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Synthetic microbe communities provide internal
reference standards for metagenome sequencing
and analysis
Simon A. Hardwick1,2, Wendy Y. Chen1,2, Ted Wong1, Bindu S. Kanakamedala1, Ira W. Deveson1,2,

Sarah E. Ongley3,4, Nadia S. Santini5,6, Esteban Marcellin7, Martin A. Smith 1,2, Lars K. Nielsen7,

Catherine E. Lovelock8, Brett A. Neilan3,4 & Tim R. Mercer1,2,9

The complexity of microbial communities, combined with technical biases in next-generation

sequencing, pose a challenge to metagenomic analysis. Here, we develop a set of internal

DNA standards, termed “sequins” (sequencing spike-ins), that together constitute a synthetic

community of artificial microbial genomes. Sequins are added to environmental DNA samples

prior to library preparation, and undergo concurrent sequencing with the accompanying

sample. We validate the performance of sequins by comparison to mock microbial com-

munities, and demonstrate their use in the analysis of real metagenome samples. We show

how sequins can be used to measure fold change differences in the size and structure of

accompanying microbial communities, and perform quantitative normalization between

samples. We further illustrate how sequins can be used to benchmark and optimize new

methods, including nanopore long-read sequencing technology. We provide metagenome

sequins, along with associated data sets, protocols, and an accompanying software toolkit, as

reference standards to aid in metagenomic studies.
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The sequencing of DNA recovered directly from environ-
mental samples can reveal the presence of microbial
communities without requiring prior laboratory

cultivation1,2. This approach, termed metagenomics, has exposed
previously hidden microbial diversity in a range of different
environments, from the open ocean3, to complex soil samples4, to
the human microbiome5. Accordingly, metagenomics is often
used to determine the profile of the microbes that inhabit a given
environment, to diagnose the presence of a microbial pathogen6

and to identify novel microbial lineages7.
Comparisons between microbial communities that inhabit

different environmental sites can also distinguish differences in
the identity and abundance of microbes8. These approaches can
identify microbes that confer specific environmental character-
istics, or measure the impact of environmental variables on
microbial communities, and have been used to discover
host–microbe interactions, identify novel microbes with bio-
technological value, and measure environmental health9.

Despite the promise of this approach, the analysis of metage-
nomics data remains challenging. The sheer size and complexity
of microbial genomes within a sample, many of which may be
novel, confounds reliable identification and makes quantification
of microbes difficult1. Additional technical biases that accrue
during next-generation sequencing (NGS) further bias metage-
nomic analysis2. Differences in microbial population structures
can also invalidate the assumptions that underlie normalization
approaches, and thereby preclude accurate detection of genuine
biological differences between samples8,10.

Reference standards can offset these analytical challenges11,12.
Reference standards enable the limits of sampling and analysis to
be understood, and can measure technical variables that bias
analysis with NGS. Reference standards can also evaluate quan-
titative accuracy, and act as scaling factors by which to normalize
between samples. Accordingly, there is a pressing need to develop
metagenome reference standards that can benchmark analytical
methods and enable comparisons between multiple metagenome
samples.

The National Institute of Standards & Technology (NIST)
recently released a set of four bacterial reference genomes that can
be used to benchmark and validate sequencing-based diagnostic
assays13. Mock microbial communities—in which multiple
microbes are individually cultured and combined at known
abundances to form a community—are often favored as reference
standards for metagenomics. Mock communities have proven
useful for benchmarking different technologies, assessing biases,
and for optimizing new analytical methods for metagenomics5,14–
18. For example, the Human Microbiome Project assembled a
mock community of bacteria and archaea commonly found on or
in the human body5,14. More recently, groups have developed
mock communities composed of microbes isolated from hetero-
geneous soil and aquatic environments15,16. However, a key
limitation of mock communities is that they cannot be added
directly to samples without the risk of contaminating downstream
analysis. In contrast, synthetic spike-in controls can be added
directly to samples to measure technical variation, and have been
successfully used in human genome sequencing19,20 and RNA
sequencing21,22.

Here, we have developed a set of 86 synthetic DNA standards
termed “sequins” (sequencing spike-ins) that represent a syn-
thetic microbial community. Sequins are formulated into a mix-
ture emulating a synthetic microbial community that can be
directly added to samples to act as qualitative and quantitative
internal controls. We describe the design, synthesis, and valida-
tion of sequins, and show how they can be used to measure fold
changes between microbial communities and facilitate inter-
sample normalization. We provide metagenome sequins, along

with associated data sets, protocols, and an accompanying soft-
ware toolkit, as a resource to the research community at www.
sequin.xyz.

Results
Design and validation of synthetic DNA standards. We initially
designed a set of 86 artificial DNA sequences (sequins) that
represent the range, features, and complexity of a natural
microbial community, despite having an entirely artificial
sequence (see Supplementary Data 1 for details of sequences). We
sampled a diverse selection of finished microbial genomes
(RefSeq23) that encompassed a wide representation of taxa
(including Eukaryota, Bacteria, and Archaea), size (0.5–10Mb for
prokaryotic genomes), GC content (20–71%), rRNA operon
count (1–11), and isolation from a diverse range of environments
(human body, aquatic, terrestrial, and extreme physical or che-
mical conditions) (Supplementary Fig. 1). A representative sub-
sequence of each genome was selected and inverted to remove
homology, while maintaining nucleotide composition, GC con-
tent, and the distribution of repetitive and unique sequences
(Fig. 1a). Inverted sequences were queried against the BLAST
non-redundant nucleotide collection (nt) database in order to
ensure they had no significant homology (E value < 0.01) with any
known natural sequences. To reduce the sequencing depth
required to profile the community, we selected DNA sub-
sequences from the microbial genomes that range in size from ~1
to 10 kb, resulting in a synthetic microbial community of total
size ~227 kb.

We first simulated read libraries generated from metagenome
sequins to validate synthetic sequences without the confounding
impact of variables introduced through library preparation and
sequencing. For comparison, we also simulated read libraries for a
previously published mock community of 23 bacterial and 3
archaeal species (MBARC-26)15,16. Simulated libraries were
aligned using Bowtie224 to the artificial sequences and
MBARC-26 genomes.

The two libraries demonstrated comparable mappability
(fraction of reads concordantly mapped) and no cross alignment
of reads between sequins and MBARC-26 genomes was observed
(Supplementary Fig. 2a). Simulating a range of matched
sequencing depths (from 0.1 to 100× coverage) also indicated
comparable breadth of alignment coverage for both sequins and
MBARC-26 genomes across the full range (Fig. 1b).

We also performed de novo genome assembly of the simulated
libraries (using Ray Meta25), showing that sequins and MBARC-
26 genomes reached near-complete assembly (≥95% of reference
genomes assembled into contigs) at ~20× mean coverage (Fig. 1c).
Below this level, the assembly of sequins and MBARC-26
genomes were comparably affected by decreasing sequence
coverage. We also found no evidence of chimeric assemblies
between sequins and MBARC-26 genomes. Finally, a search of
the simulated sequins library against BLAST’s nt database using
Centrifuge26 returned no significant hits. Collectively, these
simulated analyses provided sequence-level validation that
sequins align and assemble equivalently to a wide range of
microbial genomes, without risk of cross-alignments or chimeric
assembly events contaminating downstream analysis.

Synthesis and experimental validation of sequins. Sequins were
synthesized, manufactured, and formulated into a staggered
mixture (Mix A) that spans a ~3.2 × 104-fold concentration range
(Supplementary Fig. 3a). We initially sequenced a neat mixture of
sequins (i.e., with no natural DNA added) in triplicate to assess
quantitative accuracy and technical variation between replicates.
By plotting mean fold-coverage against known mixture
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concentration, we observed high quantitative accuracy (R2=
0.979; slope= 1.04 ± 0.02) and minimal variation between repli-
cates (Fig. 2a), with reproducible sequencing coverage profiles for
each sequin (Fig. 2b).

We next aligned the neat sequins library to a combined index
comprising sequins and MBARC-26 genomes, finding that only a
negligible fraction of the reads (0.26%) aligned to an MBARC-26
genome (Supplementary Fig. 2b). The vast majority (>99%) of
these cross-aligning reads aligned to the E. coli K-12 genome
(NC_000913.3), and likely result from contamination in labora-
tory reagents and processes27,28. Conversely, no experimental
reads derived from a neat preparation of MBARC-26 gDNA
(SRR3656745) aligned to any sequin genome (Supplementary
Fig. 2b). The two libraries demonstrated comparable mappability,
with concordant pair alignment rates of 89.7% and 86.9% for
sequins and MBARC-26 genomes, respectively (Supplementary
Fig. 2b).

To enable assessment of fold change differences between
samples, we also prepared an alternative mixture of sequins (Mix
B) containing the same set of 86 DNA standards, but with a
subset that undergo known fold changes between mixtures (n=
50) and a subset that remain at equimolar concentrations (n=

36) (Supplementary Fig. 3b). This alternative mixture design
allows the accuracy of fold changes across different samples to be
assessed, while also providing negative controls for inter-sample
normalization29.

Validation of sequins using MBARC-26 mock community. To
validate the use of metagenome sequins, we next spiked the
staggered mixture into genome DNA from the MBARC-26 mock
community at a low fractional abundance (1%). The combined
sample then underwent concurrent library preparation and
sequencing (Fig. 1a; see Methods). Of the resulting library, 1.49%
of reads aligned to sequins, while 98.1% aligned to MBARC-26
genomes. We plotted the breadth of alignment coverage for each
sequin and MBARC-26 genome against its measured fold-cov-
erage, showing that they performed comparably across the full
range (Fig. 1d). The rate of errors in these sequenced reads was
comparable for sequins and MBARC-26 genomes, confirming the
use of sequins for estimating run-specific sequencing error rates
(Supplementary Fig. 2c).

Since sequins span the full range of GC contents observed in
natural microbial genomes (~24–72%), we used sequins to assess
the extent of any GC bias in the sequencing data. We plotted the
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Fig. 1 Schematic showing the design, use, and validation of DNA-sequencing spike-ins (sequins) for metagenomic analysis. a Metagenome sequins are
designed by inverting a selected subsequence of a microbial genome that is then synthesized and combined with other DNA standards into a staggered
mixture which represents a natural microbial community. Sequins are spiked into a user’s DNA sample (at a low fractional concentration, e.g., 2%),
undergoing combined library preparation, sequencing, and analysis. Examples of the bioinformatic steps that can be assessed using sequins are indicated.
To validate the design of sequins, we generated simulated libraries that were not confounded by additional technical variables (b, c) and spiked sequins into
a mock microbial community (MBARC-26) and sequenced the combined sample (d, e). Sequins (blue) displayed comparable breadth of alignment
coverage to real microbial genomes (red) across the full range of fold-coverage depths observed in both simulated (b) and experimental (d) data. We also
observed equivalent de novo assembly of sequins and MBARC-26 genomes at matched fold-coverage levels in both simulated (c) and experimental (e)
data. The dashed lines in d and e were fitted using Richard’s five-parameter dose–response curve
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measured sequencing error rate for each individual sequin against
its respective GC content, finding that the mismatch error rate
increased steadily with increasing GC content (Supplementary
Fig. 4a, left). This effect was also observed for indel errors, albeit
significantly weaker. We observed similar results for the MBARC-
26 genomes (Supplementary Fig. 4a, right). We also plotted fold-
coverage (observed divided by expected) for each sequin against
its respective GC content, observing only very minor GC bias,
with slightly elevated coverage for sequins in the middle of the
GC content range (Supplementary Fig. 4b, left). Again, similar
results were seen for MBARC-26 genomes (Supplementary
Fig. 4b, right). While previous studies have found much stronger
under-representation of GC-rich and AT-rich fragments30,31, all
libraries in the present study were prepared using a PCR-free
protocol (see Methods) and thus the effect of any GC bias would
be expected to be less obvious. To investigate any length bias, we
plotted observed/expected coverage of each sequin against its
length, finding slightly reduced coverage at both the small and
large ends of the spectrum (Supplementary Fig. 4c).

We next assessed the de novo assembly of the sequins by
comparison to the MBARC-26 genomes. We found that, despite
their reduced size, sequins assembled similarly to MBARC-26
genomes at matched coverage levels (Fig. 1e). Both sequins and

MBARC-26 genomes achieved complete assembly at ~30×
coverage, a finding consistent with previous studies of bacterial
genomes32. Again, no chimeric contigs between sequins and
MBARC-26 genomes were observed in the assembly. The
comparable performance of sequins and MBARC-26 genomes
demonstrated the commutability of sequins as an internal
reference for addition to environmental DNA samples during
metagenome sequencing and analysis.

Benchmarking of long-read sequencing using sequins. Long-
read sequencing can resolve repetitive regions within a microbial
genome, and is useful for genome assembly33. Therefore, we next
used the sequins to benchmark and optimize the performance of
Oxford Nanopore Technology’s MinION long-read sequencing
technology. We first sequenced a neat mixture of metagenome
sequins, generating a total of 160,709 base-called reads, of which
74.0% successfully aligned to reference sequences using bwa-mem
(Supplementary Table 1). We detected 75 (out of 86) sequins with
at least one read, corresponding to a limit of detection (LoD) of
60 attomoles/µL and a dynamic range of 1.6 × 104. Most sequins
(61 out of 86) were fully covered by at least one MinION read,
thereby obviating the need for de novo assembly (Supplementary

c

d

bQuantitative accuracy
Consistent coverage amongst replicates

Impact of sequence coverage on assembly

Rep.1

Rep.2

Rep.3

MG_56 1693 bp

11

Contigs

Contigs
De novo assembly

9110 bp

437

25,773

21,549

21,128

MG_46   

F
ol

d 
co

ve
ra

ge
 (

de
pt

h)
3969 bpMG_23

0

20

S
eq

ui
n 

as
se

m
bl

y 
(%

)

40

60

80

100

100

101

101

102

102

103

103

104

104

105

105 106

R 2 = 0.979
Slope = 1.04 ± 0.02
Sy.x = 0.21

Input concentration (attomoles/µL)

101 102 103 104 105 106

Input concentration (attomoles/µL)

147× coverage; 100% assembled (single contig)

3× coverage; 53% assembled (4 contigs)

a
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(dotted line) with 95% confidence interval shown (gray shading). b By sequencing a neat preparation of the staggered sequins mixture (Mix A) in
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sequence coverage and was only partially assembled with four fragmented contigs
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Fig. 5a). To assess quantitative accuracy, we plotted the measured
fold-coverage of each sequin against its input concentration,
noting that the quantitative accuracy of MinION sequencing (R2

= 0.914) was slightly less than matched Illumina short-read data
(R2= 0.981) (Supplementary Fig. 5b).

We next measured sequencing error rates, finding that
MinION had a mismatch error rate of 7.12% (compared to
0.127% for Illumina) and an indel rate of 8.71% (compared to
0.00770% for Illumina). Notably, MinION sequencing suffered
significantly higher indel rates in homopolymeric sequences
(mean indel rate= 16.7%) compared to other regions (mean=
7.69%; unpaired t-test with Welch’s correction, p value <0.0001),
with characteristic sequence coverage drops at the upstream end
of homopolymer tracts (Supplementary Fig. 5c). This phenom-
enon has also been reported by others33–35.

We then spiked MBARC-26 mock community DNA with
metagenome sequins (5% fractional abundance) and sequenced
the combined library to generate 299,050 base-called reads, with a
mean length of 2590 bp (Supplementary Fig. 6a). While all
MBARC-26 genomes were detected with at least one read, the
average fold-coverage varied from as low as 0.0439× for
Nocardiopsis dassonvillei up to 24.4× for Fervidobacterium
pennivorans (Supplementary Fig. 6b). We also detected 66 out
of 86 sequins, corresponding to an LoD of 120 attomoles/µL and a
dynamic range of 8.2 × 103. The error rates for sequins and
MBARC-26 genomes were comparable, with mismatch rates of
8.30% and 7.67%, respectively, and indel rates of 6.64% and
6.49%, respectively (Supplementary Fig. 6c).

We then used the sequins to benchmark the performance of a
range of different read-mapping tools designed for long, error-
prone reads (bwa-mem, graphMap, marginAlign, and minimap2;
Supplementary Table 2). Across the four mappers, the fraction of
reads aligning to sequins ranged from 7.21 to 8.71%, with a
corresponding range in base-level sensitivity (i.e., the fraction of
reference bases covered by aligned reads) from 68.9 to 73.2%
(Supplementary Fig. 6d). We also used sequins to assess
quantitative accuracy, finding that average fold-coverage for
sequins ranged from 97.3 to 111.7×, and quantitative accuracy
(R2) ranged from 0.889 to 0.915. This illustrates how sequins can
provide a useful internal metric by which to benchmark and
optimize bioinformatic analysis.

Using sequins in a real metagenome experimental context.
Having validated the veracity of sequins, we next sought to
demonstrate their use in a real experimental context. We spiked
sequins into DNA extracted from saltmarsh samples collected
from Haslam’s Creek, in Sydney Olympic Park, Australia (see
Methods). We sought to compare the microbial composition of
(i) non-rooted soil, (ii) rhizosphere, and (iii) root samples taken
from saltmarsh sites undisturbed by human development (termed
“natural”), with saltmarsh sites that were regenerated as part of
the Sydney 2000 Olympics (regenerated) (Supplementary Fig. 7a).
Therefore, we spiked Mixes A and B alternately into DNA
extracted from three replicate natural and regenerated sites,
respectively, at 5% fractional abundance prior to library pre-
paration and sequencing.

To assess the quantitative accuracy of fold change measure-
ments between samples, we plotted observed against expected
log2 fold change (LFC) for each sequin, indicating a strong linear
relationship (R2= 0.971; slope= 1.05 ± 0.02) (Fig. 3a). We then
performed differential abundance testing on the sequins (Mix A
vs. B) using DESeq236,37. Of the sequins that change abundance
across mixtures, 48 out of 50 returned an adjusted p value <0.05
(sensitivity= 96.0%). Conversely, of the negative control sequins,
32 out of 36 returned a p value (adj) >0.05 (specificity= 88.9%).

As expected, diagnostic power increased with expected LFC, as
illustrated by receiver operator characteristic (ROC) analysis
(Supplementary Fig. 7b).

De novo assembly of metagenome samples can be confounded
by both inherent sample complexity, as well as technical factors
introduced during library preparation, sequencing, or analysis.
Sequins can distinguish between these outcomes and thereby
assist in quality control and troubleshooting. To demonstrate this,
we performed de novo assembly on all samples using Ray Meta,
and evaluated the quality of each assembly using MetaQUAST
(supplying the sequin reference sequences; Supplementary
Table 3). The N50 values for contigs aligned to sequins
(2272–2879 nt) indicated that library preparation, sequencing,
and bioinformatic assembly were performed successfully (Sup-
plementary Fig. 7c). Conversely, the N50 values for unaligned
contigs were poorer and less consistent (697–3659 nt), indicating
that inherent sample complexity limited assembly, rather than
technical factors.

We next examined the taxonomic composition of reads using
MG-RAST38, by searching against the RefSeq23 database (phylum
level). Principal component analysis (PCA) revealed that samples
clustered loosely by type (non-rooted soil, rhizosphere, and root)
rather than environment (natural and regenerated) (Fig. 3c, left).
However, box plots of relative log expression (RLE)39 showed a
clear need for normalization, with large distributional differences
between samples that indicated unwanted variation (Fig. 3c,
right). While RLE plots were first developed for gene expression
data, they can additionally be used to uncover unwanted variation
in many other types of high-dimensional data, and are helpful for
determining whether a normalization procedure has worked as
intended39.

To normalize between samples, we employed the RUVg
method, which performs factor analysis on suitable sets of
control genes (e.g., spike-in controls) to adjust for unwanted
technical variation40. To perform RUVg normalization, we
nominated the subset of sequins that remain at equimolar
concentrations across mixtures as negative controls (n= 36).
RUVg normalization improved the data, with samples still
clustering loosely by type (Fig. 3d, left), and sample RLE plots
now centered around zero with most of the excessive variation
removed (Fig. 3d, right). While samples still did not cluster
perfectly by type, it must be kept in mind that the replicates were
collected from three separate natural and regenerated sites.
Nonetheless, the fact that samples clustered loosely by type but
not at all by environment is an interesting biological observation,
and implies that regeneration of these saltmarsh sites after initial
development did not have a discernible effect on the microbial
ecology of the samples. In order to compare variation among
replicates, we plotted the mean coefficient of variation for each of
the six treatment groups both before and after RUVg normal-
ization, finding that variation decreased substantially after RUVg
normalization (Fig. 3b). This provided further evidence that
RUVg normalization was successful. Notably, the use of sequins
with the RUVg approach outperformed other normalization
methods, including upper-quartile (UQ) normalization, where
some samples still displayed excessive variability (see Supple-
mentary Figs. 8 and 9).

Using sequins for normalization between samples. While
metagenomics can profile the relative proportions of species (or
other taxonomic units) within a sample, it is generally not pos-
sible to detect differences in total microbial load between sam-
ples8. This limitation can be addressed by the addition of spike-in
controls in fixed (rather than fractional) amounts to provide a
reference by which to rescale and normalize samples10,41.
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To demonstrate this principle, we assembled two distinct
mock microbial mixtures (A and B) comprising gDNA
extracted from four species of Cyanobacteria (Fig. 4a), with
the total amount of genome DNA doubling each time (A1, A2,
and A3; and B1, B2, and B3). A fixed (as opposed to fractional)
amount of sequins was added to each sample before library
preparation and sequencing. Comparison of these mixtures
provided examples of both relative and absolute fold change
comparisons for each microbe.

We initially performed conventional normalization (based on
genome size and sequencing depth). While this enabled the
relative abundance of a microbe fraction to be measured within a
single mixture, this approach was unable to distinguish absolute
changes in abundance. Accordingly, the microbial composition of
Mixes A1, A2, and A3 were indistinguishable from one another;
and likewise for Mixes B1, B2, and B3 (Fig. 4b). By contrast, after
normalizing each sample relative to the sequin input, this allowed
the increasing absolute abundance of microbes to be detected
within the mixtures (Fig. 4c).

The advantage of normalizing by absolute comparison to
sequins was further demonstrated by assessing microbe fold
change differences between mixtures. For example, if we compare
the abundance of the Synechocystis sp. PCC 6803 genome between
the six mixtures, we observe a total of 15-fold change differences
(Fig. 4d). We are unable to accurately resolve either relative or
absolute fold change differences when normalizing our sample by
genome size and library depth. By contrast, the fold changes in
Synechocystis abundance could be accurately resolved when
normalized relative to absolute sequins.

To demonstrate the breadth of this advantage, we plotted the
observed relative to expected fold change for each species across
the six samples (total of 60 comparisons), observing a much
stronger correlation following normalization with sequins (R2=
0.997), compared to normalizing only by genome size and library
depth (R2= 0.537) (Fig. 4e). This analysis illustrates how sequins
can be used to reveal major global shifts in microbe community
abundance that are otherwise imperceptible using conventional
normalization procedures.
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Discussion
Metagenomics can profile the community of microbes within an
environmental sample. This analysis of microbes does not require
prior laboratory cultivation, can discover new microbial lineages7,
and diagnose the presence of pathogens within patient samples6.
Despite this promise, the analysis and comparison of metagen-
ome samples is challenging, and reference standards are needed
to ensure the accuracy and reproducibility of results12.

Here, we describe the development of reference standards,
termed “sequins,” for metagenome experiments. Sequins com-
prise a set of synthetic DNA standards that mimic the sequence
complexity, phylogenetic composition, and GC content of a
natural microbial community, yet have no homology to known
nucleic acid sequences. This enables their use as internal reference
standards for downstream steps, including library preparation,
sequencing, and bioinformatic analysis.

Metagenome samples can be affected by a range of unwanted
technical variables, such as different library preparation meth-
ods42 or the presence of enzymatic inhibitors43. A major

advantage of sequins is their ability to measure and mitigate this
technical variation that influences sequencing. As internal stan-
dards, sequins can be used to normalize different methods,
experiments, and batches, and distinguish genuine biological
differences from confounding technical variables40.

In addition to enabling quality control and inter-sample nor-
malization, reference standards are essential for the development
and optimization of new sequencing technologies12,15. In this
study, we used sequins to benchmark the performance of both
short-read and long-read sequencing technology, as well as a
range of different software tools. Emerging long-read technologies
offer several advantages for metagenomics, including more
accurate resolution of repeat elements33, and the ability to carry
out real-time, portable genomic surveillance in the field during
disease outbreaks44. As new technologies continue to develop,
sequins provide a constant reference by which to benchmark
different tools.

Global differences in the size and complexity of microbial
populations can violate the assumptions that underlie
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normalization between samples10. For example, the comparison
of the taxonomic subpopulations within a microbial community
is limited to the relative abundance of taxa, and metagenomics
cannot detect shifts in absolute abundance between samples8.
Here, we demonstrate how sequins can be used to calibrate and
rescale different samples, thereby enabling the accurate mea-
surement of both relative and absolute fold changes.

Metagenome studies often sample widely disparate environ-
mental sites, and often at different times and methods, resulting
in substantial batch variation between experimental samples. We
propose that the routine use of reference standards, such as
sequins, provides a reliable reference against which to standardize
sample collection across such different sites, and can support
more rigorous meta-analysis between different experiments and
studies.

Within the laboratory, sequins can be used for the routine
surveillance of individual samples, and to measure and improve
operational performance. This is particularly important in clinical
microbiology, where equipment and processes must be regularly
validated, and the diagnosis of pathogens within patient samples
assured6,13. Indeed, we expect that reference standards such as
sequins will be useful for clinical assay development and valida-
tion, and also for ongoing quality control and proficiency testing
procedures6,45.

Given these benefits to metagenome methods, we have made
sequins, along with associated data sets, protocols, and an
accompanying software toolkit, freely available to researchers on
our website at www.sequin.xyz.

Methods
Design of artificial microbial community. To design artificial sequences, we first
retrieved all high-quality, finished, microbial genome sequences from RefSeq23. We
then ranked and systematically selected genomes according to a range of features,
including taxa (including representatives from Eukaryota, Bacteria, and Archaea),
size (0.5–10Mb for prokaryotes), GC content (20–71%), rRNA operon count
(1–11), and isolation from a diverse range of environments (human body, aquatic,
terrestrial, and extreme physical or chemical conditions) (Supplementary Fig. 1).
This ensured that the selected genomes provided a proportional representation of
these different features. To illustrate the evolutionary relationships between these
microbial genomes, we generated a phylogenetic tree using iTOL (v3) with default
parameters46.

We then aimed to select a subsequence representative of each genome as
follows. We first selected a large number (>100) of random ~1–10 kb subsequences
of each genome. Subsequences were then inverted to remove primary sequence
homology, while still retaining different features of the original microbial genome,
e.g., size, nucleotide composition, GC content, and the distribution of repetitive
and unique sequences. Inverted sequences were then queried against the BLAST nt
database for homology to known sequences and any inverted sequence with a
significant match (E value < 0.01) was omitted from further analysis. From the
remaining subsequences, we then selected a subsequence that had a GC content
closest to the original source genome. In addition, some sequences were manually
curated to generate sequins with extremely high or low GC content. Upon
completion, we generated a set of 86 synthetic DNA standards (sequins), which
ranged in length from ~1 to 10 kb, with a combined size of ~227 kb (see
Supplementary Data 1 for full details of sequences).

Simulated read libraries. To validate that sequins perform equivalently to real
microbial genomes, we compared them to a mock microbial community consisting
of 26 bacterial and archaeal species (MBARC-26)15,16. We generated simulated
read libraries for sequins and MBARC-26 genomes using the ART simulator47

(vMountRainier-2016–06–05) in Illumina HiSeq mode with 2 × 125 bp reads. The
FASTA sequences inputted to ART were derived from the reported NCBI Refer-
ence Sequence Database accession numbers for MBARC-26 genomes16. We
simulated libraries corresponding to a range of sequencing depths, from 0.1 to
100× coverage.

Synthesis and manufacture of sequins. DNA standards were synthesized by
GeneArt (Life Technologies) and cloned into pMA vectors. A list of all sequences,
as well as their concentration in each mixture, is provided in Supplementary
Data 1. The synthesized plasmid for each sequin was transformed in E. coli (α-
select Silver Efficiency, Bioline, Australia), grown up in a 50 mL culture, purified
and used for DNA sequence verification by Sanger sequencing. Sequins were
excised from the plasmid backbone by restriction digest and subsequent

confirmation with gel electrophoresis. Purified sequins were quantified using the
BR dsDNA Qubit Assay on a Qubit 2.0 Fluorometer (Life Technologies) and
verified on the Agilent 2100 Bioanalyzer with an Agilent High Sensitivity DNA Kit
(Agilent Technologies).

Preparation of sequins mixtures. Staggered mixtures (A and B) each consist of a
pool of 86 sequins that are combined at twofold serial dilutions to encompass
~3.2 × 104-fold concentration range (Supplementary Fig. 3a). Each mixture has
16 staggered concentration points, with at least 5 sequins (representing a range of
GC contents and lengths) per point. Individual sequins in the two alternative
mixtures are present at defined molar concentration ratios, allowing for compar-
ison of fold changes in abundances between samples (Supplementary Fig. 3b). The
86 sequins were pooled using an epMotion 5070 epBlue™ software program to
make the final mixtures.

Microbe and metagenome samples. Genomic DNA from the MBARC-26 mock
community16 was obtained from the laboratory of T. Woyke (Joint Genome
Institute, CA, USA).

Saltmarsh samples were collected from natural and regenerated sites along
Haslam’s Creek within Sydney Olympic Park, Australia (33°50′24.04″S, 151°3′
48.57″E and 33°50′24.62″S, 151°3′31.69″E, respectively) in February 2016. We
collected triplicates of non-rooted soil, rhizosphere, and root material from the first
10 cm of topsoil at three natural sites (natural 1, natural 2, and natural 3) and three
regenerated sites (regenerated 1, regenerated 2, and regenerated 3). All materials
were transported from the field to the laboratory within vials in a dry shipper and
stored at −86 °C until further analyses were performed. In brief, we term non-
rooted soil as root-free sediment, rhizosphere soil samples were obtained by
washing up roots with a standard phosphate-buffered saline solution (PBS) and
once washed in PBS, root material was also collected in a different vial. DNA
extractions were carried out using an Mo Bio PowerSoil® DNA Isolation Kit
according to the manufacturer’s instructions.

For the cyanobacteria mixtures, we used gDNA extracted from monocultures of
four different species for which complete, finished genome references are available:
Nostoc punctiforme ATCC 29133 (NC_010628.1), Synechocystis sp. PCC 6803
(NC_000911.1), Synechococcus elongatus PCC 7942 (NC_007604.1), and
Leptolyngbya sp. PCC 7376 (NC_019683.1). We prepared two alternative mixtures
of gDNA (A and B), with each species undergoing a known fold change between
mixtures (Fig. 4a). Mixture A was sequenced three times, with the amount of DNA
added doubling each time (A1, A2, and A3); likewise for Mix B (B1, B2, and B3). A
fixed amount of sequins (0.666 ng) was added to each sample prior to library
preparation and sequencing. To normalize samples using sequins, we calculated the
fractional abundance of each species (after first normalizing for genome size and
library depth) and then divided this by the fraction of reads, which aligned to
sequins in each sample.

Preparation of Illumina DNA libraries and sequencing. Initially, metagenome
sequins (Mixes A and B) were sequenced neat (i.e., without any natural DNA
added). Mix A was sequenced in triplicate, in order to assess technical variation.
For the MBARC-26 validation experiment, sequins were spiked into microbial
gDNA at 1% fractional abundance. For the saltmarsh samples, sequins were spiked
into total metagenome DNA at 5% fractional abundance. The Nextera XT Sample
Prep Kit (Illumina®) was used to prepare DNA libraries according to the manu-
facturer’s instructions. Prepared libraries were quantified on a Qubit Fluorometer
(Life Technologies) and verified on an Agilent 2100 Bioanalyzer with an Agilent
High Sensitivity DNA Kit (Agilent Technologies). Libraries were sequenced on a
HiSeq 2500 instrument (Illumina®) with 2 × 125 bp reads at the Kinghorn Centre
for Clinical Genomics, Sydney, Australia.

Read alignment and de novo assembly. FastQC (v0.11.5) (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) was used to confirm sequence
quality of reads for the experimental data sets. Reads were trimmed using Cutadapt
(v1.8.1) with the Trim Galore wrapper (v0.4.1) in --paired mode. Simulated and
experimental reads (FASTQ files) were mapped with Bowtie224 (v2.3.2) to a
combined genome comprising sequin DNA sequences and microbial genomes.
Average fold-coverage of each genome was calculated from mapped BAM files
using the BEDTools48 “genomecov” feature (v2.25.0). To assess GC content bias,
we calculated observed/expected coverage as the mean coverage of each sequin
divided by its expected concentration in the mixture. This controls for the fact that
sequin abundances vary over several orders of magnitude within the staggered
mixtures. Breadth of alignment coverage was calculated using the BEDTools
“coverage” feature. De novo genome assembly was carried out using Ray Meta25

(v2.3.1) with default parameters. Assemblies were evaluated using MetaQUAST49

(v4.5) by supplying reference genome sequences. In order to test whether reads
derived from real microbial genomes align to any sequins genome, we used a
previously published data set, in which MBARC-26 gDNA was sequenced neat16

(~174 million paired-end 150 bp reads sequenced on Illumina HiSeq 2000; NCBI
Accession: SRR3656745). Illumina sequencing error rates (mismatches and indels)
were calculated using the “AlignmentSummaryMetrics” tool from the Picard suite
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(http://broadinstitute.github.io/picard). IGV50 (v2.3.57) was used to visualize all
read alignments and assembled contigs.

Nanopore long-read sequencing. We sequenced a neat preparation (Mix A) of
metagenome sequins (1 µg) on a single flow cell using the MinION platform
(Oxford Nanopore Technologies). We also sequenced MBARC-26 gDNA (700 ng)
on a separate flow cell after spiking with sequins (Mix A) at 5% fractional abun-
dance. Libraries were prepared in accordance with the manufacturer’s instructions
and sequencing was carried out using LSK108 chemistry. Base calling was per-
formed using the MinKNOW software (v1.7.3). We used poretools51 (v0.6.0) to
process the raw FAST5 files, and aligned them to reference sequences using four
different mappers designed for long error-prone reads: bwa-mem52 (v0.7.12) with
the –x ont2d option; GraphMap34 (v0.5.2); marginAlign35 (v0.1); and the new
minimap2 tool (v2.0-r191-dirty) (https://github.com/lh3/minimap2). The latter
three tools were run with default parameters. Nanopore sequencing error rates
(mismatches and indels) were calculated using the “AlignmentSummaryMetrics”
tool from Picard. To calculate indel rates in homopolymeric sequences, we first
retrieved the insertion and deletion rates for each nucleotide in the sequins
reference sequences using the piledriver tool (https://github.com/arq5x/piledriver).
We then annotated the sequins references for homopolymers using the python
script findSimpleRegions_quad.py, specifying a minimum homopolymer length of
6 bp (available from https://github.com/ga4gh/benchmarking-tools/tree/master/
resources/stratification-bed-files/LowComplexity). Finally, we calculated the aver-
age per-base indel rate for homopolymers, and compared it with the rate for the
remainder of the reference sequences.

Taxonomic binning and differential abundance analysis. The MG-RAST pipe-
line38 (v4.0.2) was used to examine the taxonomic composition of each saltmarsh
sample, by inputting raw sequence reads directly. Default options for quality
control, including removal of artificial duplicate reads, trimming, and screening for
human DNA, were used. Reads were compared against the RefSeq23 database
(domain and phylum levels) using BLAT parameters of 60% similarity, 15 bp and E
value of 10–5. Receiver operator characteristic (ROC) curves were constructed by
modifying the code from the ercc-dashboard R package29. Samples were normal-
ized using the RUVg procedure, using the subset of 36 sequins that remain at
equimolar concentrations between mixtures as negative controls, with k= 1 factors
of unwanted variation40. We used DESeq236 to test for differential abundance
between samples at both the domain and phylum levels, including fold changes of
sequins between Mixes A and B.

Software package. We have developed a software package (termed “ANAQUIN”)
to assist users in the analysis of data containing sequins (or other spike-in controls)
53. The software is available for download as a Bioconductor package at https://
bioconductor.org/packages/release/bioc/html/Anaquin.html.

Data availability. DNA-sequencing libraries are available from SRA under Bio-
Project ID PRJNA422917. Saltmarsh metagenome samples have been uploaded to
MG-RAST (project number MGP81258). In addition, selected data sets are avail-
able online at our website, www.sequin.xyz.
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