Molecular

Oncology
REVIEW

Bioinformatics roadmap for therapy selection in cancer

genomics

Maria José Jiménez-Santos
Toméas Di Domenico

, Santiago Garcia-Martin
, Gonzalo Gémez-Lépez

, Coral Fustero-Torre (o),
and Fatima Al-Shahrour

Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain

Keywords

bioinformatics; drug prioritisation; next-
generation sequencing; precision oncology;
treatment selection; tumour heterogeneity

Correspondence

F. Al-Shahrour, Bioinformatics Unit, Spanish
National Cancer Research Centre (CNIO),
Calle Melchor Fernandez Almagro, 3, 28029
Madrid, Spain

Tel: + 34 917 328 000

E-mail: falshahrour@cnio.es

(Received 26 April 2022, revised 22 June
2022, accepted 8 July 2022, available online
20 August 2022)

doi:10.1002/1878-0261.13286

Tumour heterogeneity is one of the main characteristics of cancer and can
be categorised into inter- or intratumour heterogeneity. This heterogeneity
has been revealed as one of the key causes of treatment failure and relapse.
Precision oncology is an emerging field that seeks to design tailored treat-
ments for each cancer patient according to epidemiological, clinical and
omics data. This discipline relies on bioinformatics tools designed to com-
pute scores to prioritise available drugs, with the aim of helping clinicians
in treatment selection. In this review, we describe the current approaches
for therapy selection depending on which type of tumour heterogeneity is
being targeted and the available next-generation sequencing data. We cover
intertumour heterogeneity studies and individual treatment selection using
genomics variants, expression data or multi-omics strategies. We also
describe intratumour dissection through clonal inference and single-cell
transcriptomics, in each case providing bioinformatics tools for tailored
treatment selection. Finally, we discuss how these therapy selection work-
flows could be integrated into the clinical practice.

1. Introduction

administration of optimal therapeutic modalities [1,2].
Targeted therapies have been conceived on the basis of

Over the past few years, our understanding of cancer
disease has enabled advances in diagnosis and treat-
ment, contributing to improving survival rates in many
tumour types. Current therapeutic management of pri-
mary and disseminated tumours includes surgical
resection, radiotherapy, hormonal therapy, chemother-
apy, targeted therapies and immunotherapy. Targeted
therapies are considered a cornerstone of precision
oncology, that is the use of cancer genomic informa-
tion as a means to stratify individual patients for the
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the druggable genome paradigm (Box 1), that is the
genes and gene products known (or predicted) to inter-
act with available compounds [3]. In the recent years,
efforts have been focused on defining new predictive
biomarkers of anticancer drug efficacy, and as a conse-
quence, the number of predictive biomarkers approved
by the Food and Drug Administration (FDA) has
increased from 39 in 2013 to 214 in 2022 (i.e. greater
than fivefold in the last 10 years) [4]. Common exam-
ples of targeted therapies are the use of BRAF V600E

ADR, adverse drug reaction; CNV, copy-number variation; COSMIC, Catalogue Of Somatic Mutations in Cancer; DGE, differential gene
expression; DNA-seq, DNA sequencing; FCS, functional class scoring; FDA, Food and Drug Administration; GATK, Genome Analysis Toolkit;
ICGC, International Cancer Genome Consortium; Indel, small insertions and deletions; ITH, intratumour heterogeneity; MTB, Molecular
Tumour Board; NGS, next-generation sequencing; ORA, over-representation analysis; PCAWG, Pan-Cancer Analysis of Whole Genomes;
QC, quality control; RNA-seq, RNA sequencing; scRNA-seq, single-cell RNA sequencing; SNV, single nucleotide variant; ST, spatial
transcriptomics; SV, structural variant; sSWGS, shallow whole-genome sequencing; TCGA, The Cancer Genome Atlas; TMB, tumour
mutational burden; TME, tumour microenvironment; UMAP, Uniform Manifold Approximation and Projection; VCF, variant calling file; WES,

whole-exome sequencing; WGS, whole-genome sequencing.
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Box 1. Druggable genome.

The druggable genome is formed by the set of genes
encoding proteins that are or potentially can be tar-
geted by drugs. Of the ~ 20 000 coding genes present
in the human genome, ~ 3000 have been estimated to
be druggable and less than 700 are currently targeted
by FDA-approved drugs [223].

inhibitors in melanoma patients, imatinib to target
BCR-ABL translocations in chronic myeloid leukaemia
and PD1/PD-L1 inhibitors for the immunotherapeutic
treatment of melanoma, lung, renal and other cancer
types. In addition, next-generation sequencing (NGS)
technologies have driven the discovery and develop-
ment of new pharmacogenetic biomarkers, which play
crucial roles in identifying drug responders and nonre-
sponders, avoiding adverse effects and optimising drug
dosage. Nevertheless, targeted therapy development is
challenging since most of the druggable genome
remains unstudied and the clinical setting of targeted
therapies is still underdeveloped. Moreover, even with
the consideration of genomic and transcriptomic
patients’ profiles, some patients may not respond to a
genomically guided treatment. Furthermore, a promi-
nent caveat of current targeted therapies is the onset
of acquired resistance and thus clinical relapse, despite
favourable initial responses in advanced disease [5,6].
Tumour heterogeneity has been revealed as a novel
key factor in the failure of anticancer therapies. The
findings provided by large-scale cancer genomics pro-
jects such as The Cancer Genome Atlas (TCGA), the
International Cancer Genome Consortium (ICGC)
and the Pan-Cancer Analysis of Whole Genomes
(PCAWG) consortia [7-9] have clearly revealed a high
multidimensional genomic heterogeneity among differ-
ent tumour types but also within the same patient,
thus underlining the idea that cancers are not single
diseases but rather an array of disorders with distinct
molecular mechanisms [10]. The concept of tumour
heterogeneity encompasses both inter- and intratumour
heterogeneity (ITH). The former refers to the existence
of different genomic alterations among cancer patients
or within the same individual (i.e. primary vs meta-
static tumour), while the latter describes the intrinsic
clonal diversity found within tumours occurring as a
consequence of cancer somatic evolution and natural
selection. Tumour heterogeneity has been related to
different treatment responses [11,12], the appearance
of drug resistance [13,14] and therefore the patients’
clinical outcome [15,16]. In order to reveal the
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relationships between ITH and clinical outcome, the
TRAcking Cancer Evolution through therapy (Rx)
(TRACERKX) initiative is performing an extensive
multi-omics profiling of ITH in NSCLC, melanoma,
prostate and renal cancer [17]. Deceased patients are
corecruited to the Posthumous Evaluation of
Advanced Cancer Environment (PEACE)
(NCT03004755) study, which allows for metastatic
sampling from multiple tumour sites. The Glioma
Longitudinal Analysis Consortium (GLASS) s
another international effort whose goal is the molecu-
lar characterisation of gliomas over several time points
in order to understand tumour evolution and identify
therapeutic vulnerabilities [18]. The characterisation of
ITH has also benefited from single-cell techniques that
have allowed high-resolution dissection of both
tumour and tumour microenvironment (TME) cell
composition. In this sense, the Human Tumour Atlas
Network (HTAN) and other initiatives [19,20] are gen-
erating single-cell three-dimensional atlases of tumour
transitions, ITH and TME landscapes for a diverse set
of tumour types. Undoubtedly, these valuable efforts
have the potential to improve cancer detection, preven-
tion and therapeutic discovery. However, the ITH, the
tumour evolution and the potential for competitive
release of resistant tumour subclones are not yet
addressed in cancer therapeutics and clinical practice
[21].

Bioinformatics provides a vast catalogue of method-
ologies and databases required to analyse, integrate
and interpret cancer multi-omics data. Remarkably,
in silico drug prioritisation approaches (Box 2) have
recently emerged to evaluate tumours’ specific genomic
alterations and transcriptomic profiles, matching them
with tailored candidate treatments [22-26]. This review
aims to provide a bioinformatics roadmap and general
guidelines to propose anticancer data-driven treatment
strategies for bulk and single-cell omics data covering
both cancer research and precision oncology scenarios.

Box 2. In silico prioritisation.

Precision medicine aims to make tailored prescriptions
based on individual omics data. In order to do so, epi-
demiological, clinical and response data from previous
patients are required. Drug prioritisation methods can
integrate these sources of data and compute scores to
rank the available treatments based on the predicted
efficacy. These bioinformatics tools provide clinicians
with evidence-based guidance to prescribe the drug
that better matches the characteristics of each patient.
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Computational approaches required to generate
tumour genomic and transcriptomic profiles and
explore a tumour’s functional activity are also dis-
cussed. Current algorithms for characterising tumour
heterogeneity and dissecting ITH from multi-omics
sources will be addressed together with cutting-edge
methods that exploit the drug sensitivity of tumour cell
subpopulations. Finally, the current limitations and
perspectives in the development and improvement of
novel computational approaches for precision
medicine-based therapies will also be discussed.

2. Genomics-based drug selection

NGS has been widely adopted for the analysis of
tumour DNA extracted from clinical and biological
samples with the aim of detecting clinically relevant
genomic alterations for cancer diagnosis and treatment
guidance. This section describes the computational
workflow to analyse, detect and interpret DNA alter-
ations (Box 3) (i.e. short variants and structural vari-
ants) that can guide cancer therapy selection using
data generated by targeted, whole-exome (WES) and
whole-genome sequencing (WGS) experiments. Cancer
somatic mutations are the main focus of bioinformat-
ics analyses aimed at identifying important druggable
alterations, since targeted therapies directed against
these variants would less likely affect healthy cells.
However, germinal variants that affect drug substrates
or metabolising enzymes can play an important role in

Box 3. Genomic variants.

According to their extent, genomic alterations can be
classified into short or structural variants (SVs). Short
variants can be subdivided into single nucleotide vari-
ants (SNVs) or small insertions and deletions of
< 50 bp (indels). On the contrary, SVs affect genomic
regions of >50 bp and can be further classified
depending on whether the genetic material is con-
served or lost. Balanced SVs arise as a consequence of
inversions and translocations, whereas unbalanced
SVs, also known as copy-number variations (CNVs),
are due to big insertions, deletions or duplications.

Genomic variants can also be classified as germline or
somatic, depending on their origin and extent of the
affected tissue. While germline mutations are inherited
by the progeny and affect the whole organism, somatic
mutations arise spontaneously and are localised in a
specific tissue [224].

Bioinformatics roadmap for cancer therapy selection

drug effectiveness and toxicity and should not be over-
looked when designing tailored treatment strategies.

2.1. Short variants to guide therapies

The first step for genomics-based drug selection is to
identify clinically relevant alterations in cancer patients
via a variant calling analysis. According to GATK
Best Practices [27], the general workflow of variant
calling consists of nine steps: quality control (QC) and
trimming, alignment, marking duplicates, local realign-
ment of indels, base quality score recalibration
(BQSR), variant calling, filtering and annotation of
variants [28] (Fig. 1). Briefly, after performing sample
QC and trimming, the raw reads are aligned to the ref-
erence genome with tools such as BWA-MEM [29].
Then, duplicated reads must be removed with PicARD
[30]. In order to reduce alignment artefacts and obtain
more accurate sequencing quality estimations, further
processing can be done using GATK tools [31]. There
is a broad selection of variant calling tools such as
Mutect2 and HAPLOTYPECALLER [31], VARScaN 2 [32],
VArDicT [33] or SoMATICSNIPER [34] that can be used
to identify short variants, which are comprised of sin-
gle nucleotide variants (SNVs) and insertions or dele-
tions (indels) of less than 50 base pairs (bp). The
reported variants must be filtered in order to remove
low-quality calls and subsequently annotated with
information about their biological impact, their fre-
quency in the population and their clinical relevance.
This type of analysis mainly focuses on somatic vari-
ants occurring in coding regions. Nonsynonymous
SNVs are considered as more damaging, since they
alter the final sequence of the encoded protein and
might affect its correct folding and function [35]. Fur-
thermore, somatic genomic alterations can be classified
according to their frequency in the population as rare
variants or polymorphisms, which are considered clini-
cally benign due to their high frequency (> 1%). In
most patients, at least one detected somatic alteration
is potentially clinically relevant [36,37] since it either
changes the gene function, suggests the use of surveil-
lance measures for prevention or early detection, helps
to establish a diagnosis, influences the prognosis or
guides the selection of therapies.

Some tools for automatic variant annotation are
SNPEFF [38], which determines the biological impact of
candidate variants; or ANNOVAR [39] and the VarI-
ANT ErrecT PrEDICTOR (VEP) [40], which additionally
provide information about the frequency of each vari-
ant in the population. On top of that, there are many
public data repositories of acquired knowledge about
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Fig. 1. Roadmap for drug prioritisation from different omics profiles. The roadmap is represented as an underground map in which each
next-generation sequencing (NGS) technique is a different line and each step in the workflow is a station. Common steps between work-
flows are displayed as interchange stations. The names of the available tools are preceded by coloured symbols that indicate in which tech-
nique they can be applied. BQSR, base quality score recalibration; DGE, differential gene expression; QC, quality control.

variants, drugs and their interconnections that are use-
ful to annotate candidate somatic variants with. Some
examples are ClinVar [41], a database of genetic vari-
ants and their clinical repercussions; the Catalogue Of
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Somatic Mutations In Cancer (COSMIC) [42], a
knowledgebase with information about the impact of
somatic variations in cancer; OncoKB [43] and CIViC
[44], two resources that link somatic cancer variants
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with their clinical and therapeutic implications; or
DGIdb [45], a database of gene—drug associations.

Furthermore, a number of methodologies and bioin-
formatics tools have been developed with the objective
of making cancer variant interpretation easier and sug-
gest possible treatments based on previous evidence
(Table 1). Most of these resources are patient-centred,
require the somatic variants from the tumour and can
be classified depending on the nature of the input data.
If a list of variants is available, resources such as
MTB-REePORT [46], the CANCER GENOME INTERPRETER
(CGI) [23], the VARIANT INTERPRETATION FOR CANCER
CoNSORTIUM META-KNOWLEDGEBASE (VICC METAKB)
[47], PREMEDKB [48] or the SMART CANCER NAVIGA-
TOR [49] can be useful. Some of these tools accept not
only a list of short variants, but also disease and/or
drug queries as input. In case a variant calling file
(VCF) is available, the user can opt for MTBP [50] or
PaNDRuGs [24]. The latter accepts both types of inputs
and drug and gene queries. There have also been other
approaches to guide therapy prescription on a large
scale in order to obtain a general view and observe
trends in cohorts of different tumour types [51].

Most of these approaches aim to prioritise drugs
based only on somatic variants. However, germinal
variants are also crucial in drug metabolism, and
therefore in drug effectiveness and toxicity [52]. Thus,
patients can have different responses to the same
treatment, ranging from responsiveness to ineffective-
ness or even adverse drug reactions (ADRs), which
are important causes of morbidity and mortality and
represent a source of financial burden to healthcare
systems [53]. Differences in drug response are mainly
due to genetic variation in genes encoding for drug
substrates or genes that participate in the metabolism
and transport of xenobiotics [54]. By assessing the
germinal variants of each patient and mining pharma-
cogenomic databases such as DrugBank [55],
PharmGKB [56], or the Table of Pharmacogenomic
Biomarkers in Drug Labeling [4], effective compounds
could be prioritised over ineffective or ADR-causing
drugs. PHARMCAT [57] is a tool developed for sug-
gesting tailored treatments based on germinal variants
found in a VCF. Moreover, some resources such as
the MTBP have been developed to account for both
germinal and somatic variants.

Recent publications [58,59] provide comprehensive
lists of variant annotation knowledge bases and bioin-
formatics tools for variant interpretation, biomarker
identification, drug prioritisation and response predic-
tion. All these resources were conceived as supporting
tools to inform clinicians of the available treatment
options for their patients.

Bioinformatics roadmap for cancer therapy selection

Interestingly, the identification of novel biomarkers
of immunotherapy response has become one of the
great challenges in oncology. Tumour mutational bur-
den (TMB) has established itself as a promising geno-
mic biomarker that may help identify patients who are
most likely to benefit from immunotherapy in a wide
range of tumour types [60]. TMB is calculated by
counting the total number of somatic alterations
divided by the total size in Mbp of the regions that
have been sequenced. Nevertheless, there is a lack of
standardisation for TMB assessment, which makes it
difficult to use as a biomarker. High TMB is associ-
ated with improved or clinically relevant patient
response to immunotherapy; however, the utility of
this biomarker has not been fully demonstrated across
all cancer types [61]. Moreover, using bioinformatics
techniques, it is now possible to unravel the TMB con-
tent and generate in silico hypotheses beyond the
TMB-based stratification of patients. This way, we can
prioritise and select targeted therapies based on the
presence of mutations for which treatments already
exist. This is the case of PANDRuUGS [24], a platform
that prioritises drug treatments based on actionable
mutations present in TMB.

2.2. Structural variants and mutational
signatures to guide therapies

Genomic sequence alterations that affect large regions
(> 50 bp) fall under the umbrella of what is known as
structural variation (SV). A SV is composed of several
types of events arising from different mutational mech-
anisms. Some of these events, such as deletions, inser-
tions or duplications, result in changes in the amount
of genomic sequence. These changes are known as
copy-number variations (CNVs) [62-65]. Throughout
history, a series of different techniques have been
applied to study CNVs. The decreasing costs of WGS
experiments combined with the constant improvement
of variant calling methods are positioning WGS-based
CNYV calling as the preferred technique for the analysis
of CNV [66]. CNV can be studied through WGS
experiments by detecting areas in the genome that
have more or less reads than would be normally
expected. This method is commonly known as depth
of coverage (DOC) analysis. CNV has seen an increase
in its applicability in the clinical diagnostics environ-
ment given its robustness to produce results with shal-
low levels of sequencing depth, usually defined as 0.1x
to 1.0x coverage of the genome [67]. Even though
most of the currently available CNV characterisation
tools are aimed at the research environment [68], tools
such as WisecoNDORX have been created with the
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Table 1. (Continued).

URL

Output

Input

Description

Name

https://mtbp.org/

HTML report with annotated

VCF or a list of short variants

Web tool that annotates somatic and

MTBP [50]

variants, the evidence supporting

(somatic and germline)
the variants’ functional

germline short variants (SNVs and indels)
functionally and clinically, categorising the

classification and their associated

actionability
HTML/JSON report with drug

cancer biomarkers (diagnosis, prognosis and

drug response) found in the tumour
A tool for identifying germinal variants,

https://pharmcat.org/

VCF (germline)

PHARMCAT [57]

suggestions based on germinal

variants

inferring patient's haplotypes and diplotypes

and suggesting treatments following the

Clinical Pharmacogenetics Implementation

Consortium (CPIC) guidelines

Bioinformatics roadmap for cancer therapy selection

specific goal of exploiting CNV calling using shallow
WGS (sWGS) in the clinical setting [69]. An essential
requirement for the study of mutational events is the
ability to distinguish potentially significant events from
those present in the healthy population [65]. Several
approaches exist to achieve this, with the two main
categories being those that do not require a normal
reference, or reference-free, and those that do [69].
Reference-free approaches normalise the samples using
known features of the human genome such as GC con-
tent and mappability. Reference-based tools require as
a reference either a single normal sample associated
with the sample of interest or what is sometimes
known as a Panel of Normals (PON) [70]. These nor-
mal samples have the goal of removing variation from
the results, which could in fact be caused by experi-
mental procedures (e.g. sample handling, preparation
and sequencing equipment).

Structural variant events, whether CNV-causing or
not, can be extremely complex in terms of the changes
they produce on the sequence of the genome [63,71].
The characterisation of these events depends on meth-
ods such as the analysis of paired reads and split
reads, and the de novo assembly of the genome of the
sample of interest. The short nature of NGS reads
imposes some limitations on these types of analyses
[63]. Long-read sequencing has given rise to a new
generation of tools and approaches that aims at filling
this gap in our ability to understand SVs [72]. Further-
more, unlike next-generation machines, nanopore-
based sequencers offer great portability and the possi-
bility of analysing data as it is generated (i.e. in a
streaming fashion). Tools are already being developed
with the aim of enabling the characterisation of SV for
clinical diagnostics [73].

Structural variation has a potential impact on both
germline and somatic genomic instability that affects
disease development and might help to select therapies
and report on patients’ drug response. For instance,
chromosomal translocations are relevant in the diagno-
sis of haematological malignancies but also lead to
therapeutic approaches targeting fusion proteins such
as BCR-ABLI1 in chronic myeloid leukaemia [74].
Some bioinformatics tools designed to prioritise drugs
based on short variants also accept CNVs [23,46] and/
or gene fusions [47] as input. More advanced
approaches for taking advantage of sSWGS CNV call-
ing for diagnostic purposes include efforts towards
generating CNV-based signatures, which may allow
for more precise diagnostics and treatment selection
[75]. Nevertheless, SVs are not yet commonly being
used as molecular targets or biomarkers to guide
patient-specific treatment [76].
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On the contrary, mutational signatures identified in
genomic DNA can reveal unique patterns of muta-
tional processes that occurred during the course of
cancer development [77,78]. These mutational signa-
tures can include single base substitutions (SBS), dou-
blet base substitutions (DBS), indels, CNV and
genome rearrangements [79]. Interestingly, mutational
signatures may be informative for guiding the identifi-
cation of therapeutically targetable biomarkers, sug-
gesting their application in personalised therapeutic
approaches. In particular, several studies have found
that tumours harbouring mutational signatures of
DNA damage repair deficiency may show therapeutic
responsiveness for either DNA damaging agents or
immunotherapy [80-82]. For example, a mutational
signature associated with pathogenic mutations in
BRCAI and BRCA?2 genes has been identified in sev-
eral cancer types, including breast and ovarian cancer,
suggesting deficient homologous recombination (HR)
and sensitivity to PARP inhibitors [83]. On the con-
trary, previous exposure to DNA-damaging agents
such as chemotherapy has been associated with drug
resistance [84]. Interestingly, mutational signatures can
be used as the mutational footprints of cancer thera-
pies to estimate the contribution of different treat-
ments to the TMB and can reveal their long-term side
effects in the genome [85].

There are several computational strategies for per-
forming mutational signature analyses that in general
differ on the mathematical properties of mutational
signature discovery and can be grouped into two cate-
gories: methods that aim to discover novel signatures
(de novo) or methods to detect already known and val-
idated mutational signatures (refitting) [86,87]. SiGPro-
FILER [88-90], a framework used for the previous
version of COSMIC, and SIGNATUREANALYZER [91-93]
were the two de novo tools used to analyse a large col-
lection of cancer genomes from PCAWG, TCGA and
ICGC projects [79]. It is worth noting SIGNAL, a
recently published web-based tool for mutational sig-
natures that also calculates the associations between
gene drivers and mutational signatures that could pro-
vide novel therapeutic dependencies [94]. Moreover,
HRDETECT is a predictor of HR deficiency that can be
useful to stratify patients based on their expected sen-
sitivity to PARP inhibitors [95].

3. Transcriptomics-based drug
selection

Transcriptomics profiling has a wide range of applica-
tions in cancer research, from tumour classification,
diagnosis and prognosis to therapeutic selection of

M. J. Jiménez-Santos et al.

drug candidates. Gene expression measures have
already been incorporated in molecular diagnostics
techniques such as the MammaPrint expression panel
or the Oncotype DX Breast Recurrence Score to guide
clinical decision-making [96,97].

This section focuses on bioinformatics approaches
to prioritise therapeutic candidates based on gene
expression (Fig. 1). First, we briefly summarise the
most common steps in RNA sequencing (RNA-seq)
workflows. Next, we discuss functional enrichment
approaches aimed at revealing biological patterns
underlying gene expression. Finally, we review bioin-
formatics strategies for transcriptome-based drug pri-
oritisation depending on the data format and type.

RNA-seq has become the most used NGS technique
to detect and quantify the presence of RNA in biologi-
cal samples. One of the first steps in a standard RNA-
seq data analysis is to generate a matrix of un-
normalised gene counts by aligning raw sequence reads
to a reference genome or transcriptome [98]. The
STAR aligner [99], and aggregation packages such as
featureCounts [100] or HTSEQ-COUNT [101] are some of
the most widely employed tools to achieve the above
step. Alternatively, alignment-free methods such as
SaLmon [102], RSEM [103] or kaLLisTo [104] output
transcript-level estimates, are then summarised to the
gene level with R packages such as TxiMETA [105].
Next, the raw gene expression matrix must be nor-
malised and transformed to stabilise intersample vari-
ance. Afterwards, differential gene expression (DGE)
analysis extracts significant differences in RNA abun-
dance between experimental conditions. Well-
established methodologies such as DESeq2 [106],
edgeR [107] or LiMmma-voom [108] perform both nor-
malisation and DGE in tandem.

Functional enrichment is often performed following
a DGE analysis with the aim of revealing biological
relationships in the differentially expressed genes list
and of identifying underlying coordinated patterns
(e.g. functional pathways and regulatory modules) in
the expression matrix. Functional enrichment methods
can be categorised into three main types: (a) over-
representation analysis (ORA); (b) functional class
scoring (FCS); and (c) pathway topology [109]. They
commonly exploit annotations from public databases,
ontologies or related gene terms (gene sets) based on
their involvement in a pathway, biological function or
specific cellular compartment [110,111]. ORA methods
statistically evaluate the proportion of genes that share
a particular annotation in a gene list of interest with
respect to what is expected by chance. Web tools such
as FatiGO [112], DAVID [113], ENricHrR [114],
PANTHER [115], WEBGESTALT [116] and others [117]
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follow this approach. As an alternative to ORA meth-
ods, FCS methods consider that coordinated changes
in functionally related genes are as important as large
expression changes in individual genes. To this end,
FCS tools rely on ranked lists (i.e. gene expression
rankings) to generate a single pathway-level enrich-
ment score, which is tested for statistical significance.
Widely employed methods include GSEA [118], Cam-
ERA [119], GSVA [120], PADOG [121], SINGSCORE [122]
and others [123]. Finally, pathway topology analysis
adds another information layer by taking into account
gene—gene interactions along with gene-level statistics
to identify regulatory changes in pathways. Pathway
topology methods have been extensively reviewed by
Thnatova et al. [124]. Remarkable contributions
include PATHNET [125], which leverages the connectiv-
ity between genes of the same pathway along with the
differences in gene expression between conditions.
Cytoscape [126] and PathVisio [127] offer powerful
visualisation and analysis tools tailored to biological
interaction networks. Moreover, STITCH [128] inte-
grates information from metabolic pathways, com-
pound structures and drug-target relationships to
generate a network of compound—protein interactions.

Drug prioritisation methods can employ transcrip-
tomic profiles as input to suggest which treatments will
be most effective for a given tumour sample. Multiple
bioinformatics strategies are available depending on
the nature and complexity of the data source, ranging
from individual genes (e.g. a single overexpressed gene
from a DGE analysis) to whole expression data matri-
ces.

The integration of genomic and transcriptional pro-
files together with drug response profiles has allowed
the advancement of drug repositioning and drug com-
bination predictions [129]. By finding its druggable
weak spots, pharmacogenomics studies (Box 4) have
been demonstrated to be useful in aiding treatment
selection in cancer cell lines [130-137]. Resources and
tools such as the DepMapr [130,135-137], the GDSC
[131] and the CTRP [133] are remarkable efforts for
drug prioritisation using transcriptomics. In all cases,
the input is a single gene that can be queried against
large databases of pharmacogenomics assays, allowing
researchers to correlate the expression level of a gene
of interest with the susceptibility to drugs in thousands
of cancer cell lines.

Gene expression signatures (a list of genes whose
expression is associated with a given condition) can be
interrogated for drug prioritisation applying the signa-
ture reversal approach, which relies on the fact that
the expression pattern of drugs indicated for a disease
is often negatively correlated with the changes in gene

Bioinformatics roadmap for cancer therapy selection

Box 4. High-throughput drug screenings.

High-throughput screenings are assays in which large
libraries of compounds are tested in order to discover
candidate drugs with activity against a target.

expression induced by that disease [138]. For instance,
Cheng and colleagues mined TCGA to generate an
expression signature of EGFR activity, which they
associated with tumour sensitivity to EGFR inhibitors
and other tyrosine kinase inhibitors [139]. Similarly,
the ConnEcTIVITY MAP (CMAP) [132] project is gener-
ating a comprehensive catalogue of cellular signatures
representing systematic perturbation to pharmacologic
and genetic perturbagens. Researchers can freely access
the CMAP database or interrogate signatures of inter-
est through its Web portal (Table 2). DRUGVSDISEASE
mines microarray databases to generate ranked expres-
sion profiles for the comparison of drug and disease
gene expression profiles [140]. It features a precalcu-
lated ranked list of differentially expressed genes for
1309 drug compounds applied to cancer cell lines read-
ily available for signature reversal. Expression signa-
tures have also been used to predict response and
prioritise compounds for immunotherapy. TIDE evalu-
ates biomarkers to predict immune check blockade
clinical response for patient stratification [141].
DREIMT performs drug prioritisation analysis for
immunomodulation suggesting candidate immunomod-
ulatory drugs targeting user-supplied gene expression
signatures [142].

The whole normalised expression data matrix can
also be used to prioritise drugs. For instance, follow-
ing the CELLIGNER methodology [143], the transcrip-
tomic profile of individual samples can be aligned to
the most similar cancer cell line, allowing researchers
to harness the extensive pharmacogenomics profiling
of said models to draw hypotheses about drug suscep-
tibility. Moreover, GSEA can be used in conjunction
with DSigDB [144], a database of drug gene sets, to
find whether an experimental condition is enriched in
genes participating in a given drug response. On the
contrary, single sample enrichment methods such as
GSVA perform the aforementioned enrichment
sample-wise instead of per condition, transforming a
gene matrix to a drug signature enrichment matrix.
Then, this matrix can be used for clustering, applying
linear models or other approaches.

Finally, network-based algorithms leveraging path-
way topology have also been used for drug prioritisa-
tion. PrIORCD [145] makes use of a network
propagation algorithm and a drug-drug similarity
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network, along with pathway activity profiles to priori-
tise candidate drugs in cancer. Similarly, RPaTH [146]
relies on a knowledge graph built from disease, protein
and drug causal relations along with disease and per-
turbed expression signatures to prioritise compounds
for a given disease.

4. Integrative multi-omics strategies
for drug selection

High-throughput technologies have opened up the pos-
sibility of integrating orthogonal omics layers for a
more comprehensive understanding of biological sys-
tems [147]. Drug prioritisation could also benefit from
such integration [148]. Methods such as pANOPLY [149]
or MOALMANAC [25] (Table 2) integrate genomic and
transcriptomic data to identify and prioritise drug tar-
gets. The Cancer Druggable Gene Atlas (TCDA) [150]
is a recently published database with information
about genomic alterations including short variants,
CNVs and gene fusions, expression, gene dependency
and druggability. DrRucComBOEXPLORER [151] takes
into account DNA sequencing, gene copy number,
methylation and expression data from cancer patients
to (a) identify driver signalling pathways and (b) pro-
pose anticancer drug combinations.

Transcriptomic networks can also be enriched with
subsequent omics layers to provide functional insight
transcending individual layers. COSMOS [152] inte-
grates phosphoproteomics, transcriptomics and meta-
bolomics to estimate the activity of kinases and
transcription factors. Finally, deep learning algorithms
are becoming promising approaches for multi-omics
integration thanks to their capability of capturing non-
linear and hierarchical features [153]. For instance,
DeepDRK [154] leverages genomics, transcriptomics,
epigenomics and chemical properties of compounds to
predict drug susceptibility in both cancer cell lines and
patients.

The application of bioinformatics methodologies to
immunotherapy as part of precision oncology is still
in its early stages. However, tools already exist that
allow the design of personalised vaccines [155]. From
the large lists of potential neoantigens generated from
NGS, it is possible to select those with the highest
probability of success, that is to find an optimal
design to generate efficient vaccines based on patient-
specific neoantigen profiles. Neoantigen prediction
pipelines such as PVACtooLs [156] include different
computational tools to detect neoantigens from
tumour DNA-seq and RNA-seq data. They also esti-
mate the individual’s HLA class and prioritise
neoantigens based on the molecular match with the
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patient’s MHC and other parameters [157]. Moreover,
there are programs such as CIBERSORTX [158] or
MCP-coUNTER [159] capable of inferring the presence
of immune infiltrates in tissue from expression data.
Knowledge of the type of immune infiltration present
in a tumour might serve as a guide, together with
TMB values, for treatment selection. Finally, it
should be noted that most of the proposed method-
ologies are still far from being applied in the clinic,
although some such as the prioritisation of drug treat-
ments or neoantigens based on TMB content are
beginning to be used in clinical trials [155].

5. Targeting tumour heterogeneity:
ith and drug selection

ITH functional diversity within individual tumours has
been related to somatic SNVs, SVs, transcriptomic and
epigenetic changes influencing gene expression levels,
the TME status and the antitumour immune response
[160,161]. ITH can be spatial if it occurs at different
regions of the tumour and temporal when it is related
to clonal evolution [14]. We can currently determine
the degree of ITH and characterise each subset of clo-
nal subpopulations [Box 5] based on their specific
mutational or transcriptomic profiles. The knowledge
of ITH can be of great help in prioritising drug treat-
ments or understanding tumour response to treatment.
This section provides an overview of relevant method-
ologies for the dissection of ITH for guiding drug
selection (Fig. 1).

5.1. Genome profiling for targeting tumour
clonality

Tumours can harbour clonal mutations, which are pre-
sent in all cells, and subclonal mutations, which only
affect a subset of them. The prevalence of subclonal
mutations can be used to infer the tumour’s phy-

Box 5. Clonal and subclonal subpopulations.

ITH is characterised by the presence of different
tumour subclones, each one of them exhibiting a fit-
ness that daughter cells inherit. Subclones can harbour
clonal or trunk mutations, which are present in all
cells, and subclonal mutations, which only affect a
subset of cancer cells. The prevalence of subclonal
alterations can be used to infer a tumour’s phylogeny.
Treatment can be a source of selective pressure that
performs purifying selection on sensitive subclones and
increments the fitness of resistant ones.
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logeny, which allows to decipher the order of these
mutations and to identify the current subclones and
the relationships between them. However, one must
take into account that the ability to distinguish
between truly clonal and subclonal mutations appear-
ing to be clonal (pseudo-clonal mutations) depends lar-
gely on the number of regions sequenced, the
sequencing depth and sample purity [21]. Cancer sub-
clones are subject to Darwinian evolution, and each
one of them exhibits a fitness that daughter cells can
inherit. Some studies have suggested that increased
levels of CNV might be advantageous for the subclone
that bears these mutations, which ultimately outcom-
petes its neighbours [162]. Anticancer drug administra-
tion creates a selective pressure that alters subclonal
fitness. Drug-sensitive cells will die, but some sub-
clones, which are usually a minority, may acquire
resistance to the treatment and increase their fitness.
This resistance might be due to pre-existent resistant
subclones or can arise by de novo drug-induced muta-
tions in drug-tolerant cells. Eventually, resistant sub-
clones may expand and cause relapse [14]. An
interesting example of this behaviour is represented by
the stem cell division dynamics described by Xie
et al. In this work, they characterised a subgroup of
quiescent glioblastoma cancer stem cells (CSC) that
evaded antiproliferative chemotherapy and re-entered
the cell cycle, promoting tumour growth and ulti-
mately leading to conventional treatment failure and
relapse [163]. Some authors have proposed a combi-
nation of multiregion sampling to dissect spatial ITH
coupled with monitoring of circulating tumour DNA
(ctDNA) via liquid biopsies to measure clonal evolu-
tion in real time and adapt the therapy accordingly
[164,165]. Other approaches rely on a Bayesian evo-
lutionary framework to study the spatio-temporal
dynamics of cancer subclones within a single patient
[166]. Subclones can be identified using several
approaches, including genome profiling and single-
cell sequencing.

Genome profiling is the preferred strategy to study
clonal evolution. Several bioinformatics tools have
been developed to infer cancer subclones using SNV
allele frequencies, CNV profiles and tumour purity
measures as input. The most remarkable examples are
PyCLoNE-VI [167], PHYLOWGS [168], FAsTCLONE [169],
SciCLoNE [170] or MOBSTER [171]. However, this
approach has several limitations. First, only the muta-
tions that are present in all or the majority of cells will
be detected. Moreover, stromal contamination may
alter mutation frequencies. Finally, these bioinformat-
ics tools perform many prior inference steps that may
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introduce errors, which can be propagated in subse-
quent steps [172].

Some drug prioritisation tools initially designed for
intertumour heterogeneity have been used for targeting
ITH as well [173]. In this work, PANDRUGS was run
independently for each inferred subclone and the
results aggregated in order to prioritise drugs that hit
both clonal and subclonal alterations. The term
‘clonetherapy’ was introduced to define the optimal
treatment regime that would cover patient ITH by tar-
geting all subclones, including the minority ones with
the ability to relapse (Fig. 2).

5.2. Single-cell transcriptomics-based drug
selection

Bulk RNA-seq allows for the use of the transcriptome as
a proxy for elucidating cellular phenotypic traits. This
has demonstrated to be useful in uncovering genes
important for cancer progression and possible drug tar-
gets. However, it involves the averaging of the expression
levels in a heterogeneous subpopulation of cells, hiding
what might result in important patterns defining tissue
dynamics, cell fate and transitions. The idea that the
study of predominant cancer subpopulations is insuffi-
cient for informing precision oncology has been already
suggested in several publications [174,175]. To prevent or
to overcome resistance, we need to implement more accu-
rate molecular profiling techniques. Single-cell technolo-
gies are able to dissect ITH at the scale of individual
tumour cells, revealing rare subpopulations and enhanc-
ing our understanding of drug resistance and relapse
[176,177]. In this context, the development of single-cell
RNA-seq (scRNA-seq) technologies has been seen as a
new stepping stone towards an increased understanding
of cancer biology.

In recent years, there have been significant advances
in the generation of computational tools capable of
addressing ITH from a single-cell point of view. How-
ever, the current lack of gold standard analysis guideli-
nes is one of the biggest challenges in the field [178].
Importantly, the generation of community-maintained
and versatile analysis pipelines could help in solving
this issue. The BoLLITO pipeline [179], the WEB-ACCESSI-
BLE SINGLE CELL RNA-SEQ PROCESSING PLATFORM
(WASP) [180] and the SINGLE CELL INTERACTIVE APPLI-
caTION (SCiAp) [181] are some of the latest efforts in
this direction. In general terms, current single-cell anal-
ysis workflows can be subdivided into three main
steps: the raw data processing steps or primary analy-
sis; the normalisation and clustering steps, also known
as secondary analysis, and the tertiary analysis that
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Fig. 2. Concept of clonetherapy. The conventional approach in cancer treatment is to target the major subclone, since it is the most
represented in a bulk sample. However, if the drug does not hit clonal alterations, other subclones might survive the treatment and expand.
Clonetherapy aims to hit both clonal and subclonal alterations identified in a deconvoluted data set in order to target all subclones, thus

avoiding potential relapse.

involves the functional interpretation of the results.
Depending on the sequencing platform, it will be nec-
essary to implement some particularities, although the
steps will maintain the same goal (Fig. 1).

The primary analysis is the foundation step in the
single-cell analysis pipeline and refers to the processing
of the raw data. It can be subdivided into sample
demultiplexing, alignment, QC and quantification. This
is a computationally demanding step with the goal of
obtaining a matrix of the gene expression profiles for
each cell in the experiment. Demultiplexing is usually
performed by the sequencer’s built-in software while
the most commonly used aligners include Cell Ranger
[182] and STARsoro [183]. Pseudo-aligners such as
KALLISTO or ALEVIN [184], capable of performing an
accurate quantification by mapping the reads directly
to the transcriptome, are also frequently used because
of their increased speed.

The secondary analysis steps include cell-based QC,
normalisation, dimensionality reduction and clustering
of the samples. They can be performed using popular
single-cell analysis toolkits such as SEurAaT [185] or
SCANPY [186]. Nevertheless, it is important to remark
that these are not the only methodologies available and
that the sparsity (meaning the high fraction of zeroes
present in single-cell matrices) of the analysed data set
or the amount of sequenced cells should guide the algo-
rithm selection. Interesting reviews from Duo et al.
[187] and Yu et al. [188] could be helpful for performing
this algorithm selection. The manifold learning algo-
rithms are recommended for further exploratory single-
cell data visualisation [189]. For instance, the Uniform
Manifold Approximation and Projection (UMAP) [190]

is considered best practice thanks to its capacity for pre-
serving both global and local structure [178]. The final
goal of all these preprocessing steps is to cluster cells
based on the identification of distinct biological pat-
terns, cell types and cell states. Here, it is important to
note that the selection of a clustering algorithm will
strongly impact further downstream analyses [191].
Common clustering methodologies include
PHENOGRAPH [192], SC3 [193] TSCAN [194] or
SINCERA [195].

Finally, the tertiary analysis helps to describe and
interpret the functional processes that define the biol-
ogy of each cell subpopulation and thus enable the
study of ITH and facilitate finding suitable therapeutic
candidates. These downstream steps involve classic
DGE methods such as the Wilcoxon rank-sum test,
which has been shown to have an overall robust per-
formance in single-cell data sets [196,197] together
with bulk-based methods such as edgeR or LIMMA-
vooM. Also, single-cell specific functional enrichment
methodologies such as VISION [198] and UCELL [199]
apply bulk-design approaches to individual cells or
groups of cells, generating gene signature scores in a
similar fashion to bulk methods. Further methodologi-
cal developments in this context involve prior
knowledge-driven cell-type annotation using built-in
reference marker collections with SINGLER [200] or
PanGLAODB [201]. In addition, the study of ligand-re-
ceptor interactions between cancer cells and the TME
can be crucial for studying the extrinsic factors that
contribute to ITH [202] and improving our treatment
selections. Tools such as CeLLPHONEDB [203] or
NIcHENET [204] are useful for modelling intercellular
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communication and linking ligands to target genes.
Moreover, trajectory inference and expression dynamic
methodologies can help us understand both ‘present’
and ‘future’ of the selected subpopulations. While the
‘present’ of a cell is represented by the captured spliced
mRNA transcripts, the analysis of the unspliced mRNA
can also be used to predict the cell’s future transcrip-
tome, the direction and the speed of that change. SLING-
sHOT [205] and vELocyTo [206] or scVELO [207] have been
developed to recapitulate the transcriptional dynamics
within a data set and furthering our understanding of cell
transitions. Such methods are complementary, as SLING-
sHoT allows the ordering of cells based on their current
snapshot, while VELocyTo or scVELo facilitates the study
of gene regulation by predicting its future steps.
Together, all these methodologies facilitate our under-
standing of the analysed cells, resulting in a better selec-
tion of subpopulations of interest and helping in the
study of possible clinical targets.

Expression-based drug prioritisation algorithms are
usually applied after functional characterisation of cell
subpopulations. Recent methods such as DEGAs associ-
ate individual cells with disease attributes such as diag-
nosis, prognosis and response to therapy [208],
whereas AUGUR prioritises cell types involved in
response to perturbations [209]. BEYONDCELL is a com-
putational method for identifying tumour cell subpop-
ulations with distinct drug responses and proposing
cancer-specific treatments. In order to do this, Beyond-
cell calculates a drug susceptibility score for each cell,
delineates therapeutic clusters defined as groups of
cells with a similar drug response and generates a pri-
oritised sensitivity-based ranking in order to guide
drug selection [26].

Still, the lack of information about the spatial context
is one the main drawbacks of scRNA-seq methodolo-
gies. This information is of special importance when
characterising new subpopulations, since it allows to
determine whether the observed differences in expres-
sion are a consequence of functional differences or they
rely on different interactions with the TME. Addition-
ally, establishing how the TME is going to affect drug
tolerance in these subpopulations will be crucial for
selecting suitable drug candidates. Spatial transcrip-
tomics (ST) profiling techniques have been recently
developed to tackle this question and hold promise of
generating much more informed tumoral maps. How-
ever, major caveats of this new approach are a lower
resolution (still not at the level of single cells) and a
lower number of captured genes than scRNA-seq [210].
In this context, integrative analysis methods for ST are
part of a trend aimed at generating a common frame-
work of spatial annotation that will help further
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enriching scRNA-seq data sets. Tools such as TANGRAM
[211] or SpPAOTsc [212], which map scRNA-seq data to
spatial data collected from the same region, could be
used to achieve this goal.

6. Incorporating drug prioritisation
tools into the clinical practice

Therapy selection guided by bioinformatics approaches
is still in its infancy. To date, drug prioritisation meth-
ods face technical and biological challenges (Box 6)
that constitute clear bottlenecks for their application
in routine clinical practice. However, there are cur-
rently remarkable efforts to translate these methodolo-
gies into medical practices for the benefit of patients.

The patient journey defines the evolution of cancer
patients, describing the different stages from disease
prevention to detection, diagnosis, treatment and
follow-up. To diagnose and decide on the best avail-
able treatment options, physicians will need integrated
patient’s information in a clear and interpretable way
through clinical decision support systems. Such sys-
tems will be able to efficiently access electronic medical
records containing multiple data types, including indi-
vidual genomic data at different points in the patient
journey.

Computational methodologies to analyse and inter-
pret NGS data, including drug prioritisation algo-
rithms, will be incorporated in the clinical decision
support systems relying on broad interoperability of
data, metadata, research software and computational
infrastructure. This will require harmonised nomencla-
tures, large and well-annotated genomic data sets
linked to patients’ clinicopathological information and
efficient data exchange (Fig. 3). To address this chal-
lenge, multimodal cancer data must be meaningfully
connected; thus, data harmonisation and standardisa-
tion are crucial. There are several ongoing efforts
towards this direction. For instance, the Findable,
Accessible, Interoperable, Reusable (FAIR) principles
have been proposed to facilitate an efficient clinical
data exchange [213]. The NIH Data Commons
(https://commonfund.nih.gov/commons) and the Can-
cer Research Data Commons (CRDC, https://
datacommons.cancer.gov/) are further examples of
data harmonisation initiatives. On the contrary, initia-
tives promoting the availability of genomic data linked
to enriched clinical annotation have been recently
launched such as the ICGC-ARGO (https://platform.
icgc-argo.org/) [214], which aims to collect a richer
data set of cancer genomes with clinical information,
health and response to therapy, and the Beyond 1 Mil-
lion Genomes initiative (BIMG, https://blmg-project.
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Box 6. Main biological and technical challenges asso-
ciated with the problem of drug prioritisation.

Biological

1 Incomplete dissection of inter- and intratumour
heterogeneity and lack of knowledge of somatic
evolutionary processes.

2 Poor understanding of the interface between clo-
nal expansion and cancer initiation.

3 Poor understanding of tumour and TME topo-
logical relationships and cell—cell cross-talking.

4 Exhaustion of antitumor immunity during disease
progression.

5 Poor understanding of the specific events leading
to the onset and expansion of drug resistant sub-
clones.

6 Incomplete categorisation of short variants, SVs,
epigenomic and transcriptional driver alterations
and their relationship with drug response.

7 Poor understanding of interrelations between
ageing, senescence and drug response.

8 Missing information about the association of ger-
minal variants and ADRs for most anticancer
drugs.

Technical

1 FFPE preparation of samples, which favours
DNA fragmentation, degradation and alterations
that are difficult to identify as artefacts during
variant calling.

2 Trade-off between scope and read depth. In
genomics, the broader the region sequenced (all
regions using WGS, coding-only using WES or
specific genes using targeted sequencing), the
lower the coverage. Similarly, the higher the
number of sequenced cells, the lower the read
depth in single-cell technologies.

3 Dealing with multi-alignment reads due to repeti-
tive regions in the genome.

4 Short reads are not sufficient to resolve large
SVs, and long-read sequencing strategies have
higher error rates.

5 Lack of gold standard guidelines and information
about the spatial context in single-cell technolo-
gies.

6 Predicting toxic interactions or synergistic effects
of combination therapies.

eu/), which provides a framework for access and inter-
operability of genomic and medical data [215]. In
addition to computational implementations, the
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incorporation of multi-omics approaches and in silico
drug prioritisation tools into routine clinical practice
will require further efforts in the healthcare scenario
(Box 7).

In silico drug prioritisation tool performance would
also greatly benefit by extensive and standardised clini-
cal, pathological and genomic annotations integrated
in a federated data-sharing model, storing retrospective
treatment response information while preserving
patients’ data privacy. Such a federated data-sharing
framework would also provide benchmarking, training
and validation data sets for the evaluation of reliability
of novel drug response prediction methods and to
identify new predictive biomarkers based on retrospec-
tive data [173,216]. Thus, clinical decision-making
regarding a particular patient would be supported by a
genomic report integrating comparative studies of
treatment and clinical response obtained from multiple
patients with similar genomic profiles. In this sense,
the Global Alliance for Genomics and Health
(GA4GH) outlines a framework of international poli-
cies and standards for the responsible access to geno-
mic and health-related data [217]. Projects such as the
GA4GH Genome Beacons provide a pioneer bioinfor-
matics framework for hospitals to interrogate clin-
icogenomics data without compromising the privacy
and the ownership of the data set [218]. Importantly,
such a scenario with controlled accession to clinicoge-
nomics information and secure data sharing would
also allow for more robust training, testing and valida-
tion of novel drug prioritisation methods, ultimately
resulting in direct benefit to patients.

7. Conclusions

Cancer is a complex disease that results from the inter-
action of multiple layers of information. The relation-
ship between tumour origin, the appearance of
genomic and transcriptomic variations or microenvi-
ronment interactions, all play a role in making tumour
treatment challenging. Moreover, cancer is charac-
terised by inter- and intratumour heterogeneity, mean-
ing that molecular alterations at multiple levels vary
among tumours from different patients, within the
same patient or even among cells within the same
tumour. For all these reasons, patients may exhibit dif-
ferent responses to the same treatment. As a conse-
quence, there is an wurgent need to develop
computational methodologies addressing the design of
personalised anticancer treatment regimens [173]. Pre-
cision oncology aims to address this scenario by
proposing patient-specific treatments tailored to the
multi-omics profiles of individual tumours and the
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clinical characteristics of each patient. This challenge
cannot be met without bioinformatics, since it requires
the development, testing and application of algorithms

Box 7. Main challenges for the integration of multi-
omics data into routine clinical care.

1 Lack of trained and specialised professionals.

2 Clinical sample accessibility, availability and lack
of unified sample processing protocols.

3 Clinical scalability.

Lack of standardised gold standard data sets for

training and validation of multi-omics data anal-

ysis methods.

Deficient computational infrastructures.

Implementation of data privacy policies.

Implementation of legal and ethical frameworks.

(o)
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to interpret multi-source patient data and guide clini-
cal decision-making. There is an extensive catalogue of
drug prioritisation methods pursuing to respond to
this demand by proposing tailored treatments based
on lists of tumour genetic alterations, gene lists or
expression profiles.

This article has reviewed the state of the art in com-
putational drug selection methodologies. It also
reviewed the bioinformatics methods currently avail-
able for the processing, analysis and interpretation of
genomics and transcriptomics data. In particular, the
computational approaches used for the dissection,
characterisation and drug prioritisation for the thera-
peutic management of ITH, a major cause of variabil-

ity in responses to cancer treatment, were also
described.
Overall, these computational drug prioritisation

methods still rely on the one target—one drug—one dis-
ease notion, in contrast to current therapeutic
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approaches, which often combine a rational and drug-
based synergistic therapeutic regime [219]. Moreover,
cancer treatment research has shifted from a cancer-
centred model to an TME-centred model [220] and
there are still a few methodologies oriented in this
direction. Some bioinformatics efforts predict drug
combination therapies [221] or suggest TME drug
immunomodulators [142] based on omics profiles, but
to date, very few methods exist as these areas are
underexplored and the challenge remains unsolved.
Bioinformatics is crucial to meet the goal of designing
precision medicine-based therapies [222] being capable
of selecting tailored treatments targeting tumour
heterogeneity efficiently and playing a key role in its
incorporation into the clinical practice.
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