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Abstract
Background: Soybean, Glycine max (L.) Merr., is a well documented paleopolyploid. What remains
relatively under characterized is the level of sequence identity in retained homeologous regions of
the genome. Recently, the Department of Energy Joint Genome Institute and United States
Department of Agriculture jointly announced the sequencing of the soybean genome. One of the
initial concerns is to what extent sequence identity in homeologous regions would have on whole
genome shotgun sequence assembly.

Results: Seventeen BACs representing ~2.03 Mb were sequenced as representative potential
homeologous regions from the soybean genome. Genetic mapping of each BAC shows that 11 of
the 20 chromosomes are represented. Sequence comparisons between homeologous BACs shows
that the soybean genome is a mosaic of retained paleopolyploid regions. Some regions appear to
be highly conserved while other regions have diverged significantly. Large-scale "batch" reassembly
of all 17 BACs combined showed that even the most homeologous BACs with upwards of 95%
sequence identity resolve into their respective homeologous sequences. Potential assembly errors
were generated by tandemly duplicated pentatricopeptide repeat containing genes and long simple
sequence repeats. Analysis of a whole-genome shotgun assembly of 80,000 randomly chosen JGI-
DOE sequence traces reveals some new soybean-specific repeat sequences.

Conclusion: This analysis investigated both the structure of the paleopolyploid soybean genome
and the potential effects retained homeology will have on assembling the whole genome shotgun
sequence. Based upon these results, homeologous regions similar to those characterized here will
not cause major assembly issues.
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Background
The vast majority of flowering plants likely have a poly-
ploid origin [1-3]. The homeologous chromosomal
regions resulting from these large-scale duplication events
are subject to a wide range of structural changes including
accumulation of indels [4,5], illegitimate recombination
[6,7], gene loss, rearrangements, gene duplications and
nucleotide divergence [8]. In addition, they are also sub-
ject to gene conservation [8]. Analyses of homeologous
regions in maize provids clear evidence of fractionation
following duplication [5,7,9,10]. However, this is not
clearly the case for cotton. An analysis of homologous
regions in cotton found extensive genic and intergenic
conservation with differences found only in transposable
elements and small indels [11].

Soybean (Glycine max (L.) Merr.) was characterized early
as an ancient polyploid through genetic mapping studies
that identified homeologous chromosome regions based
upon duplicate RFLP markers [12-14]. In addition to
mapping studies, analysis of BAC-end sequences has sug-
gested that the retained duplicate regions of the soybean
genome still share sequence homeology [15,16]. Simi-
larly, hybridization based approaches showed fairly
extensive sequence identity between RFLP anchored paral-
ogous BACs [17,18]. Approximately 275 duplicate genes
were identified in the soybean EST collections and esti-
mates of synonymous distances between gene pairs sug-
gested that soybean has undergone at least two rounds of
large-scale duplication at approximately 14 and 42 mil-
lion years ago (Mya)[19,20]. Although the origin of the
duplications giving rise to homeologous genes is difficult
to determine [21] it was assumed that they arose through
large-scale duplication events such as polyploidy. Cytoge-
netic studies have shown that the 'diploid' Glycine have 2n
= 40 chromosomes while other papilionoids have 2n = 10
or 11 suggesting at least one large-scale genome duplica-
tion [22]. In addition, segmental duplications in soybean
were observed using fluorescence in situ hybridization
(FISH)[23] and a more recent FISH analyses reveals near
chromosomal-level homeology along chromosome 19
(linkage group L) and another unidentified chromosome,
with only a few instances of disrupted colinearity [24].

Limited sequence comparisons have been conducted
from homeologous regions of the soybean genome.
Schlueter et al. [25] compared BAC sequences containing
ω-6 fatty acid desaturase (FAD2) genes and found exten-
sive gene conservation in both order and orientation
between two BACs from homeologous regions with only
one large inversion to distinguish their structures. Another
study involving homeologous regions containing an N-
hydroxycinnamoyl/benzoyltransferase (HCBT) gene clus-
ter gave similar results with nucleotide identity between
most genes upwards of 95% [8]. These high levels of

sequence identity between homeologous regions have
been suggested as a potential source of error during whole
genome shotgun sequence assembly in a paleopolyploid
species.

Recently, the DOE-JGI and the USDA jointly announced
that the soybean genome was to be sequenced through a
whole-genome shotgun (WGS) approach [26]. Since little
is known about the structure, organization, similarity and
full extent of the duplications within the soybean
genome, questions remain about the efficacy of a resulting
assembly of these sequences. In this study, we identified,
sequenced and characterized 11 BAC clones representing
5 distinct homeologous regions of the genome. In addi-
tion, 6 BACs previously characterized for homeology were
included [8,25] in the assembly analysis for a total of 17
BAC clones representing 7 homeologous soybean
genomic regions. This collection of BACs was identified as
containing genes that anchor potential homeologous
regions of the genome. Duplicate genes were identified
from ESTs by using TBLASTX and building contigs as pre-
viously described [25]. Each new "anchor gene" was cho-
sen due to a related role in seed development of soybean.
Duplicate BACs were sequenced and analyzed to deter-
mine the amount of genic homeology. In addition, the
ability to distinguish homeologous sequences as will be
expected for assembly of WGS was evaluated by merging
sequence traces for all 17 BACs and ressemblying with var-
ying parameters. Each assembly was evaluated against the
original individual BAC assemblies. Our results indicate
that the paleopolyploid soybean genome is a mosaic of
homeologous sequences ranging from instances of high
gene conservation to regions with extremely limited con-
servation. Except for tandem duplications and long sim-
ple sequence repeats, adequate nucleotide differences
exist between even the most conserved homeologous
regions to completely distinguish them during sequence
assembly.

Results
Duplicate soybean BACs: sequencing, assembly and 
homeology
Shotgun sequencing of 17 soybean BACs selected for con-
taining retained duplicate loci yielded a total of 36,873
sequence traces and a total of 2,028,159 bp of assembled
soybean genomic sequence (Table 1). Six BACs (768,449
bp) have previously been shown to represent homeolo-
gous regions of the soybean genome anchored by either
N-hydroxycinnamoyl/benzoyltransferase genes (HCBT;
gmw1-74i13 and gmw1-52d3; [8] or ω-6 fatty acid desat-
urase genes (FAD2; gmw1-105h23, gmw1-15k6, gmw1-
11j16, gmw1-45m6; [25]. The 11 additional sequenced
BACs were anchored by either RFLP clones (A711;
UMb001-24d13 and Umb001-5f5) or by the duplicate
transcripts cellulose synthase (gmw2-133d1 and gmw1-
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93l19), galactinol synthase (gmw1-5g16 and gmw1-
103e11), raffinose synthase (gmw1-13o17 and gmw1-
8g7) and caffeoyl-CoA O-methyltransferase (gmw1-58k3,
gmw1-57d24 and gmw1-27d20). To date, this is the larg-
est analysis of homeologous regions from the soybean
genome. Although most of the BACs were sequenced to
completion (phase III), seven remaining BACs contained
a small number of ordered contigs with fewer than three
gaps (phase II) and one BAC (gmw1-27d20) was phase I
with five ordered contigs (Table 1).

With the exception of BACs UMb001-24d13 and
Umb001-5f5 that were already mapped by an RFLP
marker (A711), all but two of the remaining BACs were
mapped by either BLAST-based identity of predicted cod-
ing sequence (CDS) to previously mapped transcript-
based single nucleotide polymorphisms (SNPs) [27] or
simple sequence repeats (SSRs) identified from each BAC
sequence. Eight SNP markers were identified. Six of these
markers confirmed already known map positions for
gmw1-105h23, gmw1-15k6 [25], gw1-74i13 [8],
UMb001-24d13, UMb001-5f5 (RFLP marker A711) and

gmw2-133d1 (mapped by SSR as described below). The
final two SNPs provided map positions for gmw1-57d24
and gmw1-27d20 (Table 1). In addition to SNPs, SSRs
derived from BACs were identified, tested for polymor-
phisms and mapped. Only two BACs, gmw1-8g7 and
gmw1-45m6 showed no polymorphisms in the mapping
population or any matches to mapped transcript-based
SNPs [25]. Although there are multiple BACs on linkage
groups I and O, eleven linkage groups are represented in
this analysis (Table 1).

A total of 238 genes were predicted across the ~2.03 Mb of
soybean sequence for an average gene density of 1 gene/
11.1 Kb (Table 1) slightly less than previous estimates
[28,29,8,25]. All gene structure predictions as well as the
annotations, ab initio predictions and EST-based support
for each structure can be viewed at the following website
[30]. On average, 59.06% of the predicted gene structures
had either EST or cDNA based support, regardless of
whether coverage was normalized for gene size (average
EST coverage) or not (ratio of EST coverage; Table 1).

Table 1: General BAC information

Ratioe of

BAC Linkage 
group

Genbank 
accession

SNP IDb Length 
(bp)

Phase Gap ORFsc Averaged 

EST 
coverage

EST- based 
coverage

Overall gene 
homeologyf

Gene 
densityg

gmw2-133d1 F AC158503 8001 117591 III 0 13 32.6 38.2 3 of 13 1/9.05
gmw1-93l19 M AC166092 51037 III 0 5 62.4 50.5 3 of 5 1/10.2
gmw1-105h23 O AC187294 30491 134287 III 0 18 82.0 76.4 18 of 18 1/7.46
gmw1-15k6 I AC160454 26051 148858 III 0 22 77.0 71.1 18 of 22 1/6.77
gmw1-11j16 L AC166091 69947 III 0 9 82.2 83.0 2 of 9 1/7.77
gmw1-45m6 a AC166742 143028 III 0 7 53.6 53.0 1 of 7 1/20.4
gmw1-5g16 O AC169184 115953 II 2 11 74.0 68.8 4 of 11 1/9.66
gmw1-103e11 I AC166090 89397 III 0 12 78.6 81.3 4 of 12 1/7.45
gmw1-58k3 O AC185959 177331 II 2 8 50.7 47.5 3 of 8 1/22.2
gmw1-57d24 D1a AC170860 20113 162359 II 2 19 75.0 71.5 3 of 19 1/9.02
gmw1-27d20 D1b AC173959 16079 227022 I 6 24 65.4 61.9 3 of 24 1/9.46
gmw1-74i13 C1 DQ33695

4
5981 173654 III 0 18 68.3 70.4 13 of 18 1/9.65

gmw1-52d3 C2 DQ33695
5

98675 III 0 10 59.2 62.1 9 of 10 1/9.87

gmw1-13o17 D1a AC196857 89030 II 5 9 41.5 48.0 1 of 9 1/11.1
gmw1-8g7 a AC196858 53292 III 0 4 32.6 30.7 1 of 4 1/13.3
UMb001-24d13 E DQ34796

0
13567 111223 II 1 8 84.0 79.3 3 of 8 1/13.9

UMb001-5f5 A2 DQ34796
1

42937 65475 II 2 5 91.9 94.6 3 of 5 1/10.9

Average 119303 14 59.1 59.05 1/11.1

a Unmappable; no polymorphic SSRs identified or any matches of CDS to SNP data
b SNP Ids are taken directly from Choi et al. (2007). EST sequence from which SNP derived found in Methods and Materials.
c Does not include ORFs that are alternatively spliced
d An average across the BAC of the number of bp supported by an EST or cDNA divided by the total number of bp for each annotation
e A ratio of the total number of bp on the BAC that are annotated divided by the total number of bases that have EST or cDNA support
f Count is based upon the number of homeologs shared between BACs out of the total number of genes
g Gene density is in 1 gene per × number of kilobases
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Levels of gene conservation between BACs varied from
being gene for gene in both order and orientation, with
the exception of an eight-gene block inversion, for BACs
gmw1-15k6 and gmw1-105h23 [25] to very weak home-
ology anchored by only a single gene (gmw1-13o17 and
gmw1-8g7; Table 1; Figure 1). While both of these
extremes were observed, more often, homeologous BACs
showed mid-range homeology; i.e. approximately 25 to
50% of genes in overlapping regions are retained. In those
cases, most retained homeologs had 90% or greater
sequence identity (Table 2) with a few extremes. The aver-
age nucleotide identity between homeologs ranged from
53.7 to 97.4% with an average of 86.6% while average
protein similarity ranging from 53.3 to 99.0% with an
average of 88.8% (Table 2). It should be noted that when
homeologs were also tandemly duplicated on a BAC, they
were not included in these estimates due to the inability

to accurately determine which gene copy was the true
ancestral homeolog between BACs.

To visualize the level of nucleotide identity between BACs,
VISTA plots for BACs anchored by the RFLP A711, cellu-
lose synthase, galactinol synthase, raffinose synthase and
caffeoyl-CoA O-methyltransferase (COMT) were gener-
ated [see Additional Files 1, 2, 3, 4, 5]. VISTA identity plots
as well as values for nucleotide identity, protein identity
and protein similarity for HCBT and FAD2-anchored
BACs have been previously reported [8,25 respectively].
Nucleotide identity between BACs is strongest in the cod-
ing regions and extends both 5' and 3' from predicted
genes before dropping to below 50% between BACs with
more duplicate gene conservation [8,25]. This is likely due
to retained non-coding sequences such as promoter ele-
ments between homeologous regions. However, as the

Summary of genic conservation from putative homeologous BACs in soybeanFigure 1
Summary of genic conservation from putative homeologous BACs in soybean. Duplicate genes from six soybean 
BACs (3 different pairs) show the range of gene conservation found in the soybean genome. Each block-arrow represents a 
predicted gene structure. Black arrows are genes with no homeolog. Colored arrows are genes with a homeolog. A heat map 
for percent nucleotide identity shows the average nucleotide identity between duplicate genes for each conserved homeolog. 
Gray boxes between structures show homoelogous relationships. All gene structure predictions are available online [30]. The 
first BAC pair has been reprinted with permission from The Plant Genome [19].
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Table 2: Duplicate gene homeology/paralogy between BAC pairs

BAC homeologs Putative function # of exons Coding lengtha Nucleotide identity Protein identity Protein similarity Ks Ka Date (Mya)

gmw1-74i13 gmw1-52d3 b b b 89.8 88.0 90.7 0.1490 0.0335 12.2

gmw1-105h23 gmw1-15k6 d d d 90.7 88.9 90.4 0.1061 0.0326 8.70

UMb001-24d13 DNA binding 6 1338 92.7 88.7 92.2 0.1177 0.0468 9.65
UMb001-5f5 DNA binding 7 1473
UMb001-24d13 Gamma response I 9 987 95.9 95.7 96.3 0.1405 0.0152 11.52
UMb001-5f5 Gamma response I 9 984
UMb001-24d13 Selenium binding 4 1881 56.3 54.6 56.4 0.1709 0.0575 14.01
UMb001-5f5 Selenium binding 5 585

gmw1-103e11 A. thaliana-like NAP 7 510 96.4 95.8 97.2 0.0933 0.0188 7.65
gmw1-5g16 A. thaliana-like NAP 7 1002
gmw1-103e11 Beta-

fructofuranosidase
6 1944 94.4 92.7 94.1 0.0716 0.0276 5.87

gmw1-5g16 Beta-
fructofuranosidase

6 1956

gmw1-103e11 Galactinol synthase 4 732 90.5 93.5 94.7 0.3208 0.0316 26.30
gmw1-5g16 Galactinol synthase 3/4 669/987
gmw1-103e11 RAD-like protein 6/7 564/900 96.9 92.9 97.6 0.0432 0.0442 3.54
gmw1-5g16 RAD-like protein 5 240

gmw2-133d1 GTPase 14 3183 96.9 98.1 99.1 0.1055 0.0084 8.65
gmw1-93l19 GTPase 16 3480
gmw2-133d1 Cellulose synthase 9 2211 67.6 65.1 67.0 0.1109 0.0438 9.09
gmw1-93l19 Cellulose synthase 5 924
gmw2-133d1 Chain A protein 1 1608 81.1 76.4 80.1 0.1856 0.077 15.21
gmw1-93l19 Chain A protein 1 1452

gmw1-13o17 Raffinose synthase 5 2277 66.4 71.5 81.5 2.5495 0.2051 208.98
gmw1-8g7 Raffinose synthase 6 2190

gmw1-57d24 Phospholipase C 8 1308 80.5 78.7 87.6 0.5457 0.114 44.73
gmw1-58k3 Phospholipase C 8 1299
gmw1-57d24 COMT 5 747 79.7 79.0 88.3 0.6442 0.1204 52.80
gmw1-58k3 COMT 4/5 615/354

gmw1-58k3 COMT 4/5 615/354 73.6 76.3 87.7 1.7076 0.1667 139.97
gmw1-27d20 COMT 5 744
gmw1-58k3 Otubain 6 1992 53.7 42.5 53.3 4.024 0.3023 329.84

gmw1-27d20 Otubain 7 1860
gmw1-57d24 CBS 6/8 399/687 74.9 73.7 89.5 2.0095 0.1562 164.71
gmw1-27d20 CBS 8 678
gmw1-57d24 COMT 5 747 74.1 81.6 91.0 1.5875 0.1196 130.12
gmw1-27d20 COMT 5 744

Average 86.6 85.4 88.8 0.4239 0.0577 34.75
Recalculated average 

1d
89.8 88.2 90.1 0.1179 0.0341 9.665

Recalculated average 
2e

71.8 71.9 82.7 1.8668 0.1691 153

a Coding length in base pairs based upon CDS (from start to stop not including introns).
b The values for homeologs between gmw1-74i13 and gmw1-52d3 are previously reported (Schlueter et al. 2006). Identity, similarity, Ks, Ka and Dates shown are average across BACs.
c The values for homeologs between gmw1-105h23 and gmw1-15k6 are previously reported (Schlueter et al. 2007). Identity, similarity, Ks, Ka and Dates shown are average across BACs.
d Recalculated average not including the highly divergent homeologs from gmw1-13o17, gmw1-8g7, gmw1-57d24, gmw1-58k3 and gmw1-27d20.
e Recalculated average for just the highly divergent homeologs from gmw1-13o17, gmw1-8g7, gmw1-57d24, gmw1-58k3 and gmw1-27d24.
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level of gene conservation drops, so does the nucleotide
identity beyond duplicate genes.

In a number of cases, homeologs appear to have varying
gene lengths such as the selenium-binding protein found
on BACs UMb001-24d13 and UMb001-5f5 (Figure 1,
third homeolog) [see Additional file 1]. The exon number
for this gene varies and a stop codon in the first exon of
the UMb001-24d13 encoded selenium-binding protein
truncates the resulting transcript (Table 2). There is how-
ever, EST-based support for the mRNA on UMb001-
24d13 extending further 3' but the alignment is not a per-
fect match (92% identity). Other cases of variation in
exon number between duplicate genes are observed
(Table 2). Most of the differences can be accounted for in
two ways: 1) ab initio based prediction of gene structures
with little to no EST support vary between BACs and/or 2)
truncation of one of the predicted genes due to an
encoded stop codon. Reliance on ab initio predictions for
gene structures combined with the lack of EST-based sup-
port can lead to differences between homeologs in exon
number. In many cases, even alignment to putative
orthologs could not verify the gene structure.

Synonymous (Ks) and nonsynonymous (Ka) substitu-
tions between all of the duplicate genes were calculated
(Table 2). The average Ks value was 0.42398 and average
Ka value was 0.05775. Again, the Ks and Ka values for
HCBT and FAD2 BACs are previously reported [8,25]. All
Ks values gave an average divergence estimate of 34.75
Mya. This value likely is inflated due to the extensive
divergence between the duplicate genes identified on
gmw1-57d24, gmw1-58k3 and gmw1-57d24 and
between raffinose synthase on gmw1-13o17 and gmw1-
8g7. When these duplicate genes were excluded from the
calculation, the average divergence estimate was 9.665
Mya, similar to previous estimates [25] but still more
recent than EST-based estimates [19,20]. When only the
most divergent duplicate genes are used for coalescence
estimates, a date of 153 Mya was obtained. Two caveats to
divergence estimates should be noted: 1) The Ks values for
the most divergent duplicate genes were for the most part
well past saturation (greater than 1) and 2) in the most
divergent regions, we cannot be certain that we are com-
paring homeologs and not paralogs (segmental or single
gene duplications) without the context of the whole
genome or more sequence in these regions. Only two
pairs of homeologs showed evidence for positive selec-
tion; a ribonuclease HII encoding gene on gmw1-15k6
and gmw1-105h23 with a Ka/Ks ratio of 2.078 [25] and
the RAD-like encoding gene from gmw1-103e11 and
gmw1-5g16 with a Ka/Ks ratio of 1.023. All other retained
homeologs appear to be under purifying selection for
retained function.

Reassembly of paleoduplicate regions
To quantify the potential confounding effects of paleopol-
yploidy on soybean whole-genome shotgun sequence
assembly (WGS), all of the sequencing traces for the 17
BACs discussed above were used in large-scale or batch
assemblies. The goal was to determine what effect home-
ology between duplicated regions will have as the soybean
genome is reconstructed. Base-calling and assemblies
were performed using Phred and Phrap, respectively [31-
33] with default parameters and viewed in Consed [34].

To first test if standard assembly parameters could distin-
guish between the most conserved homeologous BACs,
sequence trace files for gmw1-105h23 and gmw1-15k6
were combined into a single "batch" assembly. Figure 2
shows that there is no cross assembly and no inclusion of
sequencing traces between BACs. Assemblies were ana-
lyzed both manually and based upon BAC-specific tags to
determine that sequence traces were assembled into the
correct BAC contig. There are obvious regions with high
levels of sequence identity between the BACs as deter-
mined by Crossmatch (Figure 2). Even with upwards of
97% sequence identity in exonic regions, sequence traces
resolved into their correct "original" BACs. Quantification
of the "batch-based" reassemblies against the original sin-
gle-BAC assemblies was done using Vmatch [35]. The
three reassembled contigs for gmw1-105h23 had 99.58%
sequence identity with 99.06% coverage to the original
BAC assembly. Likewise, for gmw1-15k6 the resulting
reassembly contigs had 99.80% sequence identity with
99.44% sequence coverage. As these results show, the
assemblies were nearly identical to the original BAC
assembly with the exception of small sequence gaps
between the contigs, although clone pair ends clearly
order and orient the contigs (Figure 2). Extrapolated to a
whole-genome scale assembly, this shows that for soy-
bean, unless there are regions of the genome that have
higher levels of homeology than has been observed, the
conserved paleopolyploidy of soybean will not have a
substantial effect on the genome assembly.

All of the 38,673 traces from all 17 BACs were then com-
bined into a single assembly using both standard assem-
bly parameters as well as various other parameter sets.
Assemblies were quantified using three measures: 1) the
number of contigs containing greater than 100 traces ver-
sus the original 35 contigs from individual BAC assem-
blies 2) average percent coverage of the reassembled
contigs to original contigs and 3) average percent nucle-
otide identity of the reassembled contigs to the original
contigs (Table 3). These last two values were determined
by Vmatch analysis that performed a global pair-wise
alignment between all of the reassembled contigs and
original assembly contigs as described in materials and
methods. Under all of the parameter sets, some contigs
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were split into multiple contigs thereby increasing the
contig number to greater than the original 35.

Experimental parameters were varied in an attempt to
increase the percent coverage and percent nucleotide iden-
tity of the batch assemblies. The first parameter,
revise_greedy, split initial contig assemblies at weak joins
(regions that may be misassembled between duplicate
regions due to sequence identity) and then attempted to
reattach them for a higher overall alignment score. While
only barely increasing the percent identity score, the per-
cent coverage score was reduced by just over 7%. The
forcelevel flag specifically reduced the stringency during
the final contigs merge pass with 0 being most stringent
and 10 least stringent, standard parameters using 0. When
the forcelevel was relaxed slightly to 3, the percent cover-
age was nearly the same with only a slight drop in percent
identity. However, increasing forcelevel to 5 decreased the
percent coverage by just over 2% but increased the percent
identity by over a full percent. It also had the effect of
reducing the number of contigs from 44 at forcelevel 0 to
40 at forcelevel 5. Finally, the minmatch value was

adjusted from 14 (standard) to 30 to increase the assem-
bly stringency, a modification that dramatically increased
the number of contigs to 50, as expected, and dropped the
overall percent coverage. Combinations of these parame-
ter changes also were investigated and the results are given
as assemblies 6 and 7. Overall, it appears that standard
Phred/Phrap assembly parameters return the greatest per-
cent coverage out of all assemblies as well as the nearly
best percent identity to the original contig assemblies.

Sources of potential assembly errors
Two potential sources of assembly error were identified in
this analysis. First, under the last three assembly condi-
tions (assemblies 5–7, Table 3) a contig from gmw1-
27d20 and from GM_UMb-5f5 were incorrectly merged at
a large (TATA)n simple sequence repeat region. The result-
ing contig clearly shows the transition from one BAC to
the other across the TA repeat with low quality sequences
and low sequence coverage flanking the repeat. Lower
quality sequences are not uncommon with simple
sequence repeats that are large in length as these regions
are difficult to sequence through. Secondly, the assembly

Reassembly of highly identical homeologous soybean BACsFigure 2
Reassembly of highly identical homeologous soybean BACs. Output of Phred/Phrap batch re-assembly of traces from 
gmw1-105h23 and gmw1-15k6 as viewed using Consed. Grey boxes represent the assembled contigs and are scaled in base 
pairs across each contig. Contig numbers are shown in pink boxes and are arbitrarily assigned by Phred/Phrap during sequence 
assembly. The blue and green boxes above each assembly show the predicted gene positions for gmw1-15k6 and gmw1-
105h23, respectively. The green line-plot above each contig shows the average clone pair consistency. Sequence matches 
within and between contigs were determined with Cross-Match as part of Consed. Black lines within and between contigs 
show sequence matches that are in reverse orientation, while the orange lines show sequence matches in the same orienta-
tion. The bars between sequence matches correspond to the length of the match. Purple peak-shaped lines between contigs 
show clone pairs that span a gap. Below each contig is a purple line containing either blue (gmw1-15k6) or green (gmw1-
105h23) tick marks; these are the tags that distinguish between traces from each BAC.
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of BAC gmw1-103e11 was especially troublesome in both
the "batch" assembly of all of the BACs and on an individ-
ual assembly scale. Table 3 shows how the inclusion of the
103e11 contigs (which in most cases did not meet the
Vmatch parsing criteria as is noted in Table 3) lowers both
the average percent coverage and percent identity across
the assembly.

Under standard assembly conditions, the 89,397 bp BAC
gmw1-103e11 is fragmented into two contigs, a 19,452
bp contig with clone pair matches to the middle of the
larger 69,905 bp contig. Clearly, a region from the middle
of gmw1-103e11 is misassembled into a separate contig.
This region can be partially resolved without manual reas-
sembly by changing the forcelevel to 3 and minmatch to
30. The assembly still results in two contigs, but this is due
to a gap in the middle of the contig and not exclusion of
a region in the middle of the contig as with standard
assembly parameters. The overall sequence coverage is
84.7% and sequence identity of 82.49% to the original
BAC sequence. When this parameter set is used to reas-
sembly all of the BACs however, it reduces the percent
coverage by just over 5% but does increase the percent
identity by almost 2% (Table 3).

This then raised the question as to what in the gmw1-
103e11 sequence could be causing the re-assembly (both
individual BAC and in the context of all BACs) to generate
a second contig from the middle of the BAC. Utilizing
Vmatch to identify sequence matches within the region
being misassembled, non-retroelement, highly identical
unique repeats (blue rectangles on Figure 3) were identi-
fied. Two major repeats occur in tandem in this region; a
566 bp repeat that is 96% identical (labelled as A and A'

on Figure 3) and a 1, 198 bp repeat that is 95% identical
(labelled as B and B' on Figure 3). Repeat A is present in
the first unknown gene, repeat B in the pentatricopeptide
repeat (PPR)-like 1 gene and both of the secondary repeat
copies, A' and B' are contained within the PPR-like 2 gene
(Figure 3).

GeneSeqer alignments [36] were generated of each pre-
dicted gene structure from this region realigned to the
gmw103e11 BAC sequence. A portion of the PPR-like 2
gene aligns to the region predicted to contain the PPR-like
1 and unknown genes (Figure 3; orange gene structures).
Similarly, the PPR-like 1 gene aligns to a portion of PPR-
like 2. All of these alignments were using the "moderate"
stringency function of GeneSeqer. The two predicted PPR-
like genes in this region vary greatly in their structures and
lengths. As discussed above, often there is little to no EST
support and ab initio predictions must be relied upon. For
this region, the first unknown gene has 7 ESTs with only
90% sequence identity that support the last exon, the rest
of the gene is based upon ab initio predictions. The phos-
photransferase and second unknown gene have nearly full
EST support. Both of the PPR-like genes, however, are
completely ab initio predicted.

Although there is variation in the predicted structures of
the PPR-like genes, BLASTP annotation identified con-
served petatricopeptide repeat (PPR) repeats in both. PPR
repeats are a degenerate ~30 amino acid motif that occur
tandemly multiple times within a protein [37]. To identify
potential PPR repeats across this region, MEME and MAST
were used to generate PPR motifs and search the gmw1-
103e11 BAC sequence for all possible occurrences of the
motif [38]. Two PPR repeats were found in the first intron

Table 3: Assessment and quantification of reassembly of duplicate BAC sequences

Assembly 
number

Parameters Total # contigs # contigs
 (> 100)a

% Coverage of 
old contigsb

% Identity to 
old contigsc

% Coverage 
+103e11d

% Identity 
+103e11d

1 standard 551 44 98.52% 99.07% 98.44% 97.39%
2 revise_greedy 2538 45 91.41% 99.08% 92.74% 98.43%
3 forcelevel 5 2140 40 96.13% 99.21% 95.56% 98.52%
4 minmatch 30 2184 50 94.77%e 98.92%e 95.51% 97.91%
5 forcelevel 3 2326 43 98.40% 98.60% 97.74% 97.96%
6 forcelevel 5 

minmatch 30
1781 43 88.75%e 99.18%e 86.17% 98.04%

7 forcelevel 3 
minmach30

1950 46 93.38%f 99.18%f

a Total number of contigs that contain greater than 100 sequence traces
b Total length of the resulting contigs (not including any overlapping regions) divided by the length of the originally assembled BAC
c Percent identity as calculated from Vmatch
d Recalculated percent coverage and percent identity to include contigs containing traces from gmw1-103e11; these contigs did not meet the 80% 
sequence identity cutoff for Vmatch
e One contig from gmw1-103e11 met the cutoff criteria of 80% sequence identity for Vmatch and was included in this estimation. The second contig 
was included in the +103e11 calculations
f This parameter set matches the parameter set that was determined to give the best reassembly of gmw1-103e11 as a single BAC reassembly. Both 
resulting contigs met the 80% sequence identity cutoff for Vmatch and are included in these averages.
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of the predicted unknown gene, at least six PPR repeats
were identified in the PPR-like 1 gene and eleven repeats
were identified in the PPR-like 2 gene. These PPR repeats
are 81–99 nucleotides in length that range from 25–100%
similar at the amino acid level and 33–95.8% similar at
the nucleotide level (within and between both PPR-like
genes). The black lines on Figure 3 show the start location
of the PPR domains that are located end to end within the
coding sequence. These repeats account for the Vmatch
identified repeat sequences A/A' and B/B'. The similarity
of a portion of PPR-like 2 to both the first unknown gene
and PPR-like 1 suggests two scenarios: 1) PPR-like 2 is
incorrectly predicted and should be two separate genes or
2) PPR-like 2 is incorrectly predicted and should be fused
with the first unknown gene. In either case, these PPR con-
taining genes and repeats are the source of assembly error,
as discussed below.

Identified repeats A/A', B/B' and all of the predicted genes
from this region of gmw1-103e11 were re-aligned using
GeneSeqer to the Phred/Phrap re-assembled gmw1-
103e11 contigs. Both of the PPR-like gene structure pre-
dictions as well as the repeat A containing unknown gene
align to a ~3,500 bp region in the middle of the 69,905 bp
major contig. This region also contains clone pair matches
to both ends of the 19,452 bp secondary contig. What has
occurred is the PPR-containing regions are above the
threshold of distinguishing one copy from another and
have collapsed into a single structure in the larger contig.
The phosphotransferase gene and second unknown gene
are excluded from this region and placed in the separate
contig. These results show that highly identical tandemly
duplicated genes, especially those genes that themselves
contain repetitive domains will be a potential source of
assembly errors. In this case, the structure of the PPR

repeats across the PPR-like genes cannot be resolved with-
out manual curation of the assembly.

Composition of whole-genome shotgun sequence assembly
To determine how well our assemblies were screening for
highly repetitive sequence, a preliminary assembly using
standard Phred/Phrap parameters of 80,000 randomly
chosen JGI trace files was done. Contigs containing greater
than 15 traces were considered highly represented even
after initial trace screening against known repetitive
sequences. Each of these contigs was subject to a BLAST-
based annotation against the NCBI nonredundant data-
base and then clustered into groups based upon that
annotation (Figure 4). Surprisingly, 23% of the JGI con-
tigs showed no sequence identity to any anything in the
NCBI nonredundant database. However, when the con-
tigs comprising this 23% are BLASTed against the repeti-
tive database generated by Gill et al. [39] only 5 contigs
out of 44 had no match and 7 contigs had a bit-score less
than 90 and were considered poor matches. Forty thou-
sand randomly chosen JGI trace files were combined with
the 36,978 BAC generated trace files in a standard Phred/
Phrap assembly. The addition of the JGI whole-genome
shotgun generated trace files had no effect on either the
percent identity of the reassembled contigs (99.07%) or
on the percent coverage (98.52%).

Discussion
In this analysis, we have characterized homeologous
sequences from the paleopolyploid soybean genome and
studied the effect of conserved duplicate regions on
sequence assembly. Identified BACs map to 11 of the 20
soybean linkage groups representing a broad sampling of
potential homeologous regions across the soybean
genome. Previous analyses have shown fairly extensive
sequence conservation between homeologous blocks in

Repetitive sequences in BAC gmw1-103e11Figure 3
Repetitive sequences in BAC gmw1-103e11. Gene positions and repetitive sequences found in the region of 30,000 bp to 
53,000 bp on gmw1-103e11. Predicted gene structures are shown as green boxes and arrows, with the boxes representing 
exons and lines being introns. Black tick marks on a gene show the start position of a repeated PPR domains within the gene. 
The blue boxes show the repetitive sequences identified by Vmatch. Orange gene alignments reflect the realignment of pre-
dicted gene structures back to the genomics sequence.
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soybean [8,25]. Sequenced BACs identified as containing
transcribed duplicate genes show a range of gene conser-
vation (Figure 1; Additional Files 1, 2, 3, 4, 5: Supplemen-
tal Figures 1, 2, 3, 4).

Early analysis of the structure and organization of a pale-
opolyploid genome have been in maize. The "maize
model" suggests that the present maize genome is a result
of extensive reciprocal deletions as well as major transpos-
able element insertions causing genome expansion and
contraction resulting in homeologous regions that are not
well conserved [5,7,9,10]. Conversely, in cotton, a rela-
tively recent allotetraploid, the homologs studied were
highly conserved with only small indels and transposable
element insertions differing between regions [11]. The
"cotton model" suggests strong duplicate gene conserva-
tion that extends well into the intergenic regions. In this
analysis we find that the soybean genome is a mosaic of
these two models with a range of conservation spanning
from gene for gene retention [25] to moderately con-
served regions with 25 to 50% gene retention [8] and
highly divergent regions with a single gene conserved (Fig-
ure 1).

Coalesence estimates suggest that the most of the regions
diverged approximately 9.6 Mya. This value falls within
the range of what has previously been observed [8,25]. On
the extreme end, however, five BACs contain highly diver-
gent duplicate genes. These may indeed be the result of
gene translocation, segmental or single gene duplication
and not the result of polyploidy. While in the absence of
the whole genome sequence we cannot be certain of the
mechanism by which these genes duplicated, some sup-
port for at least a larger duplication event is found from
the genetic map. Mapping of duplicate RFLP markers in
soybean provided early evidence for a major genome
duplication event [12]. Utilizing the most recent genetic
map [27], linkage groups D1a and D1b (where gmw1-
57d24 and gmw1-27d20 map, respectively) were found to
contain an RFLP A725 that is duplicated between these
linkage groups. In addition, D1b and O (where gmw1-
27d20 and gmw1-58k3 map, respectively) both contain
the RFLP K011 duplicated between linkage groups. While
the linkage positions of these markers are separated by
many centimorgans (data not show), it does lend cre-
dence to these linkage groups having a shared ancestry. A
similar comparison for gmw1-13o17 and gmw1-8g7
could not be done because gmw1-8g7 is unmapped.
Regardless of the mechanism, in soybean, there are
regions of paleoduplicated chromosomes that have
diverged greatly since duplication while others have not
(Figure 1) [see Additional files 1, 2, 3, 4, 5].

Size differences between duplicate genes were observed
on many of the BACs (Table 2). Even though on average
59% of the predicted genes had some EST support, the
reliance on ab initio predictions results in variation
between duplicate genes in gene structure predictions. A
similar issue is observed with the PPR-like genes on
gmw1-103e11 that are a potential source of batch assem-
bly error. In addition, the varying levels of protein identity
in homeologous regions may be the result of unsupported
gene structure predictions. This analysis clearly shows that
for improved annotation of the whole genome assembly,
more transcript (EST, cDNA, etc.) sequences will be neces-
sary to verify predicted gene structures.

Most plant genome sequencing efforts have been BAC-
based using highly inbred plants with pseudo-monoploid
genomes (diploid or polyploid plants with identical pale-
oduplicated genomes). As a result, plant genome assem-
blies have not been confounded by the effects of retained
homeology in paleopolyploid regions of the genome.
Conversely, many of the non-plant eukaryotic sequencing
efforts have been WGS such as Fugu rubripes [40], mouse
[41,42], and the Celera version of the human genome
[43,44] to name only a few. Comparisons between the
WGS project and BAC-based sequencing project in
humans have found that while the WGS provides more

Sequence composition of highly represented sequences in a small-subset of JGI sequence tracesFigure 4
Sequence composition of highly represented 
sequences in a small-subset of JGI sequence traces. A 
pie-chart representation of repetitive sequences from assem-
bly of 80,000 JGI soybean whole-genome shotgun trace files. 
BAC corresponds to any contig that showed greatest iden-
tity to already assembled soybean BAC sequence. Mdh refers 
to a previously sequenced region of soybean containing 
repetitive sequence. No hit means that there was no blast-
based match to the nonredundant database. Other was a 
best match to a sequence (BAC or genomic) from another 
organism that was not characterized. Satellite refers to 
known Sb92 or Str120 centromeric repeat sequences. The 
rest of the categories are as described in the figure legend.
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accurate gene coverage more quickly, the BAC-based
sequencing has much better coverage of repetitive
sequences, especially highly conserved repeats and in the
long run is more accurate in both order and orientation of
genes [44-47]. A somewhat similar comparison between
the Oryza sativa L. ssp. indica [48] and Oryza sativa L. ssp.
japonica [49] sequencing projects concluded that the
major differences in sequence assemblies are due to
regions with large transposable elements [50].

The soybean genome is a well-documented paleopoly-
ploid [12,51] as are all sequenced plants, e.g., Arabidopsis
[52], rice [48,49,53,54] and most recently Poplar [55].
Although homeologous blocks could be identified in each
of these species, even the most recent polyploidy events
are thought to be more ancient than what has been
described in soybean [19,20]. The often high levels of
sequence conservation in homeologous regions in soy-
bean [8,25] has raised the question of what effect this will
have on the assembly of the whole-genome shotgun
sequence effort (WGS) currently underway.

The reassembly of 17 homeologous BACs in soybean pro-
vides the first look at the effects a relatively conserved
paleopolyploid genome on WGS assembly. The most
identical homeologous BACs sequenced, gmw1-105h23
and gmw1-15k6 are just under 95% identical across both
the BAC coding and noncoding regions (Table 2) [25].
Reassembly of these two BACs showed no misassembly of
the BACs and no cross-assembly of trace files from one
BAC in the other BAC (Figure 2). In the context of the
WGS assembly, this is good news for homeologous
regions that share less than 95% sequence identity. Under
standard assembly parameters using Phrep/Phrap, pale-
oduplicate homeologous regions should be resolvable.

When all 17 BACs are reassembled in batch, observed
assembly errors are the results of tandem duplications and
simple sequence repeats. Analysis of the re-assembled
BAC gmw1-103e11 shows that tandem duplications of
genes such as the PPR-like genes with sequence identity
greater than 95% may cause assembly issues. Using a
standard set of parameters, clone pairs cannot be distin-
guished, especially when the repeat is larger than the
sequence reads (generally over 500 bp). The parameter set
that better resolves tandem repeats may not be the appro-
priate parameter set for all assemblies; as a result, hand
assembly of these regions may be necessary for comple-
tion of genome assembly. Similarly, large simple
sequence repeats may cause incorrect merging of regions.
It should be noted however, if there are homeologous
regions of the soybean genome that are conserved with
greater than 95% sequence identity, they will likely
behave in a manner similar to tandem duplications and
may be more difficult to distinguish.

What was not observed in the batch reassembly was errors
caused by retrotransposon sequences. In soybean, many
of the potential retrotransposons have not been character-
ized although a number of studies are underway to iden-
tify repetitive sequences in soybean Marek et al.
unpublished results [39]. This analysis, with one excep-
tion, did not identify BACs that contained numerous
repetitive sequences; instead they were found to be gene
rich. BAC gmw1-45m6 [25] does contain numerous LTR
retrotransposons, but re-assembly of this BAC showed few
errors. Cytogenetic studies have shown that the high-copy
sequences in soybean are highly concentrated to centro-
meric and pericentromeric regions [24,56]. In addition,
ongoing analysis of repetitive sequence in soybean shows
that it is primarily in the centric, telomeric and nucleolar
organizing regions of the genome (Gill et al. unpublished
results) [26]. Contrary to maize or some species of rice
[10,57], no evidence for a large burst of retrotransposon
activity has been found in soybean. It is likely then, that
in the context of WGS assembly, retrotransposon
sequences in most cases will not affect assembly of genic
regions.

Preliminary analysis of contigs generated from JGI trace
files give an estimation of what repetitive sequences will
need to be screened for during WGS assembly (Figure 4).
Even though the 80,000 JGI traces were prescreened
against characterized soybean repeats, those trace files
that contain a fragment of a repeat are passing through the
screening process. Further, there are enough sufficient
sequences that assemble to regenerate the original repeti-
tive sequence into a contig, or at least enough of the
sequence to match back to characterized repeats. One pre-
viously noted consequence of WGS assembly is that the
exclusion of transposable element sequences and repeti-
tive sequences during assembly has the effect of eliminat-
ing genes that might be found in these regions [45]. In this
case, genic sequences that flank or are contained in repet-
itive regions may be able to pass through the repeat
screening such that they become part of the assembly. A
balance between screening for repetitive sequences during
WGS assembly while not excluding genic information will
need to be found.

Conclusion
This analysis has shown that the soybean genome is a
mosaic of sequence conservation models for a paleopoly-
ploid genome with some regions retaining all duplicate
genes while other regions retain only one divergent dupli-
cate gene. With this in mind, a study to determine how
paleopolyploidy would affect whole genome shot-gun
sequence assembly was undertaken. Our results have
shown that even the most conserved homeologous BACs
with upwards of 95% sequence identity show no cross-
assembly (inclusion of sequence traces from one BAC into
Page 11 of 16
(page number not for citation purposes)



BMC Genomics 2007, 8:330 http://www.biomedcentral.com/1471-2164/8/330
the other BAC). In addition, potential sources of assembly
error were identified as tandem duplications with greater
than 95% sequence identity and large simple sequence
repeats.

Methods
Identification, sequencing and single BAC assembly of 
duplicate BACs
BACs gmw1-74i13 and gmw1-52d3, corresponding to
duplicate loci anchored by N-hydroxycinnamoyl benzoyl-
transferase (HCBT) genes, were identified, sequenced and
annotated by Schlueter [8]. Four BACs, gmw1-15k6,
gmw1-105h23, gmw1-11j16 and gmw1-45m6 anchored
by ω-6 fatty acid desaturase (FAD2) genes were identified,
sequenced and annotated by Schlueter [25]. BACs
anchored by the RFLP probe A711 with known cytoge-
netic information [24]. GM_UMb-24d13 and GM_UMb-
5f5 were used to construct shotgun libraries for sequenc-
ing and assembly as described previously [56].

Retained duplicate transcripts corresponding to isofla-
vone synthase/cellulose synthase, galactinol synthase,
raffinose synthase and caffeoyl-CoA o-methyltransferase
were identified with TBLASTX (default parameters) using
a reference sequence against all soybean ESTs [58]. Identi-
fied ESTs were aligned into contigs using Sequencher
v.4.5, also with default parameters (Gene Codes Corp.,
MI). PCR primers were designed to distinguish between
copies using Oligo 6.82 (Molecular Biology Insights, Cas-
cade, CO) [see Additional file 6]. Multidimensional pools
of the Williams 82 G. max BAC library (gmw1) were PCR
screened. BAC DNA was isolated using a Plasmid Midi kit
(Qiagen, Valencia CA) and reverified with PCR as previ-
ously described [8].

BACs gmw1-13o17 and gmw1-8g7 were subcloned and
assembled as described in Schlueter [8]. Subclones were
sequenced at the Iowa State DNA Sequencing and Synthe-
sis Facility (Ames, Iowa). Sequence for BACs gmw2-
133d1, gmw1-93l19, gmw1-5g16, gmw1-103e11, gmw1-
58k3, gmw1-57d24 and gmw1-27d20 was generated at
the University of Oklahoma using conditions previously
described [59-63]. Accession numbers for all sequenced
BACs can be found in Table 1.

Mapping of duplicate BACs
BACs were mapped using two methods. First, already
mapped EST-based SNPs were identified by BLASTN of
annotated genes from each BAC against mapped ESTs
[10]. Only ESTs that match to BAC-derived genes with an
e-value of 0.0 (near identical match) were considered. In
addition, each EST was aligned to the BAC to confirm that
it corresponded to one homeolog (or paralog) versus the
other. Secondly, each BAC that was not previously
mapped was scanned for di- and tri-nucleotide repeats

using Sputnik (Espresso Software Development, Seattle
WA). Primer pairs flanking the potential SSR markers were
designed using Oligo 6.82 (Molecular Biology Insights)
and tested against various soybean parents of mapping
populations. PCR reactions were 10 μl in volume and con-
tained 1 × PCR buffer, 1.5 mM magnesium chloride, 5
mM dNTPs, 0.5 μM each primer, 50 ng Glycine max paren-
tal DNA, and 0.025 U of Taq DNA polymerase (Invitro-
gen). PCR cycling conditions were 94°C for 2 min, 35
cycles of 94° for 45 sec, 60° for 30 sec, 72° for 45 sec, fol-
lowed by a final extension of 72° for 3 min. Resulting
bands were run on either a 3% agarose 1 × TAE (Tris, Ace-
tic Acid, EDTA) gel for larger (greater than 250 bp) prod-
ucts or 6% polyacrylamide 0.5 × PBE gel for smaller
fragments. Polymorphic SSRs from each BAC were
mapped in the Glycine max A81-356022 X Glycine soja PI
468.916 population [64,13]. Genetic map positions of
these SSRs were determined using MapMaker/Exp 3.0
with a minimum lod score of 3.0 [64,65]. Sequences for
these SSRs are available [see Additional file 7].

Annotation of BACs
Gene prediction was done using a combination of ab ini-
tio and EST-alignment based methods as previously
detailed [8,25]. Annotation was completed using yrGATE
and viewed as part of the xGDB system [66,67]. A data-
base with annotations was created called GmaxGDB [30].
Each predicted gene was subjected to a BLASTP query of
the NCBI nr database with default parameters to assign a
putative function. An e-value threshold of 1e-10 was used
to assign putative function.

Determination of homeologs and divergence estimates
Alignment of homeologous BACs used shuffle-LAGAN
[68] with default parameters anchored by predicted gene
structures producing a VISTA plot [69]. The nucleotide
and protein percent identity and similarity of homeologs,
was calculated using WATER, a pairwise alignment pro-
gram (gap penalty of 10; extension penalty of 0.2;
EMBOSS)[70]. Synonymous and nonsynonymous dis-
tances were calculated using PAML, default parameters
[71]. Coalesence estimates were calculated as in [20].

Batch sequence assembly and quantification of assemblies
Trace files for all of the assembled BACs were combined
into a single assembly utilizing 36,978 sequence reads.
Base calling and sequence assemblies were performed
using the Phred [31,32] and Phrap [33], respectively.
Assemblies were viewed using the Consed viewer and
Cross-Match [34]. All assemblies were run with standard
Phred/Phrap parameters unless otherwise noted in the
text or table. Briefly, parameters that were varied were: 1)
revise_greedy that splits initial contig assemblies at weak
joins (regions that may be misassembled due to high
sequence identity) and then attempts to reattach them for
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a higher overall alignment score. 2) forcelevel reduces the
stringency during the final contig merge pass and 3) min-
match which is the minimum length of a matching word
in sequence comparisons during assembly. Further expla-
nation of each parameter is found in the Phrap documen-
tation [33].

Previously characterized repetitive sequences from soy-
bean available at the time of assembly were included in
prescreening during assembly (Marek et al. unpublished
results) [39]. Quantification of assemblies was done using
Vmatch for large-scale sequence matching (a large-scale
global sequence alignment)[35]. This program returns the
percent nucleotide identity as well as the start and stop
position for each contig alignment to allow for the calcu-
lation of percent coverage. Only contigs that contained
greater than 100 traces were included in the analysis.

Trace files from the soybean whole-genome shotgun
sequencing effort were downloaded from the NCBI trace
archive [72]. These files are reads all uploaded from
August 9–10, 2006 (ti's range from 1397334945 –
1399236113) to for a total of 80,000 sequencing reads. To
determine the sequence composition of the JGI-only
assemblies, contigs contained greater than 15 traces were
blasted against the nr database to assign a putative anno-
tation. These contigs were assumed to represent what will
be observed at a high frequency in the whole-genome
assemblies.
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Additional file 1
Supplemental Figure 1. VISTA identity plot between BACs 
GM_UMb001_24d13 and GM_UMb001_5f5. Each colored block repre-
sents a predicted gene structure from start to stop including introns with 
gray boxes between genes showing homoelogous relationships. The identity 
plots above and below each BAC structure show the nucleotide identity 
between each BAC based upon an annotation anchored global-pairwise 
alignment. The light purple boxes above each VISTA correspond to anno-
tated exon positions. The GM_UMb001-24d13 selenium-binding gene 
appears shorter due to the coding region being in only exon 1; whereas the 
coding region of GM_UMb001-5f5 selenium-binding gene includes 
intronic sequence.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-330-S1.pdf]

Additional file 2
Supplemental Figure 2. VISTA identity plot between BACs gmw2-133d1 
and gmw1-93l19. Each colored block represents a predicted gene structure 
from start to stop including introns with gray boxes between genes showing 
homoelogous relationships. The identity plots above and below each BAC 
structure show the nucleotide identity between each BAC based upon an 
annotation anchored global-pairwise alignment. The light purple boxes 
above each VISTA correspond to annotated exon positions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-330-S2.pdf]

Additional file 3
Supplemental Figure 3. VISTA identity plot between BACs gmw1-
103e11 and gmw1-5g16. Each colored block represents a predicted gene 
structure from start to stop including introns with gray boxes between 
genes showing homoelogous relationships. The identity plots above and 
below each BAC structure show the nucleotide identity between each BAC 
based upon an annotation anchored global-pairwise alignment. The light 
purple boxes above each VISTA correspond to annotated exon positions. 
The gmw1-5g16 RAD1-like gene is truncated relative to the gmw1-
103e11 copy by a stop codon in the third exon. Both RAD1-like genes have 
complete EST support for gene structures. Similarly, the gmw1-5g16 
galactinol synthase gene is truncated due to an EST supported alternative 
splicing event relative to the gmw1-103e11 copy. The gmw1-103e11 A. 
thaliana-like NAP gene covers only 5 of the 7 predicted exons with almost 
full EST support whereas the gmw1-5g16 copy covers all 7 exons with 
100% EST support.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-330-S3.pdf]
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Additional file 4
Supplemental Figure 4. VISTA identity plot between BACs gmw1-8g7 
and gmw1-13o17. Each colored block represents a predicted gene struc-
ture from start to stop including introns with gray boxes between genes 
showing homoelogous relationships. The identity plots above and below 
each BAC structure show the nucleotide identity between each BAC based 
upon an annotation anchored global-pairwise alignment. The light purple 
boxes above each VISTA correspond to annotated exon positions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-330-S4.pdf]

Additional file 5
Supplemental Figure 5. VISTA identity plot between BACs gmw1-57d24 
and gmw1-58k3. Each colored block represents a predicted gene structure 
from start to stop including introns with gray boxes between genes showing 
homoelogous relationships. The identity plots above and below each BAC 
structure show the nucleotide identity between each BAC based upon an 
annotation anchored global-pairwise alignment. The light purple boxes 
above each VISTA correspond to annotated exon positions. A third BAC 
gmw1-27d20 is shown with homeologs to gmw1-57d24 and gmw1-58k3 
but because this BAC is phase I (unordered contigs) no identity plots are 
show because the order of the contigs is unknown.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-330-S5.pdf]

Additional file 6
Supplemental Table 1. Contains homeolog-specific primer sequences 
used to identify BACs for sequencing. Both forward and reverse primers as 
well as their size and the BAC they identified are shown. Primers for BACs 
gmw1-52d3 and gmw1-74i13 are found in [8] and primer for gmw1-
105h23, gmw1-15k6 and gmw1-11j16 are found in [19].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-330-S6.pdf]

Additional file 7
Supplemental Table 2. Contains primers that amplify simple sequence 
repeats for mapping designed from homeologous BACs. Primers for BACs 
gmw1-52d3 and gmw1-74i13 are found in [8] and primer for gmw1-
105h23, gmw1-15k6 and gmw1-11j16 are found in [19].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-330-S7.pdf]
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