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A B S T R A C T

The fluid flow and mixed convection heat transfer of a non-Newtonian (Cu–water) nanofluid-filled circular
annulus enclosure in a magnetic field are investigated numerically for a two-dimensional, steady-state, incom-
pressible, laminar flow using the Galerkin finite element method (GFEM). The Prandtl number (Pr ¼ 6.2) and
Grashof number (Gr ¼ 100) are assumed to be constants, whereas the Richardson number varies within a range of
0 � Ri � 1, the Hartman number within a range of 0 � Ha �60, the Power law index within a range of 0.2 � n �
1.4, and the volume fraction within a range of 0 � φ � 1. The enclosure consists of an outer rotating cylinder that
is kept at a cold temperature (Tc) and an inner non-rotating cylinder kept at a hot temperature (Th). The ratio of
the inner circular diameter to the annulus space length is kept constant at 2. The results depict that the stream
function increases with increasing power law index, even up to n ¼ 1, which causes the fluid to behave as a
Newtonian fluid. The magnetic field has a critical impact on the fluid flow pattern. The average Nusselt number
increases with decreasing Richardson number, owing to the improved heat transfer by forced convection.
1. Introduction

The mode of convection heat transfer using a mixture of materials has
become a significant process, essentially in numerous households and
industrial implementations, heating and cooling of buildings, cooling
electronic components, heat exchange systems, and solar energy. This
process plays an important role in experimental and theoretical in-
vestigations in this field. The behavior of fluid flow and heat transfer
have been studied by numerous researchers, and numerous engineering
implementations have been conducted. In the recent decade, nano-
particles with high conductivity were proposed as an approach to
enhance heat transfer. The dissolution of nanoparticles in the main fluid
generates a type of fluid called nano-fluid.

Andreas [1] conducted a theoretical investigation of laminar con-
vection heat transfer to non-Newtonian fluids using some equations for
the local Nusselt number. The researchers explored the increasing
development of non-Newtonian fluids, such as slushy plastics, pulps, and
emulsions. Numerous non-Newtonian fluids have been re-verified for
some specific problems in classical hydrodynamics, such as heat transfer
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in ducts and tubes, pressure decline and flow between eccentric rotary
cylinders. The relation between the heat transfer from a vertical chip to a
non-Newtonian fluid and the Prandtl number, to determine how the
latter affects heat transfer, was studied by Huang et al [2]. The inertia
force in the momentum neutralization with the Prandtl number as a finite
value was included in their research. The results depicted that the in-
crease in the Prandtl number increased the average heat transfer. The
natural convection of identical and incompressible third-grade fluids
between two infinite vertical cylinders was investigated by Massoudi
et al. [3]. The Influence of a non-Newtonian fluid on the heat transfer and
skin friction was supposed. This study presented the effect of using a
non-Newtonian fluid on the temperature behavior and velocity for
various dimensionless parameters. The finite element method was used
by Lockett et al. [4] to analyze the stabilization of non-Newtonian in-
elastic fluids in a Couette flow using cylinders of infinite length where the
inner was rotating. The results presented that the shear-thinning of such a
fluid has a considerable influence on the wave and Taylor numbers. The
critical aspect ratio was determined for the extensive domain of
shear-thinning inelastic fluids. The variance in the critical values was
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considered in all the cases and was interesting particularly at a wide
annulus. Kimura et al. [5] studied a conjugated convection–conduction, a
natural convection from a body in a porous medium saturated with a
fluid. The condition of heating was specified in terms of the temperature
stability and the distance from the solid porous interface of the solid body
surface. The boundary temperature of the solid porous interface of the
solid body surface was acquired along with the solution of the temper-
ature domain within the field of interest. Various shapes, such as rect-
angular panels, thin objects, and horizontal cylinders, were discussed in
that study. One-dimensional analysis was conducted to derive the
expression for the Nusselt number. The analytical solutions for the
time-related processes and the temperature distributions were included
for conductive solids.

Khellaf et al. [6] studied numerically the influence of non-Newtonian
shear-thinning viscosity modeled by a Carreau-shifted constituent
equation. The researchers dealt with the study of mixed natural con-
vection and centrifugal forced convection in a shortened vertical annulus.
The inner cylinder was hot and rotating whereas the outer cylinder was
cooled and at rest. The required calculations were conducted at various
values of the Prandtl number, Weissenberg number, and flow index while
retaining the ratio of the height to the gap spacing as well as the radius
ratio. The results presented that the friction factor at the rotary cylinder
decreases and the heat transfer over the circular gap increases. It was also
reported that a reduction in the viscosity, particularly at a forced con-
vection, may cause fluctuating flows. A hot circular cylinder was used for
testing an incompressible and non-Newtonian fluid flow of the
power-law type by Soares et al. [7]. They evaluated the heat transfer
specification when the Reynolds number varied within a range of (5 �
Re � 40), power-law index (0:5 � n � 1:4), and the Prandtl number (1
� Pr � 102). The results depicted that the influence of n on the flow
behavior was high and dependent on the boundary conditions of the
cylinder surface and kinematic conditions. A numerical simulation of the
flow behavior and the heat transfer mechanization of a non-Newtonian
fluid in a circular space between two rotating cylinders was studied by
Amoura et al. [8] using the finite element method. The behavior of the
rheological fluids was described by the Carreau stress–strain relationship
for the inner heated cylinder, which rotated around the same axis with a
constant angular velocity while the cooled-external cylinder was fixed.
The influence of several parameters, such as the Grashof (Gr), flow index
(n), Reynolds (Re), andWeissenberg numbers (We), on the flow behavior
and heat transfer was explained. The results presented that there were
significant non-Newtonian effects on the heat transfer modes and the
flow manner. Concurrently, Abu-Nada [9] studied the improvement of
heat transfer depending on the changeable properties of an Al2O3water
nano-fluid mixture. Variant thermal conductivity and viscosity models
were applied to estimate the heat transfer improvement in the annulus. A
numerical study on the natural convection of a non-Newtonian nano--
fluid flow of two concentric horizontal isothermal cylinders was pre-
sented by Matin et al [10]. The governing equations were detached by
utilizing the finite volume method-SIMPLE algorithm. The effects of the
Prandtl number within a range of (10-103) and Rayleigh number (103-
105) on the temperature and velocity were studied for diluted fluids and
pseudo-plastic fluids. The average value of the Nusselt number was also
studied at different values of the parameters. A reduction in the average
Nusselt number was noticed when the power-law index changed from
(0.6–1.4). The results depicted that the rate of heat transfer for a false
plastic fluid was 170% higher than that for a Newtonian fluid when the
value of (n ¼ 0.6), whereas it was 43% lower than that for a Newtonian
fluid under dilution when the value of (n ¼ 1.4). It was noted that as the
Rayleigh number increased, the cooling influence of the pseudo-plastic
fluid and the insulating influence of the diluted fluid became more
notable. An analytical and numerical study on the natural convection of a
non-Newtonian nano-fluid flow using two vertical flat plates was pre-
sented by Hatami et al [11]. The mixture in this study comprised sodium
alginate (SA) as the base non-Newtonian fluid and copper (Cu) with
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silver (Ag) as the nanoparticles. The viscosity effect was calculated for the
nano fluid using the Brinkman and Maxwell–Garnetts (MG) models as
well as thermal conductivity. The numerical study included the
fourth-order Runge–Kutta numerical method (NUM), least square
method (LSM), and differential transformation method to solve the
problem. The results depicted that the usage of copper as nano-particles
resulted in higher temperature and higher speed of the nano-fluid than
with silver, when the Prandtl number increased. An analysis model using
the finite difference lattice Boltzmann method to study the influence of a
molten polymer on the natural convection of non-Newtonian power-law
fluids in a cavity with a sinusoidal heated wall was presented by Kefayati
[12]. This research was conducted for a power-law index (n) between
(0.5–1.5) and the Rayleigh number (Ra) from (104) to (105). The results
suggested that the finite-difference lattice Boltzmann method was a
suitable model for the problem. The increase in n leads to a decrease in
the heat transfer, in general. In this research, the usage of a false plastic
fluid improved the heat transfer by reducing the power-law index (n)
from (n¼ 1) to (n¼ 0.5), so that there was a decrease in the heat transfer
when the n increased from 1 to 1.5 in diluted fluids. Kefayati [13] pre-
sented a mathematical model based on the finite-difference lattice
Boltzmann method to study the influence of a magnetic field on the
natural convection of non-Newtonian power-law fluids in a cavity with a
sinusoidal heated wall. This research was conducted for a power-law
index (n) between (0.5) to (1.5), Rayleigh number (Ra) range
(104–105), Hartman number (Ha) range (0–60), and Prandtl number (Pr
¼ 10), whereas the magnetic field was confirmed at various deviations at
(γ ¼ 0�) and (γ ¼ 90�). The results of this study presented that the
increment in (n) in the absence of a magnetic field leads to a decline in
the heat transfer. In general, the magnetic field reduced heat transfer at
various (n). The increase in the power of the magnetic field reduced the
influence of (n) on the heat transfer. The magnetic field for diverse (Ha)
at a Rayleigh number of 104 demonstrated various influences on the heat
transfer versus the increase in (n). When Ra¼ 105 and the magnetic field
was present, the heat transfer dropped with the raise in (n) as the in-
fluence became weak with the increase in (Ha). A numerical simulation
using the lattice Boltzmann method to study the natural convection of
nano-fluids in a concentric horizontal annulus enclosure was investigated
by Fallah et al [14]. A mixture of water as a nano-fluid with nanoparticles
of Al2O3 was used in their research. In their study, the volume fraction
was varied from 0 to 0.04 and the Rayleigh number (Ra) from (103) to
(105). The results proved that the Nusselt number (Nu) increases in the
inner and outer cylinders with an increase in the volume fraction and the
heat transfer improvement at any (Ra). Kefayati [15] presented an
analyzing model for the entropy generation and heat transfer for the
laminar natural convection of non-Newtonian nano-fluids in a porous
square cavity. Water and nanoparticles, such as of copper (Cu), were
loaded in a porous cavity, and the mixture demonstrated shear-thinning
behavior. This research was conducted for the specific parameters of the
volume fraction (φ) (0–0.04), Darcy number (Da) (0.001–0.1), Rayleigh
number (Ra) (104–105), and power–law index (n) (0.6–1). The results
indicated that as the (Ra) increases, the Nusselt number increases. The
increase in the volume fraction boosted the entropy generation and heat
transfer in accordance to the fluid friction. A decline in (Da) caused the
entropy generation and heat transfer to drop highly. A pattern of the free
convection boundary layer flow of a non-Newtonian second-stage fluid
passed through an impervious isothermal horizontal cylinder was studied
mathematically by Ramach and Prasad et al [16]. The dominant
boundary layer equations for the momentum, energy, and mass were
converted into non-dimensional equations by non-symmetry conver-
sions. In their study, the numerical results were presented for different
values of the thermal radiation (R) ranging from (0) to (5), Prandtl
number (Pr) ranging from (0) to (100), and Deborah number (De) from
(0) to (1.5), and their influence on the temperature profile, velocity
profile, Nusselt number (Nu), and shear stress were examined. The results
presented that increasing the (Pr) reduces the temperature, flow velocity,
and skin friction. A delay in the temperature profiles, flow velocity, and



Figure 1. Simplified diagram of the physical system in the present study.
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skin friction was noticed when the radiation parameter increased. A
remarkable promotion in (Nu) occurred when there was an increase in
(Pr) and the radiation parameter; however, the Deborah number (De)
decreased.

Baranwal et al. [17] numerically investigated the laminar free con-
vection heat transfer in power-law fluids in the two-dimensional flow
mode for a square duct used for trapping two cylinders side-by-side. The
first one was cold, and the other cylinder was hot. The value of the cyl-
inder radius-to-size of the encirclement area (R/L) was fixed at a value of
0.2. The influence of the geometries of the cylinders (value of δ) on the
resulting velocity and temperature domains in the laminar free convec-
tion mode via considering six similar sites for two cylinders was pre-
sented. This work was based on a set of conditions and constants for
certain parameters of heat transfer, such as the Prandtl number (Pr) range
(0.7–100), Grashof number (Gr) range (10–105), power-law index (n)
range of (0.3–1.8), Rayleigh number range (7–107), and the relative
positions of the cylinders in accordance to the centerline (-0.25–0.25).
The heat transfer parameters were analyzed in the form of the local
Nusselt number over the surfaces of the cylinders and encirclement walls.
In general, the average Nusselt number presented a positive adoption of
(Gr) and (Pr) regardless of the relative positioning of the cylinders and
the (n) values. If the two cylinders were located near the bottomwall, the
rate of heat transfer boosted with the signal to that for the symmetrical
scenario of the cylinders over the horizontal middle plane of the encir-
clement. A square cavity filled with an Al2O3water non-Newtonian
nano-fluid was analyzed numerically by Nazari et al [18]. The two ver-
tical sides of the boundaries of the square were preserved for adiabatic
boundary conditions. This study accomplished two cases. In the first case,
the right and left side walls were moved vertically at a steady velocity
(Vb) in opposite directions. In the other state, the trends of their move-
ments were inverted. The transmission equations were numerically
resolved by the finite volume method. The Ostwald-de Waele model for
the shear-thinning nano-fluid, which was used by Kefayati [23], was used
to calculate the shear stresses with increase in the nano-fluid thermal
conductivity. The study included nanoparticles and fluid flow fluctuation
by considering the Richardson number and the volume fraction effects.
For the second case of this study, the increase in the volume fraction of
the nanoparticles increased the heat transfer. The computations in this
study were achieved at a constant Grashof number (Gr ¼ 105). For the
two cases, the results displayed improvement in the heat transfer with
increasing nanoparticles volume fraction with a low (Ri).

Kiyasatfar [19] analytically studied a fully developed laminar flow by
employing a non-linear slip boundary condition. The analytical study was
also designed to include the dissipation of viscosity, locked shape reso-
lution of the velocity profiles, entropy generation rate, Nusselt number
(Nu), temperature distributions, and Bejan number (Be) in terms of
various factors, such as the power-law index, slip coefficient, and
Brinkman number (Br). The results depicted that a decrease in the
average entropy generation rate and an increase in (Nu) occurred
because of the increase in the slip coefficient. The influence of the slip
coefficient on (Be) was highly influenced by (Br). The tendency of (Nu)
decreased with (n) and (Br). With dilatant fluids, the influence of (Br)
became larger. An increase in (Nu) resulted in an increase in the slip
coefficient, but the entropy generation rate decreased. The results proved
that microfluidic devices could be more effective with the decrease in the
entropy generation rate at the lowest value of (n) and (Br). Under con-
stant conditions, a circular micro-channel demonstrated a higher (Be)
and an excellent tendency to provide lower entropy than a parallel-plate
micro-channel.

The above discussed survey of the literature reveals that all the pre-
vious studies dealt with the natural convection of Newtonian and non-
Newtonian fluids in different shapes, such as square ducts, rectangular
wavy enclosures, horizontal cylinders, and two non-rotating concentric
cylinders with andwithout magnetic field. Therefore, there is no study on
the mixed convection of non-Newtonian power-law fluids in two
concentric cylinders where the outer cylinder is rotating and kept cold at
3

(Tc), whereas the inner cylinder is a non-rotating cylinder and kept hot at
(Th). The ratio of the inner circular diameter to the annulus space length
is kept constant and equal to 2. Because the mixed convection under a
magnetic field inside a concentric circular annulus has numerous engi-
neering applications, non-Newtonian fluids may be more efficient than
Newtonian fluids, particularly for cooling or insulating purposes.

2. Physical model description

The schematic of the present study is presented in Figure 1. The di-
agram consists of an outer rotating cylinder kept at a cold temperature
(Tc) and an inner non-rotating cylinder kept at a hot temperature (Th).
The space between the two cylinders is filled with a non-Newtonian nano
fluid. In this study, Cu particles were considered as nanoparticles, and the
different thermo-physical solid and liquid properties are listed in Table 1.
The ratio between the inner circular diameter (2ri) and the annulus space
(ro-ri) is kept equal to 2; therefore, the characteristic length is equivalent
to the annulus space (ro-ri). The liquid phase is represented by water, and
the solid phase by the Cu nanoparticles, in the state of thermal equilib-
rium, and there is no change in the movement between the water and Cu
nanoparticles, which have the same magnitude and direction of the flow
velocity. Numerous assumptions are considered to simplify the study,
such as two-dimensional, steady state, incompressible, and laminar flow.
Radiation, Joule heating, and viscous dissipation are factors neglected in
this study.

3. Governing equations and boundary conditions

The governing equations in the dimensional form are described as
follows for the continuity, momentum in x-direction, momentum in y-
direction, and energy [12, 22]:

∂u
∂xþ

∂v
∂y ¼ 0 (1)

ρna

�
u
∂u
∂xþ v

∂u
∂y

�
¼ � ∂p

∂x þ
�
∂τxx
∂x þ ∂τxy

∂y

�
(2)

ρna

�
u
∂v
∂xþ v

∂v
∂y

�
¼ � ∂p

∂yþ
�
∂τxy
∂x þ ∂τyy

∂y

�
þ gðρβÞnaðT � TcÞ � σnaB2

ov (3)



Table 1. Thermo-physical properties of water with Cu nanoparticles [25].

Physical Properties Fluid Phase (Water) Cu

Cp (J/kg k) 997.1 385

ρ (kg/m3) 4179 8933

k (W/m k) 0.613 400

β (1/k) 21 � 10�5 1.67 � 10�5

μ(kg/ms) 0.000372 -

dp (nm) 0.385 27

σ (μS/cm) 0.05 5.96 � 107
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ρcp u
∂T
∂x þ v

∂T
∂y ¼ k

∂2T
∂x2 þ

∂2T
∂y2 (4)
� � � �

where u and v are the velocity components in the x and y directions,
respectively. T is the temperature of the fluid, p is the pressure. Subscript
(na) refers to a nanofluid. To transform the governing equation from the
dimensional form to a dimensionless form, the following non-
dimensional variables are used:

X¼ x
r
; Y ¼ y

r
; U ¼ Ur

α
; V ¼ vr

α
; P ¼ pr2

μα
; θ ¼ T � Tc

Th � Tc
; where r ¼ ro � ri

¼ 1

(5)

Following the application of the dimensionless parameters mentioned
in Eqs. (1), (2), (3), and (4), we obtain the following dimensionless
equations:

∂U
∂X þ ∂V

∂Y ¼ 0 (6)

U
∂U
∂X þV

∂U
∂Y ¼ � ∂P

∂X

þ 1
Re

ρbf
ρna

1

ð1� φÞ2:5
�
2
∂
∂X

�
μbf
N

∂U
∂X

�
þ ∂
∂Y

�
μbf
N

�
∂U
∂Y þ ∂V

∂X

���
(7)

U
∂V
∂X þV

∂V
∂Y ¼ � ∂P

∂Y þ 1
Re

ρbf
ρna

1

ð1� φÞ2:5
�
2
∂
∂Y

�
μbf
N

∂V
∂Y

�

þ ∂
∂X

�
μbf
N

�
∂U
∂Y þ ∂V

∂X

���
þðρβÞna
ρnaβbf

Riθ � Ha2

Re
σna

σbf

ρbf
ρna

V
(8)

U
∂θ
∂XþV

∂θ
∂Y ¼αna

αbf

1
RePr

�
∂2θ
∂X2

þ ∂2θ
∂Y2

�
(9)

μbf ¼N
�
2
��

∂U
∂X

�2

þ
�
∂V
∂Y

�2�
þ
�
∂V
∂X þ ∂U

∂Y

�2�ðn�1Þ
2

(10)

The equations that describe the properties of the nanofluid, such as
the density, heat capacity, thermal expansion, thermal conductivity, and
effective thermal conductivity [20] can be derived by

ρna ¼ð1�φÞρbf þ φρsp (11)

�
ρcp
	
na
¼ð1�φÞ�ρcp	bf þ φ

�
ρcp
	
sp

(12)

ðρβÞna ¼ð1�φÞðρβÞbf þ φðρβÞsp (13)

kna
kbf

¼ ksp þ 2kbf þ 2φ
�
kbf � ksp

	
ksp þ 2kbf � φ

�
kbf � ksp

	 (14)

μna ¼
μbf

ð1� φÞ2:5 (15)
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Eq. (14) represents the thermal conductivity by the Maxwell–Garnetts
model, and this model is suitable for spherical nanoparticles and for low
temperature gradients [21, 22]. The following equation illustrates the
ratio of the electrical conductivity of the nanofluid and the base fluid. The
theoretical correlation for the thermal conductivity is given by Eq. (14),
electrical conductivity by Eq. (16), and viscosity for the nano-fluid by Eq.
(15). These equations help to clarify the anomalous improvement of the
properties of the base fluid, such as the thermal conductivity, electrical
conductivity. and viscosity.

σna

σbf
¼ 1þ

3φ
�

σsp
σbf

� 1
�

�
σsp
σbf

þ 2
�
� φ

�
σsp
σbf

� 1
� (16)

A power-law (Ostwald–De Waele) model was applied to the non-
Newtonian nanofluid to describe the tensor of the shear stress as follows:

τij ¼ 2μnaDij ¼ μna

�
∂ui
∂xj

þ ∂uj
∂xi

�
(17)

Dij refers to the tensor of rate of deformation in Cartesian coordinates for
a steady-state and two-dimensional analysis.

μbf ¼N
�
2
��

∂u
∂x

�2

þ
�
∂v
∂y

�2�
þ
�
∂v
∂xþ

∂u
∂y

�2�n�1
2

(18)

where n is the power-law index used to distinguish the fluid type. n ¼ 1
for a Newtonian fluid, such as water, oil, air, glycerol, and alcohol. (n) >
1 for a dilatant, such as corn starch and water (Oobleck), silica, and
polyethylene glycol. (n) < 1 for a pseudoplastic, such as likes ketchup,
blood, nail polish, paint, and whipped cream.

The dimensionless numbers are classified into constant dimensionless
numbers, such as

Gr¼ gβbf r
3ðTh � TcÞ
ν2

¼ 100; Pr ¼ ν
α
¼ 6:2 (19)

whereas the variable dimensionless numbers are

Re¼ðωroÞr
νbf

; Ri¼ Gr
Re2

ð0�Ri� 1Þ; Ha¼ rBo

ffiffiffiffiffiffi
σbf
μbf

r
ð0�Ha� 60Þ (20)

The heat transfer rate is expressed by the local Nusselt number and
average Nusselt number, so that

Nul ¼
�
kna
kbf

�
∂ϑ
∂r (21)

Nu¼ 1
2π

Z 2π

1
Nuldϑ (22)

The results of the flow structure are demonstrated by the stream
function, which represents the relation between u and v, as specified
below.



Figure 2. Mesh generation in the present work.
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U¼ ∂Ψ
∂Y ; V ¼ �∂Ψ

∂X (23)
The above relations are combined, and another equation is produced,
so that

∂2Ψ
∂X2

þ ∂2Ψ
∂Y2

¼ ∂U
∂Y � ∂V

∂X (24)

When the flow occurs in a clockwise direction, the stream function is
negative. When the flow occurs in an anti-clockwise direction, the stream
function is positive. The velocity components around the rotating cyl-
inder are appointed by

u¼ � ωro sin ϑ → U ¼ �ωR sin ϑ (25)
Table 2. Grid sensitivity check for volume fractions ϕ ¼ 0.09 and power-law index n

Mesh size Mesh elements Boundary elements

1344 140

Fine 1878 168

Finer 6406 368

Extra fine 17884 708

Extremely fine 20488 708

Table 3. Comparison of the average Nusselt numbers from the present and Kefayati's

n Mean Nusselt number at the hot wall, Ra ¼ 104

Present study

0.5 2.9102

0.7 2.5368

1 2.2374

1.3 2.0746

1.5 2.0031

n Nu.ave H ¼ 30,Ri ¼ 0.01,ϕ ¼ 0.09

Kefayati [22]

0.2 5.7776

0.4 6.4814

0.6 8.9584

0.8 9.935

1 10.6409

5

v¼ωro cos ϑ → V ¼ ωR cos ϑ (26)
Ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

p
¼ ωR (27)

where

ω¼ωr2

αbf
; R ¼ ro

r
(28)

The boundary conditions for the present study can be described as the
velocity and thermal boundary condition as follows:

On the fixed inner circular cylinder,

U¼V ¼ Ψ ¼ 0; T ¼ Th → θ ¼ 1 (29)

U¼ � ωR sin ϑ; V ¼ ωR cos ϑ; Ψ ¼ Ψc; T ¼ Tc → θ ¼ 0 (30)

Ψm refers to the mass flow that crosses via any section of the annulus
space. It is calculated by the following equation [23, 24, 25].

Ψc ¼
2
4Z YcorXc

0

�
∂Ψ

∂Y or ∂X

�
Y¼0 or Y¼0

3
5 (31)

4. Numerical formulation and code validation

The dimensionless governing Eqs. (6), (7), (8), and (9) and the
boundary conditions are solved using the software package, COMSOL
Multiphysics, which is an effective environment for the simulation and
modeling of all types of scientific and engineering applications based on
partial differential equations [28]. The Galerkin finite element method
(GFEM) approach is developed to determine the solutions for the gov-
erning equations and the boundary conditions of the effect of theMHD on
the mixed convection inside an annulus enclosure filled with a
non-Newtonian nanofluid. The equation of continuity in dimensionless
form (Equation 6) will be utilized as a restraint. This restraint is utilized
to calculate the pressure distribution. The resolved dimensionless
¼ 0.6 at Ri ¼ 0.001 and Ha ¼ 30.

Nu CPU time sec Error

3.4901 5 -

3.3103 6 -5.43

3.1389 10 -5.46

3.1620 25 0.73

3.1629 27 0.02

[12, 22] results for different n.

Error (%)

Kefayati [12]

2.91 - 0.006

2.53 -0.268

2.23 - 0.33

2.07 - 0.22

2 -0.155

Error %

Present study

5.8937 1.9

6.7953 4.6

8.6588 3.4

9.9550 0.2

10.3236 -3.0



Figure 3. Comparison of the streamlines and isotherms of the present study and Kefayati [12]'s result with Ra ¼ 104.
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equations are given by Eqs. (7), (8), and (9). The finite element penalty
method is utilized, where the pressure term (P) is replaced by a param-
eter of Penalty (γ). In the present work, the penalty parameter is utilized
to deal with the condition of incompressibility (div u ¼ 0). The penalty
method has significant consideration in the numerical solution of engi-
neering applications owing to the ability to remove the pressure term
from the momentum and eliminating the indefinite parameters. The first
6

step by conveying the continuity equation utilizing the Penalty param-
eter is

P¼ � γ

�
∂U
∂X þ ∂V

∂Y

�
(32)

Subsequently utilizing Eq. (32), which satisfies the mass conservation
equation in the momentum equations, results in



Figure 4. Comparison of the streamlines and isotherms of Kefayati [22] and the present study for various power-law indexes, Ri ¼ 0.01, Ha ¼ 30,ϕ ¼ 0, 0.09, a) n ¼
0.2, b) n ¼ 0.4, c) n ¼ 0.6, d) n ¼ 0.8, e) n ¼ 1.
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Figore 5. Comparison of the streamlines and isotherms of Matin and Khan [10] and present study for various power-law indices, Pr ¼ 100, Ra ¼ 104, and RR ¼ 2.5.
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The variables (U, V, and θ) utilize the basis set, fΦIgMI¼1, as:

U¼
XM
I¼1

UIΦIðX; YÞ; V ¼
XM
I¼1

VIΦIðX; YÞ and θ¼
XM
I¼1

θIΦIðX; YÞ (35)

The non-linear residual equations produced from Eqs. (9, 33, and 34)
following the application of the GFEM approach over the interior nodes
of the nodes of the domain (Γ) are
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Figure 6. Streamline contours for various power-law indices and Hartmann numbers at Ri ¼ 0.001 and volume fraction (ϕ ¼ 0.09).
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Estimating the stream function utilizing the basic function established

(Φ as ðΨ¼PM
I¼1

ΨIΦIðX;YÞÞ and Eq. (35) yields
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For heat transfer, the local Nusselt number along the hot inner wall
was calculated from the relation,

Nul ¼ �
X9
i¼1

θi
∂Φi

∂n (40)

The basic function of a bi-quadratic has been utilized to estimate
9

indefinite variables, and the process of integration is achieved by the
equation of residual using a three-point Gaussian approach. The pen-
alty parameter (γ) is chosen ¼ 108; for more details, refer to Ref. [26,
27]. The Newton–Raphson method is used to solve the non-linear
equations.

An unstructured triangular element was used to mesh the computa-
tional domain. as presented in Figure 2, and a refinedmesh was used near
the inner and outer walls to obtain accurate results. A grid sensitivity
check was achieved to select the suitable element number for the
computational numerical study. The checking process was accomplished
at φ ¼ 0.09, n 0 ¼ 0.6, Ri ¼ 0.001, and Ha ¼ 30. Four grids were studied:
fine (1344 elements), finer (1878 elements), extra fine (17884 elements),
and extremely fine (20488). The difference in the average Nusselt
number for the grid test is provided in Table 2.



Figure 7. Streamline contours for various power-law indices and Hartmann numbers at Ri ¼ 0.01 and volume fraction (ϕ ¼ 0.09).
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The results are validated versus the results of Kefayati [12, 22], who
studied the natural convection [12] of a molten polymer non-Newtonian
fluid inside a square enclosure under a sinusoidal boundary condition at
the right wall. They also studied mixed convection [22] in a square
enclosure with a two-sided lid-driven filled with a non-Newtonian fluid
under the effect of magnetic field by the finite-difference lattice Boltz-
mann method. The comparison is performed at Ri¼ 0.01, Ha¼ 30, and φ
¼ 0.09. The comparison is obtained for an average Nusselt number and is
provided in Table 3. The streamlines and isotherms are presented in
Figures 3 and 4. The streamlines and isotherms were also validated
against the results of Matin and Khan [10] to obtain high-accuracy results
in a concentric cylindrical geometry. Matin and Khan [10] performed a
numerical study of the steady-state, two-dimensional natural convection
inside a gap between two concentric horizontal cylinders filled with a
10
non-Newtonian fluid, as displayed in Figure 5. The comparison exhibits
an excellent agreement between the present study and the published
studies by Matin and Khan [10] and Kefayati [12, 22].

5. Results and discussion

In this section, the study of the streamline, contours of isotherms, and
average Nusselt number is presented and discussed for different values of
the power-law index (n), Hartman number (Ha), and Richardson number
(Ri) in detail. The results are summarized only for (φ ¼ 0.09) as the
nanoparticle volume fraction, so that the current results might not be
valid for another volume fraction, which is out of the scope of this work.
The studied parameters are Hartman number 0 � Ha � 60, power-law
index 0.2 � n � 1.4, Richardson number 0.001 � Ri � 1, and volume



Figure 8. Isotherms for various power-law indices and Hartmann numbers at Ri ¼ 0.001 and volume fraction (ϕ ¼ 0.09).

E.D. Aboud et al. Heliyon 6 (2020) e03773
fraction percentage 0 � φ � 0.09, for both the Grashof number (Gr ¼
100) and the Prandtl number (Pr ¼ 6.2) are assumed to be constant.

Figure 6 presents the effect of the Hartman number on the streamline
contours for several values of the power law-index (n) at Richardson
number (Ri ¼ 0.001), where the forced convection is dominant for the
fluid flow process. In the absence of the magnetic field, as depicted in the
first column of Figure 6, uniform circles are generated and presented
between the inner and outer cylinders. The circles are driven by the
forced convection flow where the buoyancy effect vanishes. The
streamlines adopt the shape of the rotating cylinder for all the power-law
indices owing to the effect of inertia of the outer rotating cylinder.
However, maximum stream functionΨ does not have a noticeable change
with the increase in the fluid power-law index (n) because the force of
inertia is dominant. It can be noted that the stream function increases
with the increase in the power-law index, even to 1, causing the fluid to
behave similar to a Newtonian fluid. The trend is no longer the same
11
following the critical value of the power index owing to its non-linear
effect, referring to the equation of the power-law index (Equation 18).
In addition, a drastic change in the streamline contours is noticed in the
presence of a magnetic field, which is represented by the Hartman
number. It is known that a magnetic field influences the fluid flow
pattern in two independent approaches: modifying the fluid properties
and modifying the fluid-flow-driven force. Moreover, a noticeable
distortion in the circular forms of the streamlines is recognized in the
presence of a magnetic field. For example, at Hartman number (Ha¼ 15),
the streamlines deform to create two main circulations to the left and
right of the annulus space. The center of these circulations is very close to
the outside wall, which is because the variations in the fluid viscosity are
affected by the applied magnetic field. This behavior can be considered
as an evidence of the streamline density close to the cold and hot surfaces
as presented. At Ha ¼ 15, the surface area of the circulations and the
maximum stream function increase with the flow index. However, the



Figure 9. Streamline contours for various power-law indices and Hartmann numbers at Ri ¼ 1 and volume fraction (ϕ ¼ 0.09).
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streamline density on the hot surfaces reduces with an increase in the
power-law index, owing to the alteration of the fluid behavior. The
horizontal direction of the magnetic force has a strong influence on the
shape, location, and intensity of the streamline circulation.

A similar streamline can be noticed for the other values of Hartman
numbers (Ha ¼ 30 and Ha ¼ 60) when the power-law index varies from
0.2 to 1.4. Moreover, it can be seen that the power-law index not only
enhances the stream function but also the heat transfer process, which
will be discussed in the next section. As the power-law index increases,
the cores of the two circulations move inside to the hot surface at a longer
distance from the cold surface. For example, at Ha ¼ 15 and n ¼ 0.2,
stream function jΨmaxj ¼ 0:014412; as the power-law index (n) increases,
the stream function increases and becomes jΨmaxj ¼ 0:090635 for n ¼
12
1.4. Contrastingly, as the Hartman number increases, the stream function
decreases and becomes jΨmaxj ¼ 0:0070144 and jΨmaxj ¼ 0:042008 at
Ha ¼ 60 and n ¼ 0.2, 1.4, respectively. The fluid layers close to the cold
surfaces are neither stratified nor stagnant. The core motion leads to a
reduction in the thickness of the boundary layer. Increasing the stream
function with the power-law index for all the values of Ha is excellent
evidence of the explanation above. However, the effect of the power-law
index on the stream function decreases with the increase in the magnetic
field intensity. This conclusion can be drawn from a simple comparison of
the streamline densities on the hot and cold surfaces and the absolute
values of the stream functions. For example, the stream function is
enlarged almost (0.0906/0.0144)¼ 9 times, (0.0561/0.011)¼ 5.6 times,
and (0.042/0.007) ¼ 5.714 times for Hartman numbers 15, 30, and 60,



Figure 10. Isotherms for various power-law indices and Hartmann numbers at Ri ¼ 0.01 and volume fraction (ϕ ¼ 0.09).
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respectively. Moreover, for a specific value of the power-law index, the
strength of the magnetic field changes the fluid flow behavior by modi-
fying the pattern of the streamline and the stream function values.

In general, the stream function decreases with an increase in the
magnetic field strength. For example, when n ¼ 0.2, the stream function
reduces 37.34 times when Ha increases to 15 and 47.94 times when Ha
increases to 30. The presence of a magnetic field restrains the fluid flow,
and thereby, the heat transfer decreases, which will be explained in the
next section. However, the more the constraint, the larger the increase in
the stagnant regions and stagnant fluid layers. This can be proved by the
presence of two circulations at the top and bottom of the cavity close to
13
the cold surface when n ¼ 0.2 and Ha ¼ 60. A similar behavior is noted
for other values of n and Ha, and this can be observed easily.

To explain the effect of the Richardson number on the streamline,
Figures 6, 8, and 10 are compared. At higher values of Ri, free convection
is the dominant process of heat transfer and can be recognized by the
presence of the large stagnant area inside the enclosure for the stream-
lines, and thereby, a large stratified area is developed in the region.
However, at the lower values of Ri, force convection is dominant, and
higher gradients in the streamline and isotherm are detected. By reducing
Ri ¼ 0.01, as presented in Figure 7, no alteration in the general behavior
and pattern is noticed. In addition, the isotherm density close to the hot
surface decreases dramatically with the increase in Ha, which can be



Figure 11. Isotherms for various power-law indices and Hartmann numbers at Ri ¼ 1 and volume fraction (ϕ ¼ 0.09).
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expressed by the behavior of the corresponding isotherm in Figure 8. This
confirms the drop in the isotherm gradients close to the hot surfaces
(decrease in the transferred heat). In addition, slight changes in the
stream functions are observed owing to the increase in Ri from 0.001 to
0.01. This behavior assumes that the viscous force is more dominant than
the buoyancy force via this range of Ri variation (0.001–0.01). With
further increase in Ri ¼ 1, as presented in Figure 9, the effect of the
natural convection increases corresponding to the decrease in the force
convection effect, emerging from the movement of the inner cylinder.
Relatively significant changes are observed for the streamline and the
corresponding isotherm. These changes result from the combined effect
of the free and force convections, which are in competition when Ri ¼ 1.
14
As presented in Figure 9, the upper and lower regions start to distort and
deform asymmetrically to the right side of the hot surface (hot cylinder),
owing to the effects of the buoyancy force and gravity force of the
nanoparticles, which comes into play. Moreover, the thickness of the
boundary layers is increased with the increase in Ri from 0.01 to 1, which
is indicated by the dominant effect of the gravity and viscous resistive
forces. It is remarkable that the magnetic field reduces the velocity gra-
dients and stream function for all the values of Ri, where regardless of the
value of the Richardson number. However, the rate of the effect is
different. Summarizing, under the effect of a magnetic field, the stream
function increases with increasing power-law index, whereas its de-
creases with the increase in the magnetic strength (Hartman number).



Figure 12. Local Nusselt numbers on the hot wall for different volume fractions and different Richardson numbers at power-law index n ¼ 0.6 and Ha ¼ 30, a) Ri ¼ 1,
b) Ri ¼ 0.01, c) Ri ¼ 0.001.
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The existence of magnetic force impedes the fluid flow of both a New-
tonian fluid (n ¼ 1) and a non-Newtonian fluid (n 6¼ 1).

Figures 8, 10, and 11 present the effects of the power-law index and
the Hartman number on the heat transfer mechanism and isotherm. In all
the figures above, without the magnetic field effect, the isotherms adopt
circular shapes, owing to influence of the outer rotating cylinder.
Furthermore, the power-law index changes the isotherm pattern in such a
way that the isotherm moves toward the cold surfaces and transverses
more distance. Temperature gradients increase close to the hot surface,
which increases the heat transfer rate. This behavior can be detected by
15
observing the streamline pattern corresponding to the specific figure.
Moreover, it is noted that the density of the isotherm (phenomenally
enriched) close to the hot surface increases the heat transfer by
increasing n. Nevertheless, the isotherm lines become increasingly closer
to the hot surface with the increase in index n. However, the isotherm
density and its closeness to the wall change with the increase in the
Hartman number because of the fluid flow constraint resulting from rope-
like fluid volume aligning along the magnetic field lines. This effect in-
creases with the increase in the Hartman number, owing to the increased
magnetic field strength. The isotherm gradient decreases significantly at



Figure 13. Local Nusselt numbers on the hot wall for different volume fractions and power-law indices at Ri ¼ 0.001 and Ha ¼ 30 a) n ¼ 0.2, b) n ¼ 0.4, c) n ¼ 0.6, d)
n ¼ 0.8, e) n ¼ 1, f) n ¼ 1.2, g) n ¼ 1.4.
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higher Hartman numbers. It is remarkable that the isotherm density for a
specific power-law index decreases at the hot surfaces (inner cylinder)
with the increase in the Hartman number. The circular distribution of the
isothermal lines vanishes when exposed to a horizontal magnetic field;
this behavior leads to a dominant convection heat transfer. When the
heat transfer mode changes from conduction (uniform isothermal lines)
to convection (non-uniform isothermal lines), an augmentation in the
heat transfer rate can observed.

A comparison of Figures 8, 10, and 11 reveals the effect of decreasing
the Ri number on the isotherm pattern. A similar behavior can be noticed
in Figures 8 and 10 where Ri ¼ 0.001 and Ri ¼ 0.01, respectively.
However, the values of the isotherm and the density are slightly different,
16
owing to the increase in the gravity effect. Compared to Ri ¼ 0.001 in
Figure 8, the isotherm tendency closer to the hot wall decreases notice-
ably. Another decrease in the isotherm gradient occurs when the
Richardson number increases to 1, as presented in Figure 11, and in
general, can be used to confirm the heat transfer, which decreases with
the increase in the Ri number. Figure 12 presents the effects of the vol-
ume fraction and the Richardson number on the local Nusselt number in
the presence of a magnetic field at n ¼ 0.6 and Ha ¼ 30. First, a wavy
profile of the local Nusselt number independent of the value of the Ri
number is noticed. However, the amplitude of the wavy profile varies
with the variation in the Richardson number. The local Nusselt number is
calculated from the middle left point, as presented in Figure 12. The peak



Figure 14. Average Nusselt number versus power-law index for different Richardson and Hartman numbers A) Ri ¼ 0.001, B) Ri ¼ 0.01, C) Ri ¼ 1.
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values of the local Nusselt number can be observed at Li ¼ 0.4 (ϑ ¼ 0�)
and Li ¼ 3.6 (ϑ ¼ 180�) because of the achievement of a thinner thermal
boundary layer. The smallest values of the local Nusselt number can be
observed at Li � 2.4 (90�) and Li � 5.6 (270�) because of the achieve-
ment of a thicker thermal boundary layer. It is noticed that the local
Nusselt number increases with the decrease in the Richardson number
from 1 where (Nuloc)max ¼ 2.15 to 0.001 where (Nuloc)max¼ 6.1, because
of the domination of the force convection over the free convection. This
confirms the variation in the isotherm density on the hot surface at
different Ri numbers. It is important to mention that the particle volume
fraction plays an essential role in increasing or decreasing the heat
transfer rate, as illustrated in the figures above. Particularly for a large
Richardson number (Ri ¼ 1), the local Nusselt number for (φ ¼ 0.09) is
the largest among that at all other volume fraction percentages, owing to
the thermal conductivity. As the Richardson number decreases, the effect
of the nanoparticles vanishes because the inertia force becomes domi-
nant. Generally, increasing the volume fraction increases the fluid vis-
cosity, density, and thermal conductivity. The combined effect of
increasing of the three fluid properties is the main reason of the band-
width (the difference between the maximum and the minimum value of
Nu at same length) at different Ri numbers. The Nusselt number increases
with the increase in the volume fraction at Ri ¼ 1. However, the trend is
reversed when Ri decreases to Ri ¼ 0.01 and Ri ¼ 0.001, owing to the
domination of the forced convection at a small Ri number. However, for a
small Ri number, the fluid is only driven by the rotational motion of the
outer cylinder, i.e., increasing the volume fraction results in increasing
the fluid resistance to the flow, owing to the increase in the fluid vis-
cosity. Consequently, this increases the fluid resistivity, which decreases
the heat transfer and the corresponding local Nusselt number with
increasing volume fraction for Ri ¼ 0.01 and Ri ¼ 0.001, respectively.
When Ri ¼ 1, the scenario is different owing to the competition between
the free and force convection fluid flows and the manner in which
increasing the fluid density, viscosity, and thermal conductivity is going
to affect the heat transferred from hot to cold surfaces. Increasing the
17
volume fraction increases the fluid viscosity and density and conse-
quently the fluid flow resistivity, and further decreases the local Nusselt
number. However, the corresponding increase in the fluid thermal con-
ductivity effect, owing to the natural convection effect, increases signif-
icantly, resulting in recovery of the losses caused by the fluid viscosity
and density. Consequently, the local Nusselt number increases as the
volume fraction increases at Ri¼ 1. As can be noticed from Figure 13, the
power-law index and the volume fraction affect the local Nusselt number
at Ri ¼ 0.001 and Ha ¼ 30. The wavy trend of the local Nusselt number
around the hot inner circular cylinder is owing to the difference in the
thermal boundary layer thickness around it. The peak value of the local
Nusselt number increases with the increasing power-law index because
of the heat transfer by the convection becoming stronger. The position of
the maximum peak value of local Nusselt number (Nuloc ¼ 4.3) at a low
power-law index (n¼ 0.2) is the same as that of (Nuloc¼ 7.6) at (n¼ 1.4),
i.e., Li ¼ 0.3 (ϑ ¼ 15�). In addition, the same trend of the local Nusselt
number can be seen for all the power-law index values.

The effect of the magnetic field intensity and the Richardson number
on the average Nusselt number is presented in Figure 14. In the three
subfigures, the average Nusselt number increases with the decrease in the
Richardson number, owing to the enhanced heat transfer by force con-
vection. No significant increment is noticed in the average Nusselt
number when Ha¼ 0 is independent of the value of the power-law index.
However, the heat transfer is enhanced in the presence of the magnetic
field, as presented notably. The average Nusselt number decreases with
Ha, but the trend is different for each value of Ha and the power-law
index. The presence of a magnetic field in the fluid layers generates
currents in the fluid, which in turn alters its polarization, developing
other variations in the magnetic field values. Ropes and chains of the
magnetic nanoparticles are generated along the magnetic field lines. The
force required to connect the nanoparticles depends on themagnetic field
intensity (which is represented by the Hartman number in this study) by
the fluid. Owing to the fluid flow (which is represented by the Richardson
number in this study), the generated chains deform, extend, and distort.
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These alterations depend on the fluid flow strength (Ri) and the magnetic
field strength (Ha). The possibility of the deformations, extensions, and
distortion increases at lower values of Ha and Ri numbers, which makes
the chains and the ropes more flexible. Both the flexibility and fluid flow
strength achieve the conditions of fluid potential energy and kinetic
energy to be merged and stored, to some extent, between the chains and
fluid layers close to the hot surfaces. In a critical scenario following
which the flexible chain cannot store more energy before it breaks down,
the stored energy will suddenly release, allowing the fluid to flow rapidly
close the hot surface, enhancing the heat transfer processes. The com-
bined effect of the Ha and Ri numbers is essential in the process of storing
and releasing the energies, and thereby the heat transfer process. The
possibility of this process decreases with the increase in Ha, owing to the
development of high stiffness in the chains, which makes them harder to
deform and break down, which explains the lower values of the Nusselt
numbers at higher values of the Ha number.

6. Conclusion

The effect of magnetic field on mixed convection inside an annulus
circular enclosure filled with a non-Newtonian-nanofluid (Cu–water) is
studied by the Galerkin finite element method (GFEM) at a constant
Prandtl number (Pr ¼ 6.2) and Grashof number (Gr ¼ 100) with
Richardson number range (0.001� Ri� 1), Hartman number range (0�
Ha �60), power-law index range (0.2 � n � 1.4), and volume fraction
range (0� φ� 0.09). The enclosure consists of an outer rotating cylinder
that is kept at cold temperature (Tc) and an inner cylinder is non-rotating
and is kept at a hot temperature (Th). The ratio of the inner circular
diameter to the annulus space length is kept constant and equal to 2. Very
high accuracy results are obtained based on the comparison with a study
published previously by Kefayati [22]. The following conclusions can be
drawn:

1 Under no magnetic field effect, the stream and isothermal lines have
circular shapes for all values of the Richardson number and power
low index.

2 At a specific value of the power-law index, the strength of the mag-
netic field changes the fluid flow behavior bymodifying the pattern of
the streamlines and stream function values.

3 At Ha ¼ 15, the surface area of the circulations and the maximum
stream function increase with the flow index.

4 The effect of the power law index on the stream function decreases
with the increase in the magnetic field intensity. It can be summarized
that the stream function is enlarged 9 times, 5.6 times, and 5.7 for Ha
15, 30, and 60, respectively, which confirms point 1 mentioned above

5 It is observed that the density of the isothermal lines (phenomenally
enriched) closer to the hot surface increases the heat transfer by
increasing the power-law index, n.

6 At Ri¼ 0.01 and 0.001, the heat transfer and the local Nusselt number
decrease with the increase in the volume fraction.

7 The development of the magnetic field strength improves the influ-
ence of the nanoparticles on the enhancement of the heat transfer
compared with Ha ¼ 0.

8 The average Nusselt number increases with the Hartman number, but
the trend is different with each value of the Hartman and power law
index.

9 The average Nusselt number increases with the decrease in the
Richardson number, owing to the enhancement of the heat transfer by
the forced convection.
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