ρ mapping using synthetic data, model phantoms, and in‑vivo 
knee cartilage. The curve fitting is done on complex‑valued data using an iterative Nonlinear Least 
Squares (NLS) approach. The optimization criteria are compared based on the Mean Normalized 
Absolute Error (MNAE) and variance of the estimated parameters. The optimized spin‑lock time 
(TSL) schedules provided improved results over the non‑optimized schedules for all cases that were 
tested. The simulations showed that optimized schedules can reach the same precision and reduce 
acquisition times by 16.5 min (42%) for the bi‑exponential model, and 6.6 min (22%) for the stretched‑
exponential model. In the model phantoms experiments, the bi‑exponential MNAE was reduced from 
0.47 to 0.36, while stretched‑exponential from 0.28 to 0.20 with a Modified Cramér‑Rao Lower Bound 
(MCRLB). In‑vivo knee cartilage experiments show a reduction in bi‑exponential MNAE from 0.47 to 
0.31, and stretched‑exponential from 0.047 to 0.039. The optimized spin‑lock times criteria reduced 
the error in all cases, being more significant in the synthetic data and model phantoms. The optimized 
TSL schedules can be either used to improve the quality of parameter maps or reduce scan time.

Osteoarthritis (OA) is a degenerative disease that causes degradation and loss of articular cartilage. Its symptoms 
include pain, stiffness, and swelling in the knee  joint1. These symptoms only appear after irreparable damage has 
 occurred2. The early detection of OA can help to prevent these symptoms and mitigate damage before the disease 
reaches an irreversible  stage3. Among the many methods used to detect OA, MRI shows the most  sensitivity4,5.

Articular cartilage is mainly composed of water (~ 75%), collagen (~ 20%), and proteoglycans (PGs, ~ 5%)6,7. 
In the early stages of OA, there is a breakdown of the collagen network, increasing water content, and loss of 
 PGs8. The degree of decrease in PG content is associated with the severity of the  disease5,7.

Among other parameters such as collagen and water content and orientation of the collagen fibers, the 
spin–lattice relaxation in the rotating frame  (T1ρ) is also sensitive to PG content in articular cartilage. Previ-
ous studies demonstrated the relation between cartilage degradation and elevated  T1ρ relaxation  times5,9.  T1ρ is 
also less variant to orientation than  T2 depending on the spin-lock  frequency10.  T1ρ maps can be produced by 
acquiring several  T1ρ -weighted images using different spin-lock times. Their accuracy is tied to the number of 
images acquired as well as their signal-to-noise ratios (SNR). Increasing the number of images will also increase 
the duration of the acquisition, which is undesirable as the chances of the subject’s motion increase. The SNR 
can be increased by averaging several images or using multiple receiver channels. The choice of spin-lock times 
(TSL) can also improve the accuracy of  T1ρ  maps11,12. Optimizing the TSL schedules makes it possible to reduce 
acquisition time while obtaining parameter maps of the same quality.

The Cramér-Rao Lower Bound (CRLB) has been applied to sampling schedule optimization for  T1 and  T2 
 mapping13–16, and Magnetic Resonance  Fingerprinting17,18. Optimizing the sampling schedule leads to better 
conditioning of the matrices used for Nonlinear Least Squares (NLS)12. A previous study by Zibetti et al.12 showed 
the efficacy of optimizing the sampling schedules using the CRLB and a modified CRLB (MCRLB). This reduced 
the error in mono-exponential  T1ρ fitting while using only 2 images, effectively reducing the acquisition time.

Previous studies reported non-monoexponential  T2
19 and  T1ρ

20 relaxation in bovine cartilage associated 
with collagen fiber orientation and three water compartments: water bound to collagen, water tightly bound to 
PG, and bulk water loosely bound to PG. These studies used multi-exponential models like bi-exponential and 
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tri-exponential. Other  studies21,22 also reported that this non-monoexponential  T2 relaxation can be well fitted 
with the so-called stretched-exponential models.

More recently, Sharafi et al.7 reports similar non-monoexponential  T1ρ relaxation in human knee cartilage 
using the bi-exponential model. Non-monoexponential  T1ρ relaxation was also  reported23 in intervertebral discs 
and a correlation between the stretched-exponential parameters and glycosaminoglycan (GAG) content variation. 
This could also provide better sensitivity for detecting early degeneration in knee cartilage.

Fitting these multi-exponential models requires more images than a monoexponential model, proportional 
to the number of parameters, resulting in longer acquisition times. Therefore, the optimization of sampling 
schedules is critical for these models. In this paper, we extend Zibetti et al.’s12 approach to the CRLB and MCRLB 
optimization of TSL sampling schedules for the bi-exponential and stretched-exponential models. Another 
difference from previous works is the use of different weights for each of the model’s parameters. We show that 
the optimized schedules can improve the performance of the fitting process for both multi-exponential models. 
This approach can also generate shorter schedules that can greatly reduce acquisition time while maintaining 
the quality of the fitting process of a longer, but non-optimized, schedule. The speedup can reach up to 1.7 times 
that of a non-optimized schedule. We demonstrate these results through simulated data, model phantoms, and 
in-vivo knee cartilage experiments.

Methods
Data acquisition and reconstruction. All the MRI scans were performed on a 3 T, whole-body clinical 
MRI scanner (Prisma, Siemens Healthcare, Erlangen, Germany) with a 15-channel transmit/receive knee coil 
(QED, Cleveland OH). The 3D-T1ρ-weighted datasets were acquired using a modified 3D Cartesian ultra-fast 
spoiled gradient echo (Turbo FLASH)  sequence12 for variable TSL as shown in supporting information Fig. S1.

The protocol used is composed of a sequence of  T1ρ preparation modules P, 3D imaging modules A, and 
longitudinal magnetization restoration modules R. Module P uses a spin-lock frequency of 500 Hz and TSL 
according to the sampling schedule. Module A acquires 64 k-space lines (with 256 samples each) per preparation 
pulse, using a steady-state sequence with TR/TE = 7.63 ms/3.67 ms and flip angle of 8°, and a receiver band-
width of 510 Hz/pixel. Longitudinal magnetization recovery module R, consisting of a delay of 1000 ms, is used 
after module A. The set of modules P-A-R is repeated 128 times to capture a data matrix of size 256 × 128 × 64 
per TSL. The slice thickness is 2 mm and the FOVs are defined as 160 mm × 160 mm for the egg phantom 
and 196 mm × 196 mm for the in-vivo knee joint. After upsampling in phase direction, the resolutions are 
0.6 mm × 0.6 mm × 2 mm and 0.76 mm × 0.76 mm × 2 mm for the egg phantom and knee joint respectively. 
Each module P takes approximately the same time as the TSL used, that is, between 0.5 and 55 ms, each module 
A takes approximately 64 × TR = 486.4 ms, and each module R takes 1000 ms. One set of modules makes up a 
shot, that takes approximately 1.5 s. To complete the data matrix, 128 shots, the total time takes between 3.17 
and 3.28 min, depending on the TSL used.

The 2D slices are recovered using  SENSE24, which solves:

where xt is a complex-valued vector representing an image with TSL t  and size Ny × Nz = 128 × 64, with Ny being 
the image size on the y-axis and Nz the size on the z-axis. The vector yt represents the captured k-space data 
with size Ny × Nz × Nc, where Nc is the number of coils. The matrix B contains the coil sensitivities and phase 
compensation, and F the Fourier transforms of all sensitivity-weighted images.

A non-optimized TSL schedule, composed of linearly spaced samples between 0.5 and 55 ms was used as the 
baseline for comparison against the optimized schedules. Monte Carlo simulations were carried out to assess the 
performance of the optimized schedules in controlled scenarios. The experiments were performed using a model 
phantom and human volunteers. The model phantom was composed of three pairs of unfertilized chicken  eggs25,26 
that were purchased from a local store. The eggs were used in three conditions: raw, soft-boiled, or hard-boiled. 
 T1ρ relaxation in eggs shows non-monoexponential  behavior26, especially in the yolks. The human volunteers 
were 3 healthy males with a mean age of 37 ± 16 years.

This study was approved by the institutional review board (IRB) of New York University Langone Health and 
was compliant with the health insurance portability and accountability act (HIPAA). Every volunteer provided 
written informed consent after an explanation of the study and the protocol, and before scanning, as per IRB 
guidelines. All the methods reported herein were performed in accordance with the institutional guidelines and 
regulations.

Most figures were entirely generated by  Matlab27 code, while Figs. 3, 4, 5 and 6 were partially generated by 
Matlab code and manually assembled to their final format using the vector graphics software  Inkscape28.

Bi‑ and stretched‑exponential models. The use of bi- and stretched-exponential models can better 
characterize decays when the voxels might contain different compartments. The more commonly used of these 
models is the bi-exponential model. This model considers two compartments, one with short decay and the 
other with a long decay, each with a respective amplitude. It can be described as

(1)x̂t = arg min
xt

yt − FBx2t2,

(2)sbi(t, n) = A(n)

[
f (n)exp

(
−t

T1ρs(n)

)
+

(
1− f (n)

)
exp

(
−t

T1ρ1(n)

)]
+ η(t, n),
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where A(n) is the complex-valued signal amplitude at position n , f (n) represents the real-valued short frac-
tion, i.e. the contribution of the compartment with short decay to the voxel amplitude, T1ρs denotes the shorter 
relaxation time, T1ρlT1ρl denotes longer relaxation time, and η(t, n) is a complex-valued white Gaussian noise.

Similarly, we define the second exponential model used, the stretched-exponential model. It can be defined as

where T1ρ∗ denotes the characteristic relaxation time of the voxel, and β is the stretching exponent in the range 
of 0 < β ≤ 1 . This model considers the decay as the sum of independently relaxing compartments within a 
voxel. Johnston et al.29 provided a detailed study of the model, including a unique physical interpretation of it. 
The stretching exponent parameter allows the modeling of a broad continuous distribution of relaxation times, 
representing varying degrees of microstructural complexity in the tissue, and was shown to be correlated with a 
decrease in water and GAG  contents23. This correlation could be useful to detect early changes in knee cartilage 
composition. Essentially, as β gets closer to 1, the more monoexponential the voxel is. Non-monoexponential 
voxels are shown as voxels with β smaller than 1.

Although its interpretation is not as clear as the bi-exponential model, the stretched-exponential has three 
parameters and its optimization is more stable, as we will show later. As the models are the same for every posi-
tion n and all model parameters are position-dependent we will omit it from here on to keep the notation clear.

For the bi-exponential model, we can define the parameter vector θbi =
[
A, f, T1ρs, T1ρl

]
 , for the stretched-

exponential we define it as θ st =
[
A, T1ρ, β

]
 . The exponential signals are sampled at  K different TSLs defined by 

the sampling schedule t  and we can thus represent it by s(t , θ) = [s(t1, θ), s(t2, θ), ..., s(tK , θ)]
T . This expression 

emphasizes the dependence on both the sampling schedule t  and the model parameters θ.

Curve fitting algorithm. The curve fitting for both models is done using the Nonlinear Least Squares 
(NLS) described by

 where Θ represents the set of possible parameter values. The solution to Eq. (4) is found by using the Conjugate 
Gradient Steihaug’s trust-region (CGSTR)  algorithm30. This iterative algorithm is stopped after 2500 iterations 
or when the normalized step is smaller than  10–9. The signal amplitude is normalized before fitting, so the nor-
malization factor is included in parameter A. The set Θ contains every possible combination of the values inside 
the ranges displayed in Table 1. The values in Table 1 were chosen to represent the expected range of values in 
knee cartilage. In egg yolks, higher T1ρ values can be expected for the long  component26.

Usually, the curve fitting is done with magnitude-only data, here we used the complex-valued data. Magni-
tude-only fitting must account for Rician distributed noise and also rely on data weighting and noise thresholding 
to improve  performance31. Complex-valued estimators are statistically  efficient31 and do not require these addi-
tional steps. Supporting information Fig. S2 illustrates the comparison between complex-valued and magnitude 
fitting. Simulated data for the bi- and stretched-exponential models were generated using values in the ranges 
shown in Table 1 and using different levels of SNR.

Spin‑lock time schedule optimization. The CRLB is a lower bound for the variance of unbiased 
 estimators32. A previous  study12 showed that using the CRLB criterium for the optimization of TSLs is very 
similar to the direct optimization of the estimator mean squared error using a matched sampling-fitting (MSF) 
approach. Similarly, minimizing the MCRLB lead to results similar to an MSF approach to minimizing the nor-
malized mean absolute error. Even though our fitting method is constrained, this previous result shows that the 
CRLB for unbiased estimators is enough for our approach.

The CRLB is generalized to multi-parameter estimators by the Cramér-Rao Matrix (CRM), which contains 
the CRLB for each parameter in its main diagonal matrix. The CRM is defined as

where the Fisher Information Matrix (FIM), I(t, θ), is defined as

(3)sst(t, n) = A(n) exp

(
−

(
t

T1ρ∗(n)

)β(n)
)

+ η(t, n),

(4)θ̂ = arg min
θ∈�

K∑

k=1

|x(tk)− s(tk , θ)|
2,

(5)V(t , θ) = I−1(t , θ),

Table 1.  Minimum and maximum values were considered for each of the models’ parameters. The estimated 
values are constrained to improve estimation stability.

Parameters A(a.u.) f T1ρs[ms] T1ρl
[ms] T1ρ∗[ms] β

Minimum 0 0.05 1 30 10 0.4

Maximum 1e10 0.95 10 90 90 1
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in which ln p(x(t , θ)) is the natural logarithm of the probability density function given by Eq. (2) or (3). The FIM 
can also be obtained using the Jacobian of Eqs. (2) and (3), like

ae row k of the Jacobian matrix, denoted J(tk , θ) , is dependent on the choice of TSL and also the expected dis-
tribution of parameters. For the bi-exponential model, it is an 1× 4 vector defined as

and for the stretched-exponential model, it is a 1× 3 vector denoted as

Both expressions are dependent on the parameters θ , and so, the optimal sampling schedule will change 
according to the distribution of these parameters. To account for this, we first optimized considering a uni-
form distribution within the ranges shown in Table 1, the resulting schedules were used for the synthetic data 
experiments.

To obtain the optimal schedule, t̂ , we look for the schedule that minimizes the combined CRLBs averaged 
over the parameters θ , this criterium is defined as

where wi is the weight given to each parameter according to its importance, θ s is the s-th sample drawn from 
the distribution of the parameters. Another possible criterium is the Modified  CRLB12 (MCRLB), described by

The MCRLB favors equal relative precision across the components and also avoids that large values in the 
CRM dominate the overall  cost12,15. The weighting vectors for both models were determined, empirically, by 
searching the values that better equalized the errors of every parameter in each model. The idea is to verify which 
parameters have higher normalized bounds and increase their weighting so the algorithm prioritizes them. We 
repeated the optimization process with different weights until the normalized bounds were closer to each other. 
This led to w = [0, 0.3, 0.4, 0.3] for the bi-exponential, and w = [0, 0.9, 0.1] for the stretched-exponential model. 
Since the amplitude parameter is easier to estimate, its weight was zero for both models. While the bi-exponential 
parameter weights are similar to each other, the weights for the stretched-exponential were very different. That 
means the bound for the stretching parameter was already much lower when considering equal weights.

The possible values of TSLs, t  , are defined over a grid before the optimization. For this study, we used a non-
uniform grid starting from 0.5 to 5 ms, with 0.5 ms steps, and from 6 to 55 ms, with 1 ms steps. To optimize Eqs. 
(10) and (11), we used the Pareto Optimization for Subset Selection (POSS)33 algorithm. The decision to limit 
the grid to 55 ms comes from the SNR of the images obtained with longer TSLs. At 55 ms, the signal is already 
close to noise levels. Another detail here is that longer TSLs could lead to Specific Absorption Rates (SAR) above 
the Federal Drug Administration (FDA) recommended levels.

To validate the results, we compare the estimated values for each parameter against reference values. For the 
synthetic data, the reference values are known, but for model phantoms and in-vivo data, the reference values 
are estimated by fitting the corresponding model with every acquired TSL.

The comparison is done using the MNAE, defined as

(6)I(t , θ) = E
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to compare the parameters against the reference, where θ̂ is the estimated parameter value and θ is the reference. 
To compare the schedules across different parameters we combine the NAE from all parameters as a weighted 
average defined by

which can be averaged across voxels for a single number comparison.
We also used the R-Squared  (R2) metric to evaluate how well the estimated parameters fit the acquired data 

from model phantoms and human volunteers. The metric is defined as

Lastly, we use the corrected Akaike Information Criteria (AICc) to determine which model best fits the data 
in small sampled  studies34,35. Assuming all data points are independent and identically distributed with a normal 
distribution around the fitted curve, the AICc is defined as

where P denotes the number of model parameters, and SSE denotes the Sum of Squared Error of the fitted curve. 
The model with lower AICc is the one that better fits the data points, while accounting for the number of model 
parameters. We used this metric to determine the percentage of voxels that are better fitted with either the bi- or 
stretched-exponential models for the references.

Results
Evaluation with synthetic data with known ground truth. Monte Carlo simulations were carried 
out to evaluate the performance of both the CRLB and the MCRLB as optimization criteria against a non-
optimized sampling schedule. The non-optimized schedule consists of linearly spaced timings in the same grid 
as the optimized ones.

The simulations consider several samples θ s , with which decay curves are synthesized and sampled, according 
to the evaluated schedule. The sampled signals are then corrupted with complex-valued white Gaussian noise so 
that it has an SNR = 30. Different schedules were evaluated using 4–12 TSLs for the bi-exponential model, and 
3–9 for the stretched-exponential model. For each K, there are two optimized schedules and one non-optimized. 
The sampling schedules used are displayed in Table 2.

Figure 1a shows the estimation error and standard deviation for each parameter of the bi-exponential model 
using different schedules and also a combined error for all parameters according to their weights. The optimized 
schedules not only reduce error for the same K, but in some cases, the error was lower even when smaller K are 
used.

Similarly, Fig. 1b shows the estimation error and standard deviation for the stretched-exponential model. 
Although the differences between optimized and non-optimized schedules are smaller than for the bi-exponential 
model, the optimized schedules are consistently better in terms of MNAE. Also, the MCRLB optimized schedules 
performed consistently better than the CRLB optimized schedules.

Figure 2 illustrates results for parameter mapping in a synthetic phantom using K = 6. For the bi-exponential 
maps, the region where both short and long components are closer presented larger errors than the other regions. 
This is to be expected from the bi-exponential model. For the stretch-exponential maps, the errors are much 
lower and the differences between the maps are barely visible, still, the metrics show the improvement with the 
optimized schedules.

Evaluation with model phantoms. For this experiment, we used only the schedules with K = 6. The ref-
erence maps for this experiment were obtained using all acquired TSLs for the 6 schedules used, which resulted 
in 19 TSLs due to common TSLs between schedules. The acquired TSLs are: 0.5, 0.5, 2.2, 5, 6, 9, 11, 11, 12, 17, 
21, 22, 22, 24, 24, 33, 44, 55, 55 ms. The eggs were scanned whole, but the egg whites were not mapped for two 
reasons: much longer decays than is expected in knee cartilage, and predominantly mono-exponential behavior. 
From the total of 6 eggs, 2 were raw, 2 were soft-boiled, and 2 were hard-boiled. This way we can analyze a wider 
range of the parameters.

Figure 3 shows the bi-exponential maps and the error maps. We see the biggest improvements for the short  T1ρ 
maps, especially for the MCRLB optimized schedule where the MNAE is close to half that of the non-optimized 
schedule. Figure 4 shows the stretched-exponential maps obtained with the different schedules and their error 
maps. The errors are smaller for the raw eggs due to higher SNR when compared with the hard-boiled eggs. We 
see a higher error in the β-map for the CRLB optimized schedule when compared to the MCRLB optimized one. 
This is probably due to the MCRLB not being dominated by the larger error.
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These results are summarized in Table 3, optimized schedules performed better than non-optimized schedule 
in all metrics for both methods. Figure 7 top row shows the non-monoexponential relaxation in the egg yolks, 
which results in a lower  R2 for the mono-exponential fitting when compared to the bi- or stretched-exponential 
fittings. When comparing the AICc of the multi-exponential models against the mono-exponential for each voxel 
in the reference, 59.2% of the voxels were better fitted with the stretched-exponential model and 21.1% with the 
bi-exponential model, the remaining 19.7% were considered mono-exponential.

Evaluation with in‑vivo knee cartilage. For in-vivo experiments, we recruited three volunteers to 
undergo the approximately 1-h scan, in which 19 TSLs were acquired. Same as for the model phantom, the 19 
TSLs correspond to the TSLs acquired for the 6 different schedules. Due to the long scanning time, translational 
motion correction was applied to the data to mitigate the related errors. The cartilage was manually segmented 
from sagittal images of both medial and lateral slices of the knees.

Figures 5 and 6 show the reference and estimated maps from a lateral slice of the first volunteer, using the 
bi-exponential and the stretched-exponential models, respectively. Also included are the combined NAE maps, 
these maps show the weighted average of the NAE as defined in Eq. (13). The combined values of MNAE and 
 R2 for the three volunteers are summarized in Table 3. Again, the AICc comparison shows that most voxels are 
better fitted with the stretched-exponential model with 54.2% of the voxels. The voxels better fitted with the bi-
exponential model accounted for 38.4% of the total.

Table 2.  Optimized and non-optimized sampling schedules for both multi-exponential models.

Bi-exponential

K CRLB MCRLB

4 [0.5 4.7 22 55] [0.5 3 20 55]

5 [0.5 4.7 23 55 55] [0.5 2.1 6 22 55]

6 [0.5 5 24 24 55 55] [0.5 2.2 6 21 22 55]

7 [0.5 5 24 25 55 55 55] [0.5 2.1 6 23 23 55 55]

8 [0.5 5 25 25 25 55 55 55] [0.5 1.7 5 6 22 22 55 55]

9 [0.5 4.4 7 24 24 24 55 55 55] [0.5 1.8 6 6 22 22 22 55 55]

10 [0.5 4.4 7 24 25 25 55 55 55 55] [0.5 1.8 6 6 23 23 23 55 55 55]

11 [0.5 4.6 7 24 24 25 25 55 55 55 55] [0.5 1.8 6 6 22 23 23 23 55 55 55]

12 [0.5 4.6 7 25 25 25 25 55 55 55 55 55] [0.5 1.8 6 6 23 23 23 23 55 55 55 55]

Non-optimized

4 [0.5 18 37 55]

5 [0.5 14 28 41 55]

6 [0.5 11 22 33 44 55]

7 [0.5 9 18 28 37 46 55]

8 [0.5 8 16 24 31 39 47 55]

9 [0.5 7 14 21 28 34 41 48 55]

10 [0.5 6 12 18 24 31 37 43 49 55]

11 [0.5 6 11 17 22 28 33 39 44 50 55]

12 [0.5 5 10 15 20 25 30 35 40 45 50 55]

Stretched-exponential

CRLB MCRLB

3 [0.5 11 55] [0.5 11 55]

4 [0.5 10 16 55] [0.5 12 14 55]

5 [0.5 12 13 55 55] [0.5 12 13 55 55]

6 [0.5 0.5 9 17 55 55] [0.5 0.5 11 11 55 55]

7 [0.5 0.5 11 11 55 55 55] [0.5 0.5 12 12 12 55 55]

8 [0.5 0.5 9 10 30 55 55 55] [0.5 0.5 12 12 12 55 55 55]

9 [0.5 0.5 12 12 12 55 55 55 55] [0.5 0.5 0.5 11 11 12 55 55 55]

Non-optimized

3 [0.5 28 55]

4 [0.5 19 37 55]

5 [0.5 14 28 42 55]

6 [0.5 12 23 33 44 55]

7 [0.5 10 19 28 37 46 55]

8 [0.5 9 16 24 32 40 47 55]

9 [0.5 8 14 21 28 35 42 48 55]
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Figure 7 bottom row shows the non-monoexponential relaxation found in different cartilage compartments 
in the knee. We saw no significant difference in the number of voxels with non-monoexponential relaxation 
between compartments, but it was present in every compartment.

Figure 1.  A weighted average of MNAE (a) for estimated bi-exponential parameters, MNAE for the fraction, 
short  T1ρ, and long  T1ρ versus K. The optimized sampling schedules resulted in lower errors for the entire range, 
and the MCRLB optimized schedule was the top performer. Interestingly, the CRLB schedule performed better 
for the estimation of long  T1ρ. This is probably due to the longer TSLs employed. In (b) Weighted average of 
MNAE for estimated stretched-exponential parameters, MNAE for the  T1ρ*, and β versus K. Errors are much 
lower than for the bi-exponential model, and so is the gain over the non-optimized schedule. The differences 
between CRLB and MCRLB schedules also become smaller. The black dashed line indicates the minimum 
error obtained using the non-optimized schedule. The optimized schedules can reach this line before the non-
optimized schedules, leading to lower acquisition times.
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Discussion
The optimized TSL schedules presented are capable of reducing acquisition time and improving fitting preci-
sion simultaneously. The reduction in acquisition time for the bi-exponential model is approximately 42% or 
16.5 min. This means a reduction of 5 TSLs, as shown in Fig. 1 when compared to a reduction of only 2 TSLs 
for mono-exponential  fitting12, this is a surprising result. For the stretched-exponential model, the reduction 
was approximately 22% or 6.6 min, similar to that of the mono-exponential  fitting12. These reductions are the 
direct consequence of using fewer TSLs. The optimized TSL schedules also improve parameter accuracy when 
compared to a non-optimized schedule with the same number of TSLs. In some cases, it is possible to avoid 
the trade-off between reduced acquisition time and parameter accuracy, as an optimized schedule with fewer 
TSLs can be faster and achieve better accuracy. The use of accelerated sequences combined with Compressive 
 Sensing36 might further improve these results. Another benefit to this method is that by reducing the number 
of acquired TSLs, one can use longer sequences or averaging to improve SNR. As the schedule optimization is 
done over the expected distribution of parameters for the object, performance can decrease if the object has 
a distribution different from the expected. This can be seen in the in-vivo experiment, in which the MCRLB-
optimized schedule for the bi-exponential model performed slightly worse than the CRLB-optimized schedule 

Figure 2.  Parameter mapping for the bi- and stretched-exponential models with synthetic phantoms. The 
optimized schedules not only presented smaller MNAEs than the non-optimized ones but also presented a 
smaller standard deviation (σ) of the residue. Image generated in  Matlab27.
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for the same model. This probably happened because the scanned knees had more voxels with longer  T1ρ than 
was expected and as the CRLB-optimized schedule has longer TSLs, it was better suited for the fitting. Similar 
results were reported by Yuan et al.11 for mono-exponential fitting of  T1ρ relaxation. In that study, it was shown 

Figure 3.  Bi-exponential parameter maps for the egg yolk phantom, the eggs are organized in rows as raw, 
soft-boiled, and hard-boiled, top-to-bottom order. The parameters fraction, long and short  T1ρ, along with the 
voxel-wise Normalized Absolute Error (NAE) for each parameter. Image created using  Matlab27 and  Inkscape28.
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that a schedule with higher TSLs performs better for larger  T1ρ values than a similar schedule with lower TSLs. 
They also showed that the schedule with lower TSLs performed much better for lower  T1ρ values, obtaining a 
lower deviation over the whole range. This is consistent with our Monte Carlo simulations that show overall 
lower errors for the MCRLB optimized schedules.

Instead of optimizing the mean, we could have optimized for the worst-case in the expected distribution as 
 in13–15 Optimization of the worst-case means that the optimal schedule’s error will have an upper-bound, but it 

Figure 4.  Stretched-exponential parameter maps for the egg yolk phantom. The parameters  T1ρ*, and β, along 
with the voxel-wise Normalized Absolute Error (NAE) for each parameter. Image created using  Matlab27 and 
 Inkscape28.
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Table 3.  Results for the egg yolk and in-vivo knee mapping. Average MNAE and  R2 values for the optimized 
schedules are better than those obtained with the Non-optimized schedules.

Schedules

Eggs In-vivo

Bi-exponential
Stretched-
exponential Bi-exponential

Stretched-
exponential

Av. MNAE R2 Av. MNAE R2 Av. MNAE R2 Av. MNAE R2

Non-optimized 0.47 0.74 0.28 0.80 0.471 0.533 0.047 0.876

CRLB 0.39 0.87 0.24 0.92 0.308 0.651 0.040 0.901

MCRLB 0.36 0.74 0.23 0.96 0.317 0.869 0.039 0.908

Figure 5.  Parameter maps for the bi-exponential model fitted using the three different sampling schedules on 
the first volunteer dataset. The combined NAE uses the weighting vector used in the optimization to average the 
voxel-wise over different parameters. Image created using  Matlab27 and  Inkscape28.
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Figure 6.  Parameter maps for the stretched-exponential model were fitted using the three different sampling 
schedules on the first volunteer dataset. The maps look very similar, but the combined NAE maps highlight the 
differences between them. Image created using  Matlab27 and  Inkscape28.

Figure 7.  Fitting on representative pixels of raw, soft-boiled (SB), and hard-boiled (HB) yolks, and, of three 
compartments of knee cartilage: Femorl Medial Cartilage (FMC), Tibial Medial Cartilage (TMC), and Patellar 
Cartilage (PC). The y-axis is the normalized signal amplitude in the log-scale.
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comes with the cost of increasing the mean error across the  distribution37. But under practical situations, with 
outliers and non-translational motion, these approaches may perform better.

The results obtained with the egg yolk model phantoms demonstrate the non-monoexponential relaxation 
that can be better fitted by multi-exponential models, as previously  shown25,26. Although the voxels represented 
in Fig. 7 shows better fitting with the bi-exponential model, both the bi- and the stretched-exponential models 
performed similarly in terms of  R2, as evidenced in Table 3. The results with egg yolks also show the effect of 
having a larger than expected  T1ρ. Our optimization considered values of up to 90 ms, while higher values were 
shown in other  work26. Indeed, the fitting for the raw and soft-boiled yolks is worse, in terms of  R2, than the 
error for the hard-boiled yolk. This is in part due to our optimization considering a smaller interval, but also 
because the TSLs are limited to 55 ms due to SNR. This limitation of TSL has an impact on the fitting of longer 
relaxation times that will affect both optimized and non-optimized schedules.

The results for in-vivo knee cartilage also show that the majority of voxels were better fitted with the stretched-
exponential model rather than the bi- or the mono-exponential models, following the AICc analysis. Similar 
results were  reported35 for  T1ρ in the liver, where the majority of the voxels were better fitted by the stretched-
exponential model. This better fitting does not mean that the stretched-exponential model is more useful, 
although recent  works23 correlate the parameter β with a decrease in GAG and water content in inter-vertebral 
discs, and increased contrast in  T1ρ maps, the same has not been demonstrated for knee cartilage.

Since there is no ground truth to the model phantom and in-vivo cartilage maps, we made use of all the TSLs 
acquired to build a reference. This way, each schedule can be considered as a subset of the reference TSLs. With 
this, we try to minimize the effects of any bias introduced in our comparison between schedules. Also, the use 
of a higher number of TSLs makes the reference more robust, since the difference in errors obtained with the 
schedule goes down with size. Using synthetic data for the case where K = 19, we compared the difference between 
non-optimized and optimized schedules for the bi-exponential model parameter estimation. Using the same 19 
TSLs for model phantoms and in-vivo cartilage and a uniformly spaced schedule: 0.5, 3.5, 7, 10, 13, 16, 19, 22, 
25, 28, 31, 34, 37, 40, 43, 45, 49, 52, 55 ms. The difference in MNAE obtained with both schedules was 0.00275.

Another limitation of this approach is the fact that the NLS estimator is biased. As the CRLB is a variance 
bound for unbiased estimators, optimizing the schedules based on the CRLB can have a lower-than-expected 
impact. Since the biased CRLB requires the bias gradient to be calculated, the process of optimization would 
require the estimation of this gradient for every combination of TSLs. This can be simplified by direct estimation 
of bias and variance of the estimator for every schedule which could lead to the minimization of MSE, as done 
by Zibetti et al.12 with the MSF approach. That resulted in a similar performance to the simpler minimization 
of the CRLB and MCRLB, but with a computational time of up to 100 times greater. As the computational time 
is even longer for bi- and stretched-exponential models because of the increased complexity of the models, we 
decided not to use MSF approaches or biased CRLB in this study.

The approach investigated is not limited to  T1ρ mapping, but can be used in other quantitative techniques 
such as  T1 and  T2  mapping13,14,16, as well as  MRF17,18,38,39. As far as we know, there is no other study comparing 
CRLB optimized schedules for bi- and stretched-exponential models. Kratzer et al.38 used the CRLB as criteria 
to optimize a Sodium MRF sequence for  T1 and  T2 mapping. However, they simplified the  T1 relaxation as a 
mono-exponential and optimized only for that, ignoring the  T2 bi-exponentially relaxed signal.

Future studies include the use of variational  networks40,41 proved to be capable of reconstructing images from 
undersampled k-space data. The use of this kind of network along with another network responsible for data 
fitting, such as Recurrent Inference Machines (RIM)42, can be used to form an end-to-end network for quantita-
tive parametric mapping. Such an approach might enable the combined optimization of TSL scheduling along 
with the network parameters.

Conclusions
In this study, two different optimization criteria for choosing the TSLs for  T1ρ mapping were compared for two 
multi-exponential models. According to our results in synthetic data, model phantoms, and healthy volunteers, 
both the CRLB and the MCRLB optimized schedules outperform the simple linearly spaced schedule. The opti-
mization of sampling schedules based on the exact minimization using the CRLB is a procedure that increases 
in time according to the number of TSLs acquired and the complexity of the model, but it will still be faster than 
methods such as MSF. The optimized TSLs with these methods allowed for improved results even when fewer 
TSLs are used, when compared to a non-optimized sampling schedule.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.
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