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Abstract

To be able to colonize its host, invading Salmonella enterica serovar Typhimurium must disrupt and severely affect host-
microbiome homeostasis. Here we report that S. Typhimurium induces acute infectious colitis by inhibiting peroxisome
proliferator-activated receptor gamma (PPARc) expression in intestinal epithelial cells. Interestingly, this PPARc down-
regulation by S. Typhimurium is independent of TLR-4 signaling but triggers a marked elevation of host innate immune
response genes, including that encoding the antimicrobial peptide lipocalin-2 (Lcn2). Accumulation of Lcn2 stabilizes the
metalloproteinase MMP-9 via extracellular binding, which further aggravates the colitis. Remarkably, when exposed to S.
Typhimurium, Lcn2-null mice exhibited a drastic reduction of the colitis and remained protected even at later stages of
infection. Our data suggest a mechanism in which S. Typhimurium hijacks the control of host immune response genes such
as those encoding PPARc and Lcn2 to acquire residence in a host, which by evolution has established a symbiotic relation
with its microbiome community to prevent pathogen invasion.

Citation: Kundu P, Ling TW, Korecka A, Li Y, D’Arienzo R, et al. (2014) Absence of Intestinal PPARc Aggravates Acute Infectious Colitis in Mice through a Lipocalin-
2–Dependent Pathway. PLoS Pathog 10(1): e1003887. doi:10.1371/journal.ppat.1003887

Editor: Denise M. Monack, Stanford University School of Medicine, United States of America

Received December 15, 2012; Accepted December 4, 2013; Published January 23, 2014

Copyright: � 2014 Kundu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was partly funded by the Swiss National Science Foundation. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Sven.Pettersson@ki.se

Introduction

Salmonella enterica serovar Typhimurium is a Gram-negative,

facultative intracellular pathogen that causes a wide array of disorders

ranging from systemic disease to enterocolitis in multiple hosts [1]. In

mice, S. Typhimurium normally causes a disease that resembles

systemic typhoid fever. However, compromising the gut microbiome

with antibiotics prior to S. Typhimurium infection in mice has been

used to mimic salmonellosis in humans, which involves increased S.

Typhimurium colonization of the intestine coupled with a marked

host-induced inflammatory response leading to colitis [2]. Recent

reports indicate that this massive inflammatory response elicited by S.

Typhimurium is associated with increased secretion of the interleu-

kins IL-17 and IL-22 [3,4], which are critical components of mucosal

immunity to bacterial pathogens in the gut. In particular, the IL-17/

IL-22 axis mediates the recruitment of antimicrobial peptides from

the intestinal epithelial compartment, including lipocalin-2 (Lcn2) [3–

7]; these peptides dramatically affect the gut microbiota.

Lcn2 (also known as SIP24, 24p3, NGAL, uterocalin, and

siderocalin) was first co-purified and found to be covalently asso-

ciated with human neutrophil gelatinase (matrix metalloproteinase

(MMP)-9) [8,9]. This association between Lcn2 and MMP-9 has

been shown to protect MMP-9 from degradation and to preserve its

enzymatic activity [8,10]. In addition, Lcn2 functions in mamma-

lian innate immunity by chelating bacterial siderophores, thereby

sequestering iron from bacteria and inhibiting their growth [11,12].

Intriguingly, S. Typhimurium appears to be resistant to Lcn2, since

its population in the intestinal milieu expands dramatically during

inflammation [4,13,14]. This unique strategy is achieved by genes

such as those in the iroN iroBCDE gene cluster, which encodes

salmochalin, a siderophore that does not bind Lcn2 [4,13,15,16],

thus conferring a competitive advantage to S. Typhimurium over

other microbes during growth in the inflamed gut.

Recently, peroxisome proliferator-activated receptor gamma

(PPARc) has been shown to be regulated by a number of bacterial

pathogens including Helicobacter pylori and Mycobacterium tuberculosis

[17–19], greatly impacting disease severity. PPARc is a member of

the nuclear receptor superfamily of ligand-dependent transcription

factors and is predominantly expressed in adipose tissue and

colonic epithelium [20,21]. Expression has also been detected in

colonic macrophages and in T and B cells of humans and rodents

[20,22]. PPARc has been proclaimed to be a master regulator of

inflammation, a role that is achieved in part by antagonizing the

activities of the transcription factors AP-1, STAT, and NFkB

[23,24]. In vivo studies have demonstrated that PPARc ligands

actively suppress the inflammatory response by attenuating the
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production of chemokines and cytokines secreted from epithelial

cells, macrophages, and T and B lymphocytes [23–26].

The role of PPARc in the etiology and treatment of colitis has

been of great interest, because its ligands have long been used to

treat type-2 diabetes and are known to decrease the severity of colitis

induced in mouse models [27–33]. Moreover, PPARc+/2 hetero-

zygous mice exhibit increased susceptibility to experimentally

induced colitis, indicating PPARc’s involvement in maintaining

gut homeostasis [28,33]. Furthermore, the observation that

intestinal epithelium-specific ablation of PPARc aggravates dextran

sodium sulfate (DSS)-induced colitis demonstrates the strong

influence of intestine-derived PPARc on colitis severity [20]. Studies

in human subjects have revealed that colonic epithelial cells from

ulcerative colitis patients display drastically reduced expression of

PPARc, suggesting that its presence in gut epithelium may have a

protective effect against colonic inflammation in humans [29].

Despite these observations, the role of PPARc in S. Typhimurium-

induced infectious colitis remains unknown.

In this study, we explored whether S. Typhimurium regulates host

PPARc levels during infectious colitis and evaluated PPARc’s

contributions to the etiology of the disease. Our data reveal that S.

Typhimurium inhibits PPARc expression in the intestinal epithelium,

which triggers a massive innate immune response that includes

expression of Lcn2. Selective epithelial ablation of PPARc dramat-

ically increased Lcn2 expression and its secretion after S. Typhimur-

ium challenge, confirming the importance of epithelium-derived

PPARc in colitis. Furthermore, increased secretion of Lcn2 stabilized

MMP-9 via direct protein-protein interaction, which further

aggravated the colitis. Finally, we demonstrate that Lcn2-null mice

exposed to S. Typhimurium displayed significantly less-severe colitis.

Results

Regulation of PPARc in the mouse colon by
S. Typhimurium

Although PPARc signaling controls various cellular processes

during inflammation and pathogenesis, its regulation during S.

Typhimurium-induced colitis remains unexplored. To gain insight

into PPARc’s role in infectious colitis, streptomycin-pretreated

C57BL/6 mice were infected with S. Typhimurium. An incuba-

tion period of 24 h was deliberately selected to evaluate the early

phase of PPARc response, which is crucial for further downstream

effector regulation. Strikingly, S. Typhimurium infection resulted

in ,60% down-regulation of PPARc gene expression in the colon,

as detected by real-time PCR (Fig. 1A). Immunoblotting revealed

a similar down-regulation of PPARc expression at the protein level

(Fig. 1B) in the colon 24 h after infection. As expected, this down-

regulation resulted in a marked reduction in the DNA-binding

activity of PPARc in colonic cells in vivo (Fig. 1C), thus reducing

PPARc’s tight control over its potential targets. A similar effect

was detected in the cecum of infected mice (Fig. S1A–C).

Since a previous study reported Toll-like receptor (TLR)-4-

dependent PPARc regulation by microbial lipopolysaccharide in

macrophages [34], we asked whether this negative regulation of

PPARc by S. Typhimurium was TLR-dependent. A significant

increase in the expression of gene encoding TLR-4, but not TLR-

2 and TLR-5, was observed in the infected mice, suggesting that

TLR4 may be involved in regulating PPARc (Fig. S2A–C).

However, S. Typhimurium infection in TLR-42/2 mice resulted

in a similar decline in PPARc expression (Fig. 1D and E),

suggesting that this PPARc regulation was independent of TLR-4.

However, the expression of TLR-2 and TLR-5 gene in the

infected TLR-42/2 mice remained unchanged, negating the

possibility of their increased activity in the absence of TLR-4 (Fig.

S2D and E). To confirm the specificity of PPARc deregulation by

S. Typhimurium, another potential gut pathogen, Citrobacter

rodentium, was used to infect mice. C. rodentium was unable to alter

host PPARc levels, confirming that the process of PPARc down-

regulation by S. Typhimurium was not a general effect (Fig. 1F).

Next, we set out to identify the cell types that predominantly

respond to S. Typhimurium. A sharp decrease in the gene

expression of PPARc occurred when cultures of colonic epithelial

cells (HT-29 cells) were infected with S. Typhimurium, suggesting

the importance of the intestinal epithelium in this process (Fig. 1G).

These observations not only indicate that S. Typhimurium

infection directly impacts PPARc levels in the colonic epithelium,

but also suggest that PPARc’s pivotal role in homeostasis within

the intestinal tract affects infectious colitis.

Specific ablation of PPARc in the intestinal epithelium
aggravates S. Typhimurium-induced colitis

To better understand the implications of this PPARc regulation

by S. Typhimurium, we bred mice harboring a floxed Pparc
(PPARcfl/fl) to mice expressing the Cre transgene under control of

the promoter of the villin gene. These mice, in which cre recom-

binase mediated the targeted disruption of PPARc in intestinal

epithelial cells, were designated PPARcVillinCre+ mice and were

used in parallel with littermate control PPARcVillinCre- or wild-

type (C57BL/6) mice. Interestingly, S. Typhimurium infection

resulted in more severe colitis in the PPARcVillinCre+ mice

compared to PPARcVillinCre- or wild-type mice at 24 h (Fig. 1H

and I). Shortening and thickening of the cecum and the colon,

which are hallmarks of colitis, were much more pronounced in

PPARcVillinCre+ mice than in wild-type or PPARcVillinCre-

mice (Fig. 1I). Of note, the S. Typhimurium-infected TLR-42/2

mice and the wild-type (C57BL/6) mice infected with C. rodentium

exhibited significantly shortened colons, indicating active colitis

(Fig. S2F and G).

S. Typhimurium cells were recovered in similar numbers from

cecum tissue and from the spleens of wild-type, PPARcVillinCre-,

and PPARcVillinCre+ mice 24 h after infection (Fig. 1J and K),

Author Summary

Enteric pathogens like S. Typhimurium convert the host
intestine into an inflamed environment in which they are
well adapted to thrive. However, the precise strategy that
this pathogen employs to achieve such favorable conditions
for its survival remains unclear. Here, we uncovered a novel
mechanism whereby S. Typhimurium inhibits the expres-
sion of the transcription factor PPARc in the host intestine,
surprisingly without TLR-4 involvement; this inhibition
worsened the severity of the host’s colitis. Subsequent
detailed analysis revealed that colitis severity was coupled
with elevated levels of antimicrobials like Lcn2, which
stabilized the pro-inflammatory endopeptidase MMP-9 in
the intestinal milieu. Combination of this escalated antimi-
crobial action together with enhanced protease activity
disrupted the intestinal homeostasis, promoting an in-
flamed environment suitable for S. Typhimurium. Interest-
ingly, using Lcn2 mutant mice we show that lack of Lcn2
effectively reduced tissue damage and the degree of
inflammation, thus supporting a pivotal role of Lcn2 and
MMP-9 in infectious colitis. Our data suggests a model
whereby the pathogenesis of S. Typhimurium involves
manipulation of the host innate immune and protease
system, here illustrated by PPARc, Lcn2 and MMP-9, to
establish colonization and infection within the host.

Role of PPARc in S. Typhimurium-Induced Colitis
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Figure 1. S. Typhimurium down-regulates PPARc while inducing colitis in C57BL/6 mice. (A, B, and C) Groups of 8–10-week-old
streptomycin-pretreated C57BL/6 mice were mock- (Con) or S. Typhimurium-infected (Sal) and sacrificed after 24 h (10 mice per group). PPARc
expression in colonic scrapings was analyzed by real-time PCR (A) and by immunoblotting (B). (C) Electromobility shift assay of PPARc activity in the
nuclear extracts of colonic scrapings. (D and E) Age-matched, streptomycin-pretreated TLR42/2 mice were mock- or S. Typhimurium-infected and
sacrificed after 24 h (5 mice per group). Colonic expression of PPARc was analyzed by real-time PCR (D) or immunoblotting (E). (F) Metronidazole-
pretreated C57BL/6 mice were mock- or Citrobacter rodentium-infected, sacrificed 6 days after infection, and PPARc expression in the colon was

Role of PPARc in S. Typhimurium-Induced Colitis
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indicating that infection in the cecum as well as systemic

dissemination of S. Typhimurium were comparable between these

groups. Histological analysis further revealed that apart from

increased infiltration of inflammatory cells, tissue damage was

more in the colons of PPARcVillinCre+ mice compared to

PPARcVillinCre- mice and to wild-type mice after infection

(Fig. 2). Notably, similar levels of the epithelial cell markers villin 1,

cytokeratin 8, and cytokeratin 20 were detected in infected and

mock-infected colonic samples, confirming that the ratios of

epithelial cells in the colonic extracts from these groups were

consistent and did not account for the reduced levels of PPARc
(Fig. S3). These results were consistent with previous reports

indicating a protective role of PPARc in the intestinal epithelium

in experimental inflammatory bowel disease [20]. However, the

molecular mechanisms underlying these observations remain

elusive.

Depletion of epithelial PPARc in the colon triggers an
elevated immune response during infectious colitis

We previously demonstrated the direct participation of PPARc
in host-microbe crosstalk and the consequent regulation of innate

immune functions [35,36]. Moreover, PPARc has been proposed

to regulate inflammation by antagonizing the NFkB and AP-1

pathways [23,24], which in turn may modulate immune responses.

To test this hypothesis in infectious colitis, we analyzed the

activities of NFkB and AP-1 via electromobility shift assay using

nuclear extracts from colonic scrapings. As anticipated, depletion

of epithelial PPARc was coupled with a marked increase in the

activities of NFkB and AP-1 in the colon after S. Typhimurium

infection compared to littermate control (PPARcVillinCre-) mice

(Fig. 3A and B, Fig. S4).

A potential challenge was to obtain maximal numbers of

epithelial cells in colonic scrapings; epithelial cells contribute the

majority of colonic PPARc, but macrophages and B and T

lymphocytes also produce it [20,22]. To overcome this problem,

we used mucosal scrapings from the colon and tested for the

presence of PPARc transcripts through real-time PCR. Minimal

expression and activity of PPARc was detected in mock-infected

and infected PPARcVillinCre+ mice compared to littermate

control PPARcVillinCre- and wild-type (C57BL/6) mice (Fig.

S5A and B). This finding was further validated in cecum scrapings

(Fig. S1D). Thus, it was evident that epithelial cells were the major

cell type in our samples; the presence of infiltrating macrophages

and T and B cells in the colonic scrapings was possible, but

minimally contributed to PPARc production. Furthermore, no

significant differences in the expression or activity of PPARc were

detected between PPARcVillinCre- and wild-type C57BL/6 mice

(Fig. S5), justifying the use of PPARcVillinCre- mice as controls in

subsequent experiments.

We next investigated the effect of increased NFkB and AP-1

activities on key regulators of inflammation. After infection, the

expression levels of TNF-a and IL-6 in the colon were two-fold

higher in PPARcVillinCre+ mice compared to PPARcVillinCre-

mice (Fig. 3C and D). IL-6 is a key regulator of the innate T helper

type 17 (TH17) response, a critical component of mucosal

immunity to intestinal pathogens [3]. Consistent with this role,

we observed substantial increases in the expression of IL-17 and

IL-22, a typical innate TH17 response signature, in infected

PPARcVillinCre+ mice compared to infected PPARcVillinCre-

mice, as assessed via real-time PCR (Fig. 3E and F). IL-17 and IL-

22 have been linked with intestinal innate epithelial defense

mechanisms through the production of antimicrobial peptides

[3,5–7]. The expression of Lcn2, a principal target of IL-17 and

IL-22 [3,4], increased by approximately 7-fold in the colons of S.

Typhimurium-infected PPARcVillinCre- mice compared to

mock-infected mice, an increase that rose to a striking ,21-fold

change in infected PPARcVillinCre+ mice (Fig. 4A). This increase

in Lcn2 expression in infected colons was also noticeable at the

protein level (Fig. 4B and C), further confirming a hyper-

magnified Lcn2 response in infected PPARcVillinCre+ mice.

Lcn2 was similarly elevated in the cecum of these mice (Fig. S1E).

Interestingly, TLR-42/2 mice infected with S. Typhimurium also

showed a significant increase in Lcn2 expression in the colon

compared to mock-infected mice (Fig. S2H).

The expression of regenerating islet-derived 3 gamma (Reg3c),

another potent member of the host antimicrobial arsenal and a

potential target of IL-17 and IL-22 [3,37], was also tested. The

expression of Reg3c in colon followed a pattern similar to that of

Lcn2 in PPARcVillinCre- and PPARcVillinCre+ mice (Fig. 4D),

thus establishing a heightened innate immune response to S.

Typhimurium in the absence of epithelial PPARc. Moreover, S.

Typhimurium induced a significant increase in the expression and

secretion of Lcn2 (Fig. 4E and F) in parallel with PPARc down-

regulation (Fig. 1G) in colonic epithelial cells, further confirming the

importance of epithelial cells in this process. To test whether this

Lcn2 up-regulation was a cell-autonomous effect of PPARc in

epithelial cells, we next applied PPARc small interfering RNA

(siRNA) to HT-29 cells. A ,50% reduction in PPARc levels

(Fig. 4G) led to a significant increase in Lcn2 expression and

secretion in the absence of S. Typhimurium infection (Fig. 4H and

I). Moreover, when these PPARc-siRNA treated HT-29 cells were

infected with S. Typhimurium, the expression profile of Lcn2

resembled to that observed in vivo (Fig. S2I). These observations not

only confirmed the existence of a direct link between PPARc and

Lcn2, but also suggested that Lcn2 regulation by PPARc may occur

locally in epithelial cells without the intervention of other cell types.

At this juncture, the observed dichotomy in PPARc’s role in

infectious colitis was surprising. Although we initially observed that

the absence of PPARc led to increased colitis severity (Fig. 1H and

I; Fig. 2), in sharp contrast we also detected a simultaneous

elevated innate immune response that seemed to serve a protective

role. Taken together, these results reflect PPARc’s tight control

over intestinal homeostasis in the host during S. Typhimurium

pathogenesis. We next questioned the rationale behind this

heightened Lcn2 expression, given that S. Typhimurium is

typically resistant to Lcn2’s antimicrobial activity [4,13,15,16],

and speculated that Lcn2 may have a more diverse role in the

disease process.

Lcn2 promotes MMP-9 stability and contributes to colitis
severity

Having established that Lcn2 expression was markedly

increased in PPARcVillinCre+ mice (Fig. 4A–C), we next sought

to dissect its possible role in the increased colonic damage

analyzed by real-time PCR. (G) HT-29 cells were mock- or S. Typhimurium-infected for 6 h, incubated for another 18 h without the pathogen, and
PPARc expression was analyzed by real-time PCR. (H) Macroscopic image of whole cecum after mock or S. Typhimurium infection in C57BL/6 (WT),
PPARcVillinCre2 (Cre2), or PPARcVillinCre+ (Cre+) mice. (I) Quantitation of colon lengths in the respective mouse groups. Recovery of S.
Typhimurium from cecum tissue (J) and spleen (K) 24 h after infection. Error bars depict 6 standard error of the mean. *p,0.001, **p,0.05. CFU,
colony-forming units; NS, not significant.
doi:10.1371/journal.ppat.1003887.g001

Role of PPARc in S. Typhimurium-Induced Colitis
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observed in PPARcVillinCre+ mice in the absence of PPARc
(Fig. 2), suggesting ongoing exaggerated protease action. Interest-

ingly, Lcn2 has been shown to increase the stability of MMP-9 by

protecting it from degradation, resulting in an increase in its

enzymatic activity independent of transcriptional regulation

[8,10,38,39]. To test this hypothesis, we analyzed the activity of

gelatin agarose-purified secreted gelatinases by zymography using

phosphate-buffered saline (PBS) extracts of colonic scrapings of

mock- or S. Typhimurium-infected mice. Interestingly, we

detected a ,140 KDa band representative of Lcn2-bound

proMMP-9 (proMMP-9/Lcn2) in S. Typhimurium-infected

PPARcVillinCre- mice that peaked to an ,6-fold increase in

Figure 2. Colitis severity is more pronounced in PPARcVillinCre+ mice than in wild-type mice. Sections of colon from mock- or S.
Typhimurium-infected wild-type (C57BL/6) and PPARcVillinCre+ mice were stained with hematoxylin and eosin (6 mice per group). (A and B) Wild-
type mice mock-infected. (C and D) Wild-type mice infected with S. Typhimurium. PPARcVillinCre2 mice mock-infected (E and F), or infected with S.
Typhimurium (G and H). PPARcVillinCre+ mice mock-infected (I and J), or infected with S. Typhimurium (K and L). All scale bars are 100 mm. Pathology
scoring was performed for neutrophil infiltration (M). (N) Myeloperoxidase (MPO) activity in colonic extracts of mice, measured per mg of total
protein. In panels M and N, mock (Con)- or S. Typhimurium (Sal)-infected PPARcVillinCre+ (Cre+) or littermate control PPARcVillinCre2 (Cre2) mice
were examined. Error bars = 6standard error of the mean. **p,0.01.
doi:10.1371/journal.ppat.1003887.g002

Role of PPARc in S. Typhimurium-Induced Colitis
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infected PPARcVillinCre+ mice (Fig. 5A and B). Surprisingly, this

increase in the proMMP-9/Lcn2 band in PPARcVillinCre+ mice

was associated with a massive increase in the activity of proMMP-

9 (detected by zymography Fig. 5A), indicating an increased

stability of proMMP-9. The activity of proMMP-9 increased by

,6 fold in PPARcVillinCre- mice and ,15 fold in PPARcVil-

linCre+ mice after infection, while MMP-9 activity rose from ,4

fold in PPARcVillinCre- mice to ,7 fold in PPARcVillinCre+
mice after infection (Fig. 5A and B). In contrast, MMP-2 activity

remained almost unchanged between groups. Importantly, no

significant difference in MMP-9 gene expression occurred between

the PPARcVillinCre- and PPARcVillinCre+ infected groups, as

detected by real-time PCR (Fig. 5C), which confirmed that the

differences in MMP-9 activity were independent of transcriptional

regulation. Furthermore, MMP-2 expression was similar between

the infected and mock-infected groups (Fig. 5D). No noticeable

difference in the expression of TIMP-1, the endogenous inhibitor

of MMP-9, was observed between the infected mice groups

(Fig. 5E), eliminating the possibility of its involvement in the

observed deregulation of MMP-9 activity.

To further confirm this phenomenon, we next analyzed the

protein levels of MMP-9 and Lcn2 by immunoblotting gelatin-

agarose-purified PBS extracts of colonic scrapings under non-

reducing conditions. As anticipated, the ,140 KDa proMMP-9/

Lcn2 band, the level of which increased by ,5 fold in infected

PPARcVillinCre- mice, peaked at ,15-fold in PPARcVillinCre+

Figure 3. PPARc depletion from intestinal epithelium augments the immune response to S. Typhimurium infection. (A and B) Nuclear
extracts from colonic scrapings of mock (Con)- or S. Typhimurium (Sal)-infected PPARcVillinCre+ (Cre+) or littermate control PPARcVillinCre2 (Cre2)
mice were assessed for NFkB (A) and AP-1 (B) activities by electromobility shift assay (6–8 mice per group). The expression levels of TNF-a (C), IL-6 (D),
IL-17 (E), and IL-22 (F) in the colons of mock- or S. Typhimurium-infected PPARcVillinCre+ or PPARcVillinCre2 mice were measured by real-time PCR.
Error bars = 6 standard error of the mean. *p,0.001, **p,0.01.
doi:10.1371/journal.ppat.1003887.g003

Role of PPARc in S. Typhimurium-Induced Colitis
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infected mice (Fig. 5F and G). This increase led to an ,15-fold

increase in proMMP-9 protein levels in PPARcVillinCre- infected

mice and reached a striking increase of ,40 fold in PPARcVil-

linCre+ infected mice, while MMP-9 climbed ,5 fold in

PPARcVillinCre+ infected mice (Fig. 5F and G). When the gels

were re-probed for Lcn2, bands at exactly the same location as the

,140 KDa band, characteristic of proMMP-9 bound to Lcn2,

were detected (Fig. 5F and G). These results indicate that Lcn2 is

secreted from the intestinal epithelium, in accordance with

previous reports [3], and more importantly confirm the binding

of Lcn2 to secreted proMMP-9 in the intestinal milieu, which is

pivotal for subsequent pathological processes. However, since the

increase in the levels of the Lcn2/MMP-9 complex in the

intestinal milieu correlates with the increased infiltration of

neutrophils it is possible that these cells may contribute to the

observed elevation of Lcn2/MMP-9. It is noteworthy that the ,6-

fold increase in Lcn2 secretion in S. Typhimurium-infected

PPARcVillinCre+ mice (Fig. 5F and G) did not precisely

correspond to its ,15-fold increase at the expression level

(Fig. 4A–C), because it represented only the Lcn2 fraction bound

to proMMP-9 during gelatin-agarose purification of secreted

gelatinases. Reasonably, no low molecular-weight band for Lcn2

alone was detected (Fig. 5F). It may also be noted that the

proportion of bound or free Lcn2 or proMMP-9 at any given point

would largely depend on the availability, stability, and importantly

the stoichiometry of binding between these molecules. Taken

together, these results conclusively indicate that lack of epithelial

PPARc substantially elevates Lcn2 expression and its secretion in

the intestinal milieu during S. Typhimurium infection, resulting in

increased MMP-9 stabilization and activity.

Absence of Lcn2 significantly protects mice from S.
Typhimurium-induced colitis

To validate the observed involvement of Lcn2 in S. Typhimur-

ium-induced colitis, we next checked for colitis induction in

streptomycin-pretreated Lcn22/2 mice mock- or S. Typhimur-

ium-infected for 24 h. As expected from the above observations,

marked reductions in the extent and severity of S. Typhimurium-

induced colitis were observed in mice devoid of Lcn2 (Fig. 6A and

B). Shortening and thickening of the cecum and colon were

considerably restricted in the Lcn22/2 mice 24 h after S.

Typhimurium challenge (Fig. 6A and B). These results were

confirmed by observations of reduced thickening of the mucosa

and sub-mucosa, with negligible tissue damage (Fig. 6C–H).

However, a modest increase in infiltrating cells and consequent

myeloperoxidase (MPO) activity was noted (Fig. 6G and H).

Moreover, the number of S. Typhimurium in the cecum and

spleen of these Lcn22/2 mice was comparable to that of wild-type

mice after 24 h (Fig. 6I and J). As expected, Lcn2 expression was

not detected in these mice by real-time PCR (Fig. S6A) or by

immunoblotting (Fig. S6B) of the colons of Lcn22/2 mice. Thus,

these observations highlight Lcn2’s unique role in the induction

and severity of infectious colitis.

To more precisely track the molecular mechanisms active in

Lcn22/2 mice after S. Typhimurium infection, we assessed the

secretion of gelatinases in the colon. We observed an ,3.5-fold

increase in proMMP-9 activity in Lcn22/2 mice after infection

versus mock infection (Fig. 7A and B), compared to a ,6-fold

increase in PPARcVillinCre- infected mice (Fig. 5A and B). No

notable differences in the activities of MMP-9 and MMP-2 were

detected between groups. The basal secretion of gelatinases was

similar in PPARcVillinCre- and Lcn22/2 mock-infected mice

(Fig. S7A), justifying the comparison between these groups in this

case.

We next examined the levels of secreted MMP-9 using gelatin-

purified colonic extracts of mock- or S. Typhimurium-infected

Lcn22/2 mice. Compared to the ,15-fold increase in secreted

proMMP-9 that was observed in PPARcVillinCre- mice after

infection (Fig. 5F and G), a mere ,3-fold increase in the levels of

secreted proMMP-9 was detected in Lcn22/2 mice after infection,

suggesting reduced extracellular stability and possible degradation

of MMP-9 protein in the absence of Lcn2 (Fig. 7C and D). No

significant difference in the colonic expression of MMP-9 was

detected between Lcn22/2 and Lcn2+/+ mice after infection

(Fig. 7E), confirming that the differences in the protein levels of

MMP-9 were due to impaired stability. Moreover, colonic

expression of MMP-2 and TIMP-1 was similar in Lcn2+/+ and

Lcn22/2 mice after infection (Fig. S7B and C), excluding their

involvement in this process.

To investigate any possible mechanistic differences between the

Lcn22/2 and Lcn2+/+ mice during S. Typhimurium infection, we

validated several key regulators involved in the pathophysiology of

infectious colitis. Real-time PCR revealed no appreciable differ-

ences in the down-regulation of PPARc by S. Typhimurium

between Lcn22/2 and Lcn2+/+ mice (Fig. S8A), confirming that

PPARc regulation by S. Typhimurium was essentially the same in

Lcn22/2 mice. Consequently, the expression levels of TNF-a and

IL-6 were similar between the infected groups (Fig. S8B and C).

Colonic expression of IL-17 and IL-22 also exhibited negligible

differences between Lcn22/2 and Lcn2+/+ infected mice (Fig. S8D

and E), as did Reg3c expression (Fig. S8F). Together, these

observations suggest that the mechanistic chain of events during S.

Typhimurium infection in wild-type and Lcn22/2 mice was

fundamentally similar; the absence of Lcn2 exclusively conferred

protection to these mice against S. Typhimurium-induced colitis.

To determine whether the regulation of PPARcby S. Typhi-

murium is a transient effect or whether the Lcn22/2 mice are

protected at later stages of infection, we infected PPARcVillinCre-

, PPARcVillinCre+, Lcn22/2, and Lcn2+/+ mice with S.

Typhimurium and sacrificed them after 72 h. Long-term S.

Typhimurium infection resulted in more severe colitis in

PPARcVillinCre+ mice compared to PPARcVillinCre- mice,

while Lcn22/2 mice were significantly protected against colitis

(Fig. S9A); colonic shortening displayed a similar profile (Fig. S9B).

There was no significant difference in the number of S.

Typhimurium recovered from the cecum or spleen of these mice

72 h after infection (Fig. S9C and D). Histological analysis

Figure 4. Colonic Lcn2 expression in PPARcVillinCre+ mice increases after S. Typhimurium challenge. (A and B) Expression levels of Lcn2
in the colons of mock (Con)- or S. Typhimurium (SaI)-infected PPARcVillinCre+ (Cre+) or PPARcVillinCre2 (Cre2) mice (6–8 mice per group) were
measured by real-time PCR (A) and by immunoblotting (B). (C) Quantitation of changes in protein expression from the immunoblot in panel B and
from another representative blot from independent experiments. (D) Expression levels of Reg3c in the colons of mock- or S. Typhimurium-infected
mice were measured by real-time PCR. (E and F) HT-29 cells were mock- or S. Typhimurium-infected for 6 h, incubated for another 18 h without the
pathogen, and Lcn2 expression (E) and secretion (F) were analyzed by real-time PCR and immunoblotting, respectively. (G–I) HT-29 cells were treated
with siRNA directed against PPARc, and the expression of PPARc (G) and Lcn2 (H) in uninfected cells was analyzed by real-time PCR. The secretion of
Lcn2 was analyzed by immunoblotting using concentrated culture supernatant (I). Error bars = 6 standard error of the mean. *p,0.005, **p,0.01.
doi:10.1371/journal.ppat.1003887.g004
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revealed more severe colitis in PPARcVillinCre+ mice than in

PPARcVillinCre- mice, with significantly increased neutrophil

infiltration and MPO activity (Fig. S9E-L and S9U-W). Although

the Lcn22/2 mice exhibited moderate colitis, they were associated

with marked reductions in neutrophil infiltration, edema, and

MPO activity compared to the rest of the groups 72 h after

infection (Fig. S9M–W). Interestingly, PPARc expression was still

significantly reduced after 72 h in the colons of PPARcVillinCre-

mice, confirming that PPARc regulation by S. Typhimurium was

not a transient event (Fig. S9X and Y).

Discussion

Intestinal pathogens employ diverse strategies to modulate the

host environment in order to survive in this competitive niche. The

approaches that individual pathogens adopt depend largely on the

tenure of their residence in the host. For instance, H. pylori up-

regulates host PPARc as part of a feedback mechanism to suppress

exaggerated inflammation, ensuring its unperturbed long-term

survival in the host [17,19]. Similarly, M. tuberculosis induces

PPARc expression in infected individuals and subsequently

interacts with host PPARc by modulating macrophage function

for its survival [18]. Here, we unravel a novel mechanism used by

S. Typhimurium to down-regulate PPARc in the intestinal

epithelium, initiating acute inflammation via the host immune

and protease machinery, thereby transforming the intestine into a

more hostile niche where it is best adapted to survive and outgrow

its competitors. This TLR-4-independent regulation of PPARc by

S. Typhimurium seems to be characteristic of this pathogen, since

C. rodentium infection, did not alter PPARc levels.

PPARc activation has been shown to ameliorate the severity of

inflammatory bowel disease in rodent DSS, trinitrobenzene

sulphonic acid, and ischemic colitis models [20,27,30,32,33].

Since PPARc is expressed in epithelial cells as well as in immune

cells infiltrating colonic tissue during inflammation, the cell type

that mainly contributes to PPARc production during colitis

remains a point of contention. Interestingly, clinical reports

indicate that PPARc expression in colonic epithelium is impaired

in ulcerative colitis patients, while its expression in inflammatory

cells remains normal [40]. This observation was corroborated

by Adachi et al., who reported that PPARc expressed in the

colonic epithelium has an endogenous role in protection against

DSS-induced colitis [20]. These findings, together with our data in

Fig. 1G, demonstrating PPARc regulation by S. Typhimurium in

human colonic epithelial cells, prompted us to use epithelial-

specific PPARc-null mice to unravel the chain of events that occur

during S. Typhimurium-induced colitis. This strategy allowed us to

magnify the subtle molecular changes induced by S. Typhimurium

in the host via down-regulation of epithelial PPARc. S.

Typhimurium induced much more severe colitis in these mice

(Fig. 1H and I; Fig. 2), highlighting, for the first time, the

importance of intestinal epithelium-derived PPARc in protection

against bacterial pathogenesis.

Our data demonstrate that S. Typhimurium-induced depletion

of epithelial PPARc uncouples PPARc’s tight control over the

inflammatory transcription factors NFkB and AP-1, resulting in

the release of the pro-inflammatory cytokines TNF-a and IL-6.

This influx of pro-inflammatory cytokines from the intestinal

epithelium initiates an acute-phase immune response character-

ized by elevated expression of IL-17 and IL-22. These results are

consistent with a recent report by Geddes et al. of the induction of

the innate TH17 response by S. Typhimurium during the early

phases of infection [3]. Collectively, our results imply that these

inflammatory signaling circuits are orchestrated by S. Typhimur-

ium during the early phases of infection via the regulation of

epithelial PPARc, which is pivotal for the entire process.

The secretion of IL-17 and IL-22 in the inflamed colon, which is

initiated by S. Typhimurium, has been shown to facilitate the

production of antimicrobials, including Lcn2, from the intestinal

epithelium [3–7]. Our observations confirm the contribution of

IL-17 and IL-22 to Lcn2 production and secretion, but also

suggest that S. Typhimurium-induced increases in NFkB and AP-1

activity in epithelial cells via PPARc down-regulation may directly

influence Lcn2 expression in the same cells independent of IL-17

and IL-22 (Fig. 7F). This hypothesis was further corroborated by

the induction of Lcn2 in non-infected human colonic epithelial

cells treated with siRNA directed against PPARc. It seems

reasonable to assume that S. Typhimurium may utilize this more

direct pathway of Lcn2 regulation, since Lcn2 expression is known

to be regulated by NFkB or even AP-1 [41,42]; importantly, this

entire sequence of events may occur in affected epithelial cells.

Understanding the rationale behind the substantial increase in

Lcn2 secretion from the intestinal epithelium during S. Typhimur-

ium infection, which typically utilizes salmochalin, a siderophore

resistant to Lcn2 action [4,13,15,16], for iron uptake, was perhaps

the biggest challenge in this study. Here, we documented that S.

Typhimurium-induced elevated influx of secreted Lcn2 in the

intestinal milieu leads to stabilization and a significant increase in

MMP-9 activity, through direct extracellular protein-protein

binding (Fig. 7F). MMP-9, a member of a family of zinc-

dependent endopeptidases that have broad substrate specificity,

has been shown to play a pivotal role in the degradation and

remodeling of the extracellular matrix during bacterial pathogen-

esis [19,43]. Moreover, MMP-9-null mice exposed to DSS or to S.

Typhimurium were previously significantly protected from colitis

[44,45], confirming MMP-9’s importance in the etiology of the

disease. Although MMPs are secreted by a variety of cell types, such

as fibroblasts, epithelial cells, endothelial cells, neutrophils, macro-

phages, and lymphocytes, MMP-9 is predominantly expressed in

epithelial cells and in inflammatory cells during colitis [44,46]. Our

data suggest that this crosstalk between Lcn2 and MMP-9 in the

inflamed gut, which results in increased MMP-9 activity, was crucial

for the deleterious impact on the intestinal mucosa observed during

infectious colitis. This novel mechanism by which S. Typhimurium

exploits the host Lcn2 and MMP-9 synergy to aggravate

inflammation and colitis severity is critical, as it calls for the

Figure 5. Elevated levels of Lcn2 in the colonic milieu of S. Typhimurium-infected mice stabilize proMMP-9. (A) The activities of MMP-9
and MMP-2 in gelatin-agarose-purified PBS (secreted) extracts of mock (Con)- or S. Typhimurium (SaI)-infected PPARcVillinCre+ (Cre+) or
PPARcVillinCre2 (Cre2) mouse colonic tissues were analyzed by gelatin zymography (6–8 mice per group). (B) Quantitation of gelatinolytic activities
from the zymogram in panel A and from two other representative zymograms from independent experiments. Expression levels of MMP-9 (C), MMP-2
(D), and TIMP-1 (E) in the colons of the respective groups were measured by real-time PCR. (F) Protein levels of MMP-9 and Lcn2 in the colons of the
respective mouse groups were assessed by immunoblotting using purified PBS extracts under non-reducing conditions. Flow-through from gelatin-
agarose purification was probed for b-actin as a loading control. (G) Quantitation of changes in protein levels from the immunoblot in panel F and
from another representative blot from independent experiments. Error bars = 6 standard error of the mean. *p,0.001 vs. PPARcVillinCre- mice
infected with S. Typhimurium. NS, not significant.
doi:10.1371/journal.ppat.1003887.g005
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reinterpretation of studies on microbial pathogenesis; other

potential pathogens may also employ similar mechanisms.

Interestingly, mice lacking Lcn2 were considerably protected

against S. Typhimurium-induced colitis even at the later stages of

infection, confirming the key role of this secreted protein in S.

Typhimurium pathogenesis. We detected no significant differences

in the overall mechanism acting in Lcn2-null and wild-type

infected mice, with the exception of a decrease in MMP-9 stability

and activity in the colon. Our observations of Lcn2-null mice

exposed to S. Typhimurium, which indicated increased expression

of IL-17, IL22, and TNF-a, are consistent with the findings of

Raffatellu et al. [4]. We also noted moderate inflammation in the

colon during the later stages of infection. However, disease severity

may be impacted by differences in experimental setup, including S.

Typhimurium strains, bacterial load and phase of growth in the

inoculum, and importantly, differences in intestinal microflora

between mice.

In conclusion, our investigation unveiled a novel pathogenic

mechanism utilized by S. Typhimurium to thrive and to induce

colitis in its host. This study motivates the development of

therapeutic interventions directed against this Lcn2-dependent,

MMP-9-driven tissue degradation pathway to combat salmonel-

losis. However, research aimed toward a better understanding of

the pathogenic mechanisms of S. Typhimurium or other

pathogens in the gut remains an exciting area for future studies.

Materials and Methods

Ethics statement
All protocols involving animals were approved by the Regional

Animal Research Ethical Board, Stockholm, Sweden, following

proceedings described in European Union legislation (Council

Directive 86/609/EEC). Animal husbandry was in accordance

with institutional guidelines at Karolinska Institutet and was

approved by the above-mentioned ethical board (Stockholms

norra djurförsöksetiska nämnd, Ref: N 100/10).

Bacterial strains, culture and colonization assessment
The naturally streptomycin-resistant wild type strain S.

enterica serovar Typhimurium SL1344 [47], a generous gift

from Prof. Mikael Rhen was used in this study. Naturally

occurring naldixic acid-resistant Citrobacter rodentium, DBS100

(ATCC 51459) was also used for mouse infection. Prior to

inoculation into host mice, strain SL1344 and C. rodentium were

grown overnight at 37uC in Luria-Bertani (LB) broth, diluted

1:20 in fresh medium, and sub-cultured for 3–4 h under mild

aeration until an optical density of 0.4 to 0.6 at 600 nm was

reached. Bacteria were washed twice in cold PBS and then

suspended in cold PBS for mouse inoculation.

The cecum and spleen from post-sacrifice mice were collected in

1 mL of sterile PBS. Samples were kept on ice, minced, and

homogenized. Serial dilutions of the homogenates were plated on

LB agar plates supplemented with 100 mg/mL streptomycin to

enumerate S. Typhimurium. Plates were incubated overnight at

37uC, and colonies were counted thereafter.

Cell-culture assays
The human epithelial cell line HT-29 (ATCC-HTB-38) was

obtained from the American Type Culture Collection. Cells were

grown in RPMI 1640 (Invitrogen) medium supplemented with

10% heat-inactivated fetal calf serum (Invitrogen). Cells were

maintained in a 37uC humidified atmosphere with 5% CO2.

Epithelial morphogenesis was monitored via microscopy; cell

densities for each experiment did not exceed 80% to prevent

contact inhibition.

For co-culture experiments, cells were treated with S. Typhi-

murium (0.256107 cells/well; 10:1 bacterial cells:eukaryotic cells)

for 6 h. Controls were treated with culture medium only. After 6 h

medium was removed, cells were washed, fresh medium with 1%

penicillin/streptomycin was added, and the cells were incubated

for 18 h, after which the cells were collected and lysed.

For siRNA experiments HT-29 cells were plated at a density of

0.06256105 cells/cm2. Down-regulation of PPARc transcripts was

achieved with SMART Pool siRNA directed against PPARc
(Thermo Scientific). Controls were transfected with non-targeting

siRNA (Thermo Scientific) at a final siRNA concentration of

40 nM. Transfection was carried out according to the manufac-

turer’s protocol using DharmaFECT 4 (Thermo Scientific) reagent

at a final concentration of 0.3%.

Bacterial infection in mice
Specific pathogen-free C57BL/6 wild-type mice carrying a

targeted disruption of the gene encoding PPARc in intestinal

epithelial cells were generated by breeding animals harboring a

floxed Pparc (PPARcfl/fl) [48] to mice expressing the Cre transgene

under control of the villin promoter; these mice were designated as

PPARcVillinCre+, and their littermate control mice were

designated as PPARcVillinCre2. Lcn2-deficient (Lcn22/2) mice

[11,38] and TLR42/2 mice (Jackson Laboratory Stock No:

007227) aged 8–10 weeks were also used in this study. The

Lcn22/2 mice were generated previously [11] and were back-

crossed into the C57BL/6 background for at least 10 generations

[38]. All experiments were performed under standard controlled

conditions and all efforts were made to minimize animal suffering.

Groups of mice were pretreated with streptomycin (0.1 mL of a

200 mg/mL solution in sterile water) orally 24 h prior to either

mock (PBS) or S. Typhimurium (16108 colony-forming units/

mouse) inoculation via gavage. At 24 h or 72 h after infection,

mice were euthanized and the cecum, spleen, and colon were

collected for analysis. For C. rodentium infection, mice were given

metronidazole at 750 mg/L for 4 days, which was withdrawn

prior to inoculation with 16109 colony-forming units/mouse via

gavage. C. rodentium-infected mice were sacrificed 6 days after

infection [49]. Colon lengths were measured using a centimeter scale.

Tissue extraction, partial purification of gelatinases, and
zymography

The mucosal layer of the colon was carefully scraped and

suspended in PBS containing protease inhibitors (Roche), minced,

and centrifuged at 6000 g for 15 min. The supernatant was collected

for use as PBS extracts for the analysis of secreted proteins, while the

Figure 6. Lcn22/2 mice are markedly protected from S. Typhimurium-induced colitis. (A and B) Groups of 8–10-week-old, streptomycin-
pretreated Lcn22/2 mice were mock (Con)- or S. Typhimurium (Sal)-infected and sacrificed after 24 h (10 mice per group). (A) Macroscopic image of
whole cecum 24 h after infection. (B) Quantitation of colon lengths in mock- or S. Typhimurium-infected Lcn22/2 mice. (C–F) Sections of colon from
mock- or S. Typhimurium-infected Lcn22/2 mice were stained with hematoxylin and eosin (scale bars, 100 mm). Lcn22/2 mice mock-infected (C and
D), or infected with S. Typhimurium (E and F). Pathology scoring was performed for neutrophil infiltration (G). (H) Myeloperoxidase (MPO) activity was
determined in the colonic extracts of mice, as measured per mg of total protein. Recovery of S. Typhimurium from cecum tissue (I) and spleen (J),
24 h after infection. Error bars = 6 standard error of the mean. **p,0.05. NS, not significant.
doi:10.1371/journal.ppat.1003887.g006
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Figure 7. Mechanism of S. Typhimurium-induced intestinal damage during colitis. (A) Secretion of MMP-9 and MMP-2 in the colons of
mock (Con)- or S. Typhimurium (SaI)-infected Lcn22/2 mice was analyzed by gelatin zymography using gelatin-agarose-purified PBS extracts (6–8
mice per group). (B) Quantitation of gelatinolytic activities from the zymogram in panel A and from another representative zymogram from
independent experiments. (C) MMP-9 protein levels in the colons of mice from the respective groups were assessed by immunoblotting purified PBS
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pellet was re-extracted in lysis buffer (10 mM Tris-HCl [pH 8],

150 mM NaCl, 1% Triton X-100, and protease inhibitors) to obtain

Triton X-100 extracts [41]. For partial purification of MMP-9 and

MMP-2, PBS extracts of the respective samples were incubated with

gelatin-agarose beads (Sigma) at 4uC for 1 h followed by centrifu-

gation at 1500 rpm. The supernatant was collected as flow-through

and used as a loading control. The pellet was washed twice with PBS

through centrifugation at 1500 rpm and the gelatinases were eluted

in Lammeli sample loading buffer. For assays of MMP-9 and MMP-

2 activity, gelatin zymography was performed as described

previously [43]. Zymographic bands were quantified using Lab-

Image software (KAPELAN).

Immunoblotting
Triton X-100 extracts (50 mg/lane) from colon samples were

immunoblotted. Gelatin-agarose-purified PBS extracts were im-

munoblotted under non-reducing conditions. Cell-culture super-

natants were concentrated using a vacuum centrifuge and

volumetrically analyzed by immunoblotting.

Immunoblots were probed with anti-PPARc (Cell Signaling),

anti-MMP-9 (Abcam), anti-Lcn2 (Abcam), and anti-b-actin (Santa

Cruz Biotechnology) antibodies. Immunodetection with an appro-

priate secondary peroxidase-conjugated antibody (DAKO) was

followed by electrochemiluminescence (Santa Cruz Biotechnology).

Quantification of protein bands was performed with the LabImage

software. Fold changes were calculated using densitometry values

for bands representing proteins of interest, normalized to densi-

tometry values for b-actin bands of respective samples. Represen-

tative blots from at least two independent experiments are shown.

Real-time PCR
Total RNA was extracted with an RNeasy Mini Kit (Qiagen),

and cDNA was synthesized with SuperScript II (Invitrogen), both

procedures according to the manufacturers’ protocols. We

measured gene expressions with SYBR Green (Applied Biosys-

tems)-based quantitative reverse transcription PCR. Primers were

designed and tested according to Applied Biosystems recommen-

dations (Table S1). Sample setups always included at least five

biological replicates and experimental triplicates. The changes in

mRNA expression of respective samples compared to control were

expressed as DDCt =DCtcontrol2DCtrespective samples (DCt = Ct

value for the gene of interest - Ct value for b-actin of the

respective sample). Relative expressions in the genes in respective

samples were calculated as 2DDCt [19].

Electromobility shift assay
Nuclear extracts from colonic scrapings were prepared accord-

ing the nuclear extraction protocol of Schreiber [50]. DNA

binding was assayed with 10 mg of nuclear extract in binding

buffer (25 mM HEPES [pH 7.9], 70 mM KCl, 10% glycerol,

5 mM dithiothreitol, and 1 mg polydIdC (Amersham)) in the

presence of 50,000 cpm of a radiolabeled oligonucleotide probe.

The probe for PPARc (sequences 59-TCTCTCTGGGTGAAA-

TGTGC-39 and 59-AGAGGCACATTTCACCCAGAGAGA-39)

has high PPARc-specificity and moderate affinity to ensure weak

binding to other PPARs [35]. Probes for NFkB (sequences 59-

GATCCAGAGGGGACTTTCCGAG-39 and 59- TCGACTCG-

GAAAGTCCCCTCTG-39) and for AP-1 (sequences 59-CTGAT-

GACTCAGAG-39 and 59-CTCTGAGTCATCAG-39) were used.

polydIdC and probe were added to extracts and incubated for 30 min

before gel electrophoresis. Bands were quantified with LabImage.

Histology and pathology scoring
The colons of mock- or S. Typhimurium-infected mice from the

respective groups were sectioned for histological studies. Distal

part of the colon was used for histological analysis in all cases.

Tissue samples were fixed in 10% formalin and embedded in

paraffin. Sections (5 mm) were cut with a microtome, stained with

hematoxylin and eosin [43], and observed under a Zeiss

microscope. Images were captured using Axiovision, LE 64

software (Carl Zeiss Microscopy) at original magnification 5610

and 20610 and processed in Adobe Photoshop CS6 (Adobe

Systems incorporated). Pathology scoring for neutrophil infiltra-

tion and edema was rated from 0 to 5 according to severity, under

blinded conditions, by an experienced pathologist (RMB).

MPO activity assay
Whole-cell extracts from colonic scrapings were assayed for

MPO activity using the Myeloperoxidase Activity Assay Kit

(Invitrogen) following the manufacturer’s protocol.

Statistical analysis
Densitometry data were fitted using SigmaPlot 2001 (SPSS) or

GraphPad Prism 5 (GraphPad Software). Data are presented as

the mean 6 standard error of the mean. Between-group

comparisons were carried out using either Student’s t-test or

Student-Newman-Keuls test (ANOVA).

Supporting Information

Figure S1 S. Typhimurium down-regulates PPARc in
the cecum during colitis. (A, B, and C) Groups of 8–10-week-

old, streptomycin-pretreated C57BL/6 mice (WT) were mock

(Con)- or S. Typhimurium (SaI)-infected and sacrificed after 24 h

(10 mice per group). PPARc expression in the cecum was analyzed

by real-time PCR (A) and by immunoblotting (B). (C) Electromobility

shift assay of PPARc activity in nuclear extracts from the cecum. (D

and E) Groups of age-matched, streptomycin-pretreated PPARc-
VillinCre+ (Cre+) or littermate control PPARcVillinCre2 (Cre2)

mice were mock- or S. Typhimurium-infected and sacrificed after

24 h (6–8 mice per group). PPARc (D) and Lcn2 (E) expression in the

cecum was analyzed by real-time PCR. Error bars = 6 standard

error of the mean. *p,0.005, **p,0.05.

(TIF)

Figure S2 S. Typhimurium down-regulates PPARc in-
dependent of TLR-4 signaling. (A, B, and C) Groups of 8–10-

week-old, streptomycin-pretreated C57BL/6 mice were mock

(Con)- or S. Typhimurium (SaI)-infected and sacrificed after 24 h

extracts under non-reducing conditions. Flow-through from the purification was used as a loading control. (D) Quantitation of changes in protein
levels from the immunoblot in panel C and from another representative blot from independent experiments. (E) MMP-9 expression levels in the
colons of mock- or S. Typhimurium-infected Lcn2+/+ and Lcn22/2 mice were measured by real-time PCR. Error bars = 6 standard error of the mean.
*p,0.0001 vs. Lcn22/2 control. NS, not significant. (F) S. Typhimurium down-regulates PPARc in intestinal epithelial cells. The subsequent decrease in
PPARc activity leads to the activation of NFkB and AP-1 and the release of TNF-a and IL-6. Through activation of the acute-phase immune response,
TNF-a and IL-6 induce IL-17 and IL-22. NFkB and AP-1 activation either directly or in conjunction with IL-17 and IL-22 induce Lcn2 expression in
epithelial cells and its consequent secretion into the intestinal milieu. Extracellular binding of Lcn2 to secreted MMP-9 increases MMP-9 stabilization
and activity, resulting in extensive tissue damage during infectious colitis.
doi:10.1371/journal.ppat.1003887.g007
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(10 mice per group). The expression of TLR-4 (A), TLR-2 (B), and

TLR-5 (C) in the colon was analyzed by real-time PCR. (D–F and

H) Age-matched, streptomycin-pretreated TLR42/2 mice were

mock- or S. Typhimurium-infected and sacrificed after 24 h (5 mice

per group). Expression of TLR-4 (D), TLR-2 (E), and Lcn2 (H) in

the colon was analyzed by real-time PCR. (F) Quantitation of colon

lengths in the respective mouse groups. (G) Metronidazole-

pretreated C57BL/6 mice were mock- or C. rodentium-infected,

sacrificed 6 days after infection and colon lengths in the respective

mice were quantified. (I) HT-29 cells were treated with siRNA

directed against PPARc, infected with S. Typhimurium and the

expression of Lcn2 in infected cells was analyzed by real-time PCR.

Error bars = 6 standard error of the mean. *p,0.005.

(TIF)

Figure S3 Analysis of epithelial cell markers in colonic
scrapings. Groups of age-matched, streptomycin-pretreated

PPARcVillinCre+ (Cre+) or littermate control PPARcVillinCre2

(Cre2) mice were mock (Con)- or S. Typhimurium (SaI)-infected

and sacrificed after 24 h (6–8 mice per group). The expression

levels of villin 1 (A), cytokeratin 8 (B), and cytokeratin 20 (C) in

colonic scrapings were analyzed by real-time PCR. Error bars = 6

standard error of the mean.

(TIF)

Figure S4 NFkB and AP1 activity in the colons of
PPARcVillinCre+ mice after S. Typhimurium infection.
Electromobility shift assay of NFkB activity (A) and AP-1 activity

(B) in nuclear extracts from colonic scrapings of PPARcVillinCre+
(Cre+) or PPARcVillinCre2 (Cre2) mice 24 h after mock (Con)-

or S. Typhimurium (SaI)-infection (6 mice per group).

(TIF)

Figure S5 Determination of the efficiency of tissue-
specific PPARc ablation. Groups of 8–10-week-old, strepto-

mycin-pretreated C57BL/6 (WT), PPARcVillinCre+ (Cre+), or

littermate control PPARcVillinCre2 (Cre2) mice were mock

(Con)- or S. Typhimurium (SaI)-infected and sacrificed after 24 h

(6–8 mice per group). (A) PPARc expression in colonic scrapings

was analyzed by real-time PCR. Error bars = 6 standard error of

the mean. *p,0.001 vs. WT or Cre- mice. NS, not significant. (B)

Electromobility shift assay of PPARc activity in nuclear extracts of

colonic scrapings.

(TIF)

Figure S6 Determination of the efficiency of the Lcn22/2

mouse model. (A and B) Groups of 8–10-week old, streptomycin-

pretreated Lcn2+/+ and Lcn22/2 mice were mock (Con)- or S.

Typhimurium (SaI)-infected and sacrificed after 24 h (6–8 mice per

group). Lcn2 expression in the colon was analyzed by real-time

PCR (A) or by immunoblotting (B). Error bars = 6 standard error of

the mean. *p,0.005 vs. Lcn2+/+ control.

(TIF)

Figure S7 Determination of basal secretion of gelatinases
and expression of MMP-2 and TIMP-1 in Lcn22/2 mice. (A)

Secretion of MMP-9 and MMP-2 in the colons of mock (Con)-

infected PPARcVillinCre2 or Lcn22/2 mice (6–8 mice per group)

was analyzed by gelatin zymography using gelatin-agarose-purified

PBS extracts. Expression levels of MMP-2 (B) and TIMP-1 (C) in the

colons of mock- or S. Typhimurium (SaI)-infected Lcn2+/+ and

Lcn22/2 mice were measured by real-time PCR (6–8 mice per

group). Error bars = 6 standard error of the mean. NS, not

significant.

(TIF)

Figure S8 Assessment of mechanistic differences be-
tween Lcn2+/+ and Lcn22/2 mice during S. Typhimur-
ium infection. Expression levels of PPARc (A), TNF-a (B),

IL-6 (C), IL-17 (D), IL-22 (E), and Reg3c (F) in the colons of

mock (Con)- or S. Typhimurium (SaI)-infected Lcn2+/+ and

Lcn22/2 mice were measured by real-time PCR (6–8 mice per

group). Error bars = 6 standard error of the mean. NS, not

significant.

(TIF)

Figure S9 Severity of colitis 72 h after S. Typhimurium
infection in mice. Groups of age-matched, streptomycin-

pretreated PPARcVillinCre+ (Cre+), littermate control PPARc-
VillinCre2 (Cre2), Lcn22/2, and littermate control Lcn2+/+

mice were mock (Con)- or S. Typhimurium (SaI)-infected and

sacrificed after 72 h (6 mice per group). (A) Macroscopic image of

whole cecum after mock or S. Typhimurium infection. (B)

Quantitation of colon lengths. Recovery of S. Typhimurium from

cecum tissue (C) and spleen (D) 72 h after infection. Sections of

colon from these mice were stained with hematoxylin and eosin

(E–T). PPARcVillinCre2 mice after mock infection (E and F), or

after S. Typhimurium infection (G and H). PPARcVillinCre+
mice after mock infection (I and J), or after infection with S.

Typhimurium (K and L). Lcn2+/+ mice after mock infection (M

and N), or after infection with S. Typhimurium (O and P). Lcn22/

2 mice after mock infection (Q and R), or after S. Typhimurium

infection (S and T). All scale bars are 500 mm. Pathology scoring

was carried out for neutrophil infiltration (U) and edema (V). (W)

Myeloperoxidase (MPO) activity in colonic extracts from mice,

measured per mg of total protein. PPARc expression in colonic

scrapings from PPARcVillinCre2 mice analyzed by real-time

PCR (X), and immunoblotting (Y). Error bars = 6 standard error

of the mean. *p,0.005, **p,0.05 vs. appropriate control or as

indicated.

(TIF)

Table S1 Details of primers used for real-time RT-PCR
analysis of mouse colonic tissues and human cultured
cells. (A) The details of the mRNA of interest, sequence of primer

pairs with amplicon size used for RT-PCR analysis of mouse

colonic tissues. (B) The details of the mRNA of interest, sequence

of primer pairs with amplicon size used for RT-PCR analysis of

human cultured cells.
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