
REVIEW

Bioinformatics roadmap for therapy selection in cancer
genomics
Mar�ıa Jos�e Jim�enez-Santos , Santiago Garc�ıa-Mart�ın , Coral Fustero-Torre ,
Tom�as Di Domenico , Gonzalo G�omez-L�opez and F�atima Al-Shahrour

Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain

Keywords

bioinformatics; drug prioritisation; next-

generation sequencing; precision oncology;

treatment selection; tumour heterogeneity

Correspondence

F. Al-Shahrour, Bioinformatics Unit, Spanish

National Cancer Research Centre (CNIO),

Calle Melchor Fernandez Almagro, 3, 28029

Madrid, Spain

Tel: + 34 917 328 000

E-mail: falshahrour@cnio.es

(Received 26 April 2022, revised 22 June

2022, accepted 8 July 2022, available online

20 August 2022)

doi:10.1002/1878-0261.13286

Tumour heterogeneity is one of the main characteristics of cancer and can

be categorised into inter- or intratumour heterogeneity. This heterogeneity

has been revealed as one of the key causes of treatment failure and relapse.

Precision oncology is an emerging field that seeks to design tailored treat-

ments for each cancer patient according to epidemiological, clinical and

omics data. This discipline relies on bioinformatics tools designed to com-

pute scores to prioritise available drugs, with the aim of helping clinicians

in treatment selection. In this review, we describe the current approaches

for therapy selection depending on which type of tumour heterogeneity is

being targeted and the available next-generation sequencing data. We cover

intertumour heterogeneity studies and individual treatment selection using

genomics variants, expression data or multi-omics strategies. We also

describe intratumour dissection through clonal inference and single-cell

transcriptomics, in each case providing bioinformatics tools for tailored

treatment selection. Finally, we discuss how these therapy selection work-

flows could be integrated into the clinical practice.

1. Introduction

Over the past few years, our understanding of cancer

disease has enabled advances in diagnosis and treat-

ment, contributing to improving survival rates in many

tumour types. Current therapeutic management of pri-

mary and disseminated tumours includes surgical

resection, radiotherapy, hormonal therapy, chemother-

apy, targeted therapies and immunotherapy. Targeted

therapies are considered a cornerstone of precision

oncology, that is the use of cancer genomic informa-

tion as a means to stratify individual patients for the

administration of optimal therapeutic modalities [1,2].

Targeted therapies have been conceived on the basis of

the druggable genome paradigm (Box 1), that is the

genes and gene products known (or predicted) to inter-

act with available compounds [3]. In the recent years,

efforts have been focused on defining new predictive

biomarkers of anticancer drug efficacy, and as a conse-

quence, the number of predictive biomarkers approved

by the Food and Drug Administration (FDA) has

increased from 39 in 2013 to 214 in 2022 (i.e. greater

than fivefold in the last 10 years) [4]. Common exam-

ples of targeted therapies are the use of BRAF V600E
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inhibitors in melanoma patients, imatinib to target

BCR-ABL translocations in chronic myeloid leukaemia

and PD1/PD-L1 inhibitors for the immunotherapeutic

treatment of melanoma, lung, renal and other cancer

types. In addition, next-generation sequencing (NGS)

technologies have driven the discovery and develop-

ment of new pharmacogenetic biomarkers, which play

crucial roles in identifying drug responders and nonre-

sponders, avoiding adverse effects and optimising drug

dosage. Nevertheless, targeted therapy development is

challenging since most of the druggable genome

remains unstudied and the clinical setting of targeted

therapies is still underdeveloped. Moreover, even with

the consideration of genomic and transcriptomic

patients’ profiles, some patients may not respond to a

genomically guided treatment. Furthermore, a promi-

nent caveat of current targeted therapies is the onset

of acquired resistance and thus clinical relapse, despite

favourable initial responses in advanced disease [5,6].

Tumour heterogeneity has been revealed as a novel

key factor in the failure of anticancer therapies. The

findings provided by large-scale cancer genomics pro-

jects such as The Cancer Genome Atlas (TCGA), the

International Cancer Genome Consortium (ICGC)

and the Pan-Cancer Analysis of Whole Genomes

(PCAWG) consortia [7–9] have clearly revealed a high

multidimensional genomic heterogeneity among differ-

ent tumour types but also within the same patient,

thus underlining the idea that cancers are not single

diseases but rather an array of disorders with distinct

molecular mechanisms [10]. The concept of tumour

heterogeneity encompasses both inter- and intratumour

heterogeneity (ITH). The former refers to the existence

of different genomic alterations among cancer patients

or within the same individual (i.e. primary vs meta-

static tumour), while the latter describes the intrinsic

clonal diversity found within tumours occurring as a

consequence of cancer somatic evolution and natural

selection. Tumour heterogeneity has been related to

different treatment responses [11,12], the appearance

of drug resistance [13,14] and therefore the patients’

clinical outcome [15,16]. In order to reveal the

relationships between ITH and clinical outcome, the

TRAcking Cancer Evolution through therapy (Rx)

(TRACERx) initiative is performing an extensive

multi-omics profiling of ITH in NSCLC, melanoma,

prostate and renal cancer [17]. Deceased patients are

corecruited to the Posthumous Evaluation of

Advanced Cancer Environment (PEACE)

(NCT03004755) study, which allows for metastatic

sampling from multiple tumour sites. The Glioma

Longitudinal Analysis Consortium (GLASS) is

another international effort whose goal is the molecu-

lar characterisation of gliomas over several time points

in order to understand tumour evolution and identify

therapeutic vulnerabilities [18]. The characterisation of

ITH has also benefited from single-cell techniques that

have allowed high-resolution dissection of both

tumour and tumour microenvironment (TME) cell

composition. In this sense, the Human Tumour Atlas

Network (HTAN) and other initiatives [19,20] are gen-

erating single-cell three-dimensional atlases of tumour

transitions, ITH and TME landscapes for a diverse set

of tumour types. Undoubtedly, these valuable efforts

have the potential to improve cancer detection, preven-

tion and therapeutic discovery. However, the ITH, the

tumour evolution and the potential for competitive

release of resistant tumour subclones are not yet

addressed in cancer therapeutics and clinical practice

[21].

Bioinformatics provides a vast catalogue of method-

ologies and databases required to analyse, integrate

and interpret cancer multi-omics data. Remarkably,

in silico drug prioritisation approaches (Box 2) have

recently emerged to evaluate tumours’ specific genomic

alterations and transcriptomic profiles, matching them

with tailored candidate treatments [22–26]. This review
aims to provide a bioinformatics roadmap and general

guidelines to propose anticancer data-driven treatment

strategies for bulk and single-cell omics data covering

both cancer research and precision oncology scenarios.

Box 1. Druggable genome.

The druggable genome is formed by the set of genes

encoding proteins that are or potentially can be tar-

geted by drugs. Of the � 20 000 coding genes present

in the human genome, � 3000 have been estimated to

be druggable and less than 700 are currently targeted

by FDA-approved drugs [223].

Box 2. In silico prioritisation.

Precision medicine aims to make tailored prescriptions

based on individual omics data. In order to do so, epi-

demiological, clinical and response data from previous

patients are required. Drug prioritisation methods can

integrate these sources of data and compute scores to

rank the available treatments based on the predicted

efficacy. These bioinformatics tools provide clinicians

with evidence-based guidance to prescribe the drug

that better matches the characteristics of each patient.
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Computational approaches required to generate

tumour genomic and transcriptomic profiles and

explore a tumour’s functional activity are also dis-

cussed. Current algorithms for characterising tumour

heterogeneity and dissecting ITH from multi-omics

sources will be addressed together with cutting-edge

methods that exploit the drug sensitivity of tumour cell

subpopulations. Finally, the current limitations and

perspectives in the development and improvement of

novel computational approaches for precision

medicine-based therapies will also be discussed.

2. Genomics-based drug selection

NGS has been widely adopted for the analysis of

tumour DNA extracted from clinical and biological

samples with the aim of detecting clinically relevant

genomic alterations for cancer diagnosis and treatment

guidance. This section describes the computational

workflow to analyse, detect and interpret DNA alter-

ations (Box 3) (i.e. short variants and structural vari-

ants) that can guide cancer therapy selection using

data generated by targeted, whole-exome (WES) and

whole-genome sequencing (WGS) experiments. Cancer

somatic mutations are the main focus of bioinformat-

ics analyses aimed at identifying important druggable

alterations, since targeted therapies directed against

these variants would less likely affect healthy cells.

However, germinal variants that affect drug substrates

or metabolising enzymes can play an important role in

drug effectiveness and toxicity and should not be over-

looked when designing tailored treatment strategies.

2.1. Short variants to guide therapies

The first step for genomics-based drug selection is to

identify clinically relevant alterations in cancer patients

via a variant calling analysis. According to GATK

Best Practices [27], the general workflow of variant

calling consists of nine steps: quality control (QC) and

trimming, alignment, marking duplicates, local realign-

ment of indels, base quality score recalibration

(BQSR), variant calling, filtering and annotation of

variants [28] (Fig. 1). Briefly, after performing sample

QC and trimming, the raw reads are aligned to the ref-

erence genome with tools such as BWA-MEM [29].

Then, duplicated reads must be removed with PICARD

[30]. In order to reduce alignment artefacts and obtain

more accurate sequencing quality estimations, further

processing can be done using GATK tools [31]. There

is a broad selection of variant calling tools such as

MUTECT2 and HAPLOTYPECALLER [31], VARSCAN 2 [32],

VARDICT [33] or SOMATICSNIPER [34] that can be used

to identify short variants, which are comprised of sin-

gle nucleotide variants (SNVs) and insertions or dele-

tions (indels) of less than 50 base pairs (bp). The

reported variants must be filtered in order to remove

low-quality calls and subsequently annotated with

information about their biological impact, their fre-

quency in the population and their clinical relevance.

This type of analysis mainly focuses on somatic vari-

ants occurring in coding regions. Nonsynonymous

SNVs are considered as more damaging, since they

alter the final sequence of the encoded protein and

might affect its correct folding and function [35]. Fur-

thermore, somatic genomic alterations can be classified

according to their frequency in the population as rare

variants or polymorphisms, which are considered clini-

cally benign due to their high frequency (> 1%). In

most patients, at least one detected somatic alteration

is potentially clinically relevant [36,37] since it either

changes the gene function, suggests the use of surveil-

lance measures for prevention or early detection, helps

to establish a diagnosis, influences the prognosis or

guides the selection of therapies.

Some tools for automatic variant annotation are

SNPEFF [38], which determines the biological impact of

candidate variants; or ANNOVAR [39] and the VARI-

ANT EFFECT PREDICTOR (VEP) [40], which additionally

provide information about the frequency of each vari-

ant in the population. On top of that, there are many

public data repositories of acquired knowledge about

Box 3. Genomic variants.

According to their extent, genomic alterations can be

classified into short or structural variants (SVs). Short

variants can be subdivided into single nucleotide vari-

ants (SNVs) or small insertions and deletions of

< 50 bp (indels). On the contrary, SVs affect genomic

regions of ≥ 50 bp and can be further classified

depending on whether the genetic material is con-

served or lost. Balanced SVs arise as a consequence of

inversions and translocations, whereas unbalanced

SVs, also known as copy-number variations (CNVs),

are due to big insertions, deletions or duplications.

Genomic variants can also be classified as germline or

somatic, depending on their origin and extent of the

affected tissue. While germline mutations are inherited

by the progeny and affect the whole organism, somatic

mutations arise spontaneously and are localised in a

specific tissue [224].
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variants, drugs and their interconnections that are use-

ful to annotate candidate somatic variants with. Some

examples are ClinVar [41], a database of genetic vari-

ants and their clinical repercussions; the Catalogue Of

Somatic Mutations In Cancer (COSMIC) [42], a

knowledgebase with information about the impact of

somatic variations in cancer; OncoKB [43] and CIViC

[44], two resources that link somatic cancer variants

Fig. 1. Roadmap for drug prioritisation from different omics profiles. The roadmap is represented as an underground map in which each

next-generation sequencing (NGS) technique is a different line and each step in the workflow is a station. Common steps between work-

flows are displayed as interchange stations. The names of the available tools are preceded by coloured symbols that indicate in which tech-

nique they can be applied. BQSR, base quality score recalibration; DGE, differential gene expression; QC, quality control.
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with their clinical and therapeutic implications; or

DGIdb [45], a database of gene–drug associations.

Furthermore, a number of methodologies and bioin-

formatics tools have been developed with the objective

of making cancer variant interpretation easier and sug-

gest possible treatments based on previous evidence

(Table 1). Most of these resources are patient-centred,

require the somatic variants from the tumour and can

be classified depending on the nature of the input data.

If a list of variants is available, resources such as

MTB-REPORT [46], the CANCER GENOME INTERPRETER

(CGI) [23], the VARIANT INTERPRETATION FOR CANCER

CONSORTIUM META-KNOWLEDGEBASE (VICC METAKB)

[47], PREMEDKB [48] or the SMART CANCER NAVIGA-

TOR [49] can be useful. Some of these tools accept not

only a list of short variants, but also disease and/or

drug queries as input. In case a variant calling file

(VCF) is available, the user can opt for MTBP [50] or

PANDRUGS [24]. The latter accepts both types of inputs

and drug and gene queries. There have also been other

approaches to guide therapy prescription on a large

scale in order to obtain a general view and observe

trends in cohorts of different tumour types [51].

Most of these approaches aim to prioritise drugs

based only on somatic variants. However, germinal

variants are also crucial in drug metabolism, and

therefore in drug effectiveness and toxicity [52]. Thus,

patients can have different responses to the same

treatment, ranging from responsiveness to ineffective-

ness or even adverse drug reactions (ADRs), which

are important causes of morbidity and mortality and

represent a source of financial burden to healthcare

systems [53]. Differences in drug response are mainly

due to genetic variation in genes encoding for drug

substrates or genes that participate in the metabolism

and transport of xenobiotics [54]. By assessing the

germinal variants of each patient and mining pharma-

cogenomic databases such as DrugBank [55],

PharmGKB [56], or the Table of Pharmacogenomic

Biomarkers in Drug Labeling [4], effective compounds

could be prioritised over ineffective or ADR-causing

drugs. PHARMCAT [57] is a tool developed for sug-

gesting tailored treatments based on germinal variants

found in a VCF. Moreover, some resources such as

the MTBP have been developed to account for both

germinal and somatic variants.

Recent publications [58,59] provide comprehensive

lists of variant annotation knowledge bases and bioin-

formatics tools for variant interpretation, biomarker

identification, drug prioritisation and response predic-

tion. All these resources were conceived as supporting

tools to inform clinicians of the available treatment

options for their patients.

Interestingly, the identification of novel biomarkers

of immunotherapy response has become one of the

great challenges in oncology. Tumour mutational bur-

den (TMB) has established itself as a promising geno-

mic biomarker that may help identify patients who are

most likely to benefit from immunotherapy in a wide

range of tumour types [60]. TMB is calculated by

counting the total number of somatic alterations

divided by the total size in Mbp of the regions that

have been sequenced. Nevertheless, there is a lack of

standardisation for TMB assessment, which makes it

difficult to use as a biomarker. High TMB is associ-

ated with improved or clinically relevant patient

response to immunotherapy; however, the utility of

this biomarker has not been fully demonstrated across

all cancer types [61]. Moreover, using bioinformatics

techniques, it is now possible to unravel the TMB con-

tent and generate in silico hypotheses beyond the

TMB-based stratification of patients. This way, we can

prioritise and select targeted therapies based on the

presence of mutations for which treatments already

exist. This is the case of PANDRUGS [24], a platform

that prioritises drug treatments based on actionable

mutations present in TMB.

2.2. Structural variants and mutational

signatures to guide therapies

Genomic sequence alterations that affect large regions

(≥ 50 bp) fall under the umbrella of what is known as

structural variation (SV). A SV is composed of several

types of events arising from different mutational mech-

anisms. Some of these events, such as deletions, inser-

tions or duplications, result in changes in the amount

of genomic sequence. These changes are known as

copy-number variations (CNVs) [62–65]. Throughout

history, a series of different techniques have been

applied to study CNVs. The decreasing costs of WGS

experiments combined with the constant improvement

of variant calling methods are positioning WGS-based

CNV calling as the preferred technique for the analysis

of CNV [66]. CNV can be studied through WGS

experiments by detecting areas in the genome that

have more or less reads than would be normally

expected. This method is commonly known as depth

of coverage (DOC) analysis. CNV has seen an increase

in its applicability in the clinical diagnostics environ-

ment given its robustness to produce results with shal-

low levels of sequencing depth, usually defined as 0.19

to 1.09 coverage of the genome [67]. Even though

most of the currently available CNV characterisation

tools are aimed at the research environment [68], tools

such as WISECONDORX have been created with the
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specific goal of exploiting CNV calling using shallow

WGS (sWGS) in the clinical setting [69]. An essential

requirement for the study of mutational events is the

ability to distinguish potentially significant events from

those present in the healthy population [65]. Several

approaches exist to achieve this, with the two main

categories being those that do not require a normal

reference, or reference-free, and those that do [69].

Reference-free approaches normalise the samples using

known features of the human genome such as GC con-

tent and mappability. Reference-based tools require as

a reference either a single normal sample associated

with the sample of interest or what is sometimes

known as a Panel of Normals (PON) [70]. These nor-

mal samples have the goal of removing variation from

the results, which could in fact be caused by experi-

mental procedures (e.g. sample handling, preparation

and sequencing equipment).

Structural variant events, whether CNV-causing or

not, can be extremely complex in terms of the changes

they produce on the sequence of the genome [63,71].

The characterisation of these events depends on meth-

ods such as the analysis of paired reads and split

reads, and the de novo assembly of the genome of the

sample of interest. The short nature of NGS reads

imposes some limitations on these types of analyses

[63]. Long-read sequencing has given rise to a new

generation of tools and approaches that aims at filling

this gap in our ability to understand SVs [72]. Further-

more, unlike next-generation machines, nanopore-

based sequencers offer great portability and the possi-

bility of analysing data as it is generated (i.e. in a

streaming fashion). Tools are already being developed

with the aim of enabling the characterisation of SV for

clinical diagnostics [73].

Structural variation has a potential impact on both

germline and somatic genomic instability that affects

disease development and might help to select therapies

and report on patients’ drug response. For instance,

chromosomal translocations are relevant in the diagno-

sis of haematological malignancies but also lead to

therapeutic approaches targeting fusion proteins such

as BCR-ABL1 in chronic myeloid leukaemia [74].

Some bioinformatics tools designed to prioritise drugs

based on short variants also accept CNVs [23,46] and/

or gene fusions [47] as input. More advanced

approaches for taking advantage of sWGS CNV call-

ing for diagnostic purposes include efforts towards

generating CNV-based signatures, which may allow

for more precise diagnostics and treatment selection

[75]. Nevertheless, SVs are not yet commonly being

used as molecular targets or biomarkers to guide

patient-specific treatment [76].T
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On the contrary, mutational signatures identified in

genomic DNA can reveal unique patterns of muta-

tional processes that occurred during the course of

cancer development [77,78]. These mutational signa-

tures can include single base substitutions (SBS), dou-

blet base substitutions (DBS), indels, CNV and

genome rearrangements [79]. Interestingly, mutational

signatures may be informative for guiding the identifi-

cation of therapeutically targetable biomarkers, sug-

gesting their application in personalised therapeutic

approaches. In particular, several studies have found

that tumours harbouring mutational signatures of

DNA damage repair deficiency may show therapeutic

responsiveness for either DNA damaging agents or

immunotherapy [80–82]. For example, a mutational

signature associated with pathogenic mutations in

BRCA1 and BRCA2 genes has been identified in sev-

eral cancer types, including breast and ovarian cancer,

suggesting deficient homologous recombination (HR)

and sensitivity to PARP inhibitors [83]. On the con-

trary, previous exposure to DNA-damaging agents

such as chemotherapy has been associated with drug

resistance [84]. Interestingly, mutational signatures can

be used as the mutational footprints of cancer thera-

pies to estimate the contribution of different treat-

ments to the TMB and can reveal their long-term side

effects in the genome [85].

There are several computational strategies for per-

forming mutational signature analyses that in general

differ on the mathematical properties of mutational

signature discovery and can be grouped into two cate-

gories: methods that aim to discover novel signatures

(de novo) or methods to detect already known and val-

idated mutational signatures (refitting) [86,87]. SIGPRO-

FILER [88–90], a framework used for the previous

version of COSMIC, and SIGNATUREANALYZER [91–93]
were the two de novo tools used to analyse a large col-

lection of cancer genomes from PCAWG, TCGA and

ICGC projects [79]. It is worth noting SIGNAL, a

recently published web-based tool for mutational sig-

natures that also calculates the associations between

gene drivers and mutational signatures that could pro-

vide novel therapeutic dependencies [94]. Moreover,

HRDETECT is a predictor of HR deficiency that can be

useful to stratify patients based on their expected sen-

sitivity to PARP inhibitors [95].

3. Transcriptomics-based drug
selection

Transcriptomics profiling has a wide range of applica-

tions in cancer research, from tumour classification,

diagnosis and prognosis to therapeutic selection of

drug candidates. Gene expression measures have

already been incorporated in molecular diagnostics

techniques such as the MammaPrint expression panel

or the Oncotype DX Breast Recurrence Score to guide

clinical decision-making [96,97].

This section focuses on bioinformatics approaches

to prioritise therapeutic candidates based on gene

expression (Fig. 1). First, we briefly summarise the

most common steps in RNA sequencing (RNA-seq)

workflows. Next, we discuss functional enrichment

approaches aimed at revealing biological patterns

underlying gene expression. Finally, we review bioin-

formatics strategies for transcriptome-based drug pri-

oritisation depending on the data format and type.

RNA-seq has become the most used NGS technique

to detect and quantify the presence of RNA in biologi-

cal samples. One of the first steps in a standard RNA-

seq data analysis is to generate a matrix of un-

normalised gene counts by aligning raw sequence reads

to a reference genome or transcriptome [98]. The

STAR aligner [99], and aggregation packages such as

featureCounts [100] or HTSEQ-COUNT [101] are some of

the most widely employed tools to achieve the above

step. Alternatively, alignment-free methods such as

SALMON [102], RSEM [103] or KALLISTO [104] output

transcript-level estimates, are then summarised to the

gene level with R packages such as TXIMETA [105].

Next, the raw gene expression matrix must be nor-

malised and transformed to stabilise intersample vari-

ance. Afterwards, differential gene expression (DGE)

analysis extracts significant differences in RNA abun-

dance between experimental conditions. Well-

established methodologies such as DESeq2 [106],

edgeR [107] or LIMMA-VOOM [108] perform both nor-

malisation and DGE in tandem.

Functional enrichment is often performed following

a DGE analysis with the aim of revealing biological

relationships in the differentially expressed genes list

and of identifying underlying coordinated patterns

(e.g. functional pathways and regulatory modules) in

the expression matrix. Functional enrichment methods

can be categorised into three main types: (a) over-

representation analysis (ORA); (b) functional class

scoring (FCS); and (c) pathway topology [109]. They

commonly exploit annotations from public databases,

ontologies or related gene terms (gene sets) based on

their involvement in a pathway, biological function or

specific cellular compartment [110,111]. ORA methods

statistically evaluate the proportion of genes that share

a particular annotation in a gene list of interest with

respect to what is expected by chance. Web tools such

as FATIGO [112], DAVID [113], ENRICHR [114],

PANTHER [115], WEBGESTALT [116] and others [117]
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follow this approach. As an alternative to ORA meth-

ods, FCS methods consider that coordinated changes

in functionally related genes are as important as large

expression changes in individual genes. To this end,

FCS tools rely on ranked lists (i.e. gene expression

rankings) to generate a single pathway-level enrich-

ment score, which is tested for statistical significance.

Widely employed methods include GSEA [118], CAM-

ERA [119], GSVA [120], PADOG [121], SINGSCORE [122]

and others [123]. Finally, pathway topology analysis

adds another information layer by taking into account

gene–gene interactions along with gene-level statistics

to identify regulatory changes in pathways. Pathway

topology methods have been extensively reviewed by

Ihnatova et al. [124]. Remarkable contributions

include PATHNET [125], which leverages the connectiv-

ity between genes of the same pathway along with the

differences in gene expression between conditions.

Cytoscape [126] and PathVisio [127] offer powerful

visualisation and analysis tools tailored to biological

interaction networks. Moreover, STITCH [128] inte-

grates information from metabolic pathways, com-

pound structures and drug–target relationships to

generate a network of compound–protein interactions.

Drug prioritisation methods can employ transcrip-

tomic profiles as input to suggest which treatments will

be most effective for a given tumour sample. Multiple

bioinformatics strategies are available depending on

the nature and complexity of the data source, ranging

from individual genes (e.g. a single overexpressed gene

from a DGE analysis) to whole expression data matri-

ces.

The integration of genomic and transcriptional pro-

files together with drug response profiles has allowed

the advancement of drug repositioning and drug com-

bination predictions [129]. By finding its druggable

weak spots, pharmacogenomics studies (Box 4) have

been demonstrated to be useful in aiding treatment

selection in cancer cell lines [130–137]. Resources and

tools such as the DEPMAP [130,135–137], the GDSC

[131] and the CTRP [133] are remarkable efforts for

drug prioritisation using transcriptomics. In all cases,

the input is a single gene that can be queried against

large databases of pharmacogenomics assays, allowing

researchers to correlate the expression level of a gene

of interest with the susceptibility to drugs in thousands

of cancer cell lines.

Gene expression signatures (a list of genes whose

expression is associated with a given condition) can be

interrogated for drug prioritisation applying the signa-

ture reversal approach, which relies on the fact that

the expression pattern of drugs indicated for a disease

is often negatively correlated with the changes in gene

expression induced by that disease [138]. For instance,

Cheng and colleagues mined TCGA to generate an

expression signature of EGFR activity, which they

associated with tumour sensitivity to EGFR inhibitors

and other tyrosine kinase inhibitors [139]. Similarly,

the CONNECTIVITY MAP (CMAP) [132] project is gener-

ating a comprehensive catalogue of cellular signatures

representing systematic perturbation to pharmacologic

and genetic perturbagens. Researchers can freely access

the CMAP database or interrogate signatures of inter-

est through its Web portal (Table 2). DRUGVSDISEASE

mines microarray databases to generate ranked expres-

sion profiles for the comparison of drug and disease

gene expression profiles [140]. It features a precalcu-

lated ranked list of differentially expressed genes for

1309 drug compounds applied to cancer cell lines read-

ily available for signature reversal. Expression signa-

tures have also been used to predict response and

prioritise compounds for immunotherapy. TIDE evalu-

ates biomarkers to predict immune check blockade

clinical response for patient stratification [141].

DREIMT performs drug prioritisation analysis for

immunomodulation suggesting candidate immunomod-

ulatory drugs targeting user-supplied gene expression

signatures [142].

The whole normalised expression data matrix can

also be used to prioritise drugs. For instance, follow-

ing the CELLIGNER methodology [143], the transcrip-

tomic profile of individual samples can be aligned to

the most similar cancer cell line, allowing researchers

to harness the extensive pharmacogenomics profiling

of said models to draw hypotheses about drug suscep-

tibility. Moreover, GSEA can be used in conjunction

with DSigDB [144], a database of drug gene sets, to

find whether an experimental condition is enriched in

genes participating in a given drug response. On the

contrary, single sample enrichment methods such as

GSVA perform the aforementioned enrichment

sample-wise instead of per condition, transforming a

gene matrix to a drug signature enrichment matrix.

Then, this matrix can be used for clustering, applying

linear models or other approaches.

Finally, network-based algorithms leveraging path-

way topology have also been used for drug prioritisa-

tion. PRIORCD [145] makes use of a network

propagation algorithm and a drug–drug similarity

Box 4. High-throughput drug screenings.

High-throughput screenings are assays in which large

libraries of compounds are tested in order to discover

candidate drugs with activity against a target.
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network, along with pathway activity profiles to priori-

tise candidate drugs in cancer. Similarly, RPATH [146]

relies on a knowledge graph built from disease, protein

and drug causal relations along with disease and per-

turbed expression signatures to prioritise compounds

for a given disease.

4. Integrative multi-omics strategies
for drug selection

High-throughput technologies have opened up the pos-

sibility of integrating orthogonal omics layers for a

more comprehensive understanding of biological sys-

tems [147]. Drug prioritisation could also benefit from

such integration [148]. Methods such as PANOPLY [149]

or MOALMANAC [25] (Table 2) integrate genomic and

transcriptomic data to identify and prioritise drug tar-

gets. The Cancer Druggable Gene Atlas (TCDA) [150]

is a recently published database with information

about genomic alterations including short variants,

CNVs and gene fusions, expression, gene dependency

and druggability. DRUGCOMBOEXPLORER [151] takes

into account DNA sequencing, gene copy number,

methylation and expression data from cancer patients

to (a) identify driver signalling pathways and (b) pro-

pose anticancer drug combinations.

Transcriptomic networks can also be enriched with

subsequent omics layers to provide functional insight

transcending individual layers. COSMOS [152] inte-

grates phosphoproteomics, transcriptomics and meta-

bolomics to estimate the activity of kinases and

transcription factors. Finally, deep learning algorithms

are becoming promising approaches for multi-omics

integration thanks to their capability of capturing non-

linear and hierarchical features [153]. For instance,

DEEPDRK [154] leverages genomics, transcriptomics,

epigenomics and chemical properties of compounds to

predict drug susceptibility in both cancer cell lines and

patients.

The application of bioinformatics methodologies to

immunotherapy as part of precision oncology is still

in its early stages. However, tools already exist that

allow the design of personalised vaccines [155]. From

the large lists of potential neoantigens generated from

NGS, it is possible to select those with the highest

probability of success, that is to find an optimal

design to generate efficient vaccines based on patient-

specific neoantigen profiles. Neoantigen prediction

pipelines such as PVACTOOLS [156] include different

computational tools to detect neoantigens from

tumour DNA-seq and RNA-seq data. They also esti-

mate the individual’s HLA class and prioritise

neoantigens based on the molecular match with the

patient’s MHC and other parameters [157]. Moreover,

there are programs such as CIBERSORTX [158] or

MCP-COUNTER [159] capable of inferring the presence

of immune infiltrates in tissue from expression data.

Knowledge of the type of immune infiltration present

in a tumour might serve as a guide, together with

TMB values, for treatment selection. Finally, it

should be noted that most of the proposed method-

ologies are still far from being applied in the clinic,

although some such as the prioritisation of drug treat-

ments or neoantigens based on TMB content are

beginning to be used in clinical trials [155].

5. Targeting tumour heterogeneity:
ith and drug selection

ITH functional diversity within individual tumours has

been related to somatic SNVs, SVs, transcriptomic and

epigenetic changes influencing gene expression levels,

the TME status and the antitumour immune response

[160,161]. ITH can be spatial if it occurs at different

regions of the tumour and temporal when it is related

to clonal evolution [14]. We can currently determine

the degree of ITH and characterise each subset of clo-

nal subpopulations [Box 5] based on their specific

mutational or transcriptomic profiles. The knowledge

of ITH can be of great help in prioritising drug treat-

ments or understanding tumour response to treatment.

This section provides an overview of relevant method-

ologies for the dissection of ITH for guiding drug

selection (Fig. 1).

5.1. Genome profiling for targeting tumour

clonality

Tumours can harbour clonal mutations, which are pre-

sent in all cells, and subclonal mutations, which only

affect a subset of them. The prevalence of subclonal

mutations can be used to infer the tumour’s phy-

Box 5. Clonal and subclonal subpopulations.

ITH is characterised by the presence of different

tumour subclones, each one of them exhibiting a fit-

ness that daughter cells inherit. Subclones can harbour

clonal or trunk mutations, which are present in all

cells, and subclonal mutations, which only affect a

subset of cancer cells. The prevalence of subclonal

alterations can be used to infer a tumour’s phylogeny.

Treatment can be a source of selective pressure that

performs purifying selection on sensitive subclones and

increments the fitness of resistant ones.
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logeny, which allows to decipher the order of these

mutations and to identify the current subclones and

the relationships between them. However, one must

take into account that the ability to distinguish

between truly clonal and subclonal mutations appear-

ing to be clonal (pseudo-clonal mutations) depends lar-

gely on the number of regions sequenced, the

sequencing depth and sample purity [21]. Cancer sub-

clones are subject to Darwinian evolution, and each

one of them exhibits a fitness that daughter cells can

inherit. Some studies have suggested that increased

levels of CNV might be advantageous for the subclone

that bears these mutations, which ultimately outcom-

petes its neighbours [162]. Anticancer drug administra-

tion creates a selective pressure that alters subclonal

fitness. Drug-sensitive cells will die, but some sub-

clones, which are usually a minority, may acquire

resistance to the treatment and increase their fitness.

This resistance might be due to pre-existent resistant

subclones or can arise by de novo drug-induced muta-

tions in drug-tolerant cells. Eventually, resistant sub-

clones may expand and cause relapse [14]. An

interesting example of this behaviour is represented by

the stem cell division dynamics described by Xie

et al. In this work, they characterised a subgroup of

quiescent glioblastoma cancer stem cells (CSC) that

evaded antiproliferative chemotherapy and re-entered

the cell cycle, promoting tumour growth and ulti-

mately leading to conventional treatment failure and

relapse [163]. Some authors have proposed a combi-

nation of multiregion sampling to dissect spatial ITH

coupled with monitoring of circulating tumour DNA

(ctDNA) via liquid biopsies to measure clonal evolu-

tion in real time and adapt the therapy accordingly

[164,165]. Other approaches rely on a Bayesian evo-

lutionary framework to study the spatio-temporal

dynamics of cancer subclones within a single patient

[166]. Subclones can be identified using several

approaches, including genome profiling and single-

cell sequencing.

Genome profiling is the preferred strategy to study

clonal evolution. Several bioinformatics tools have

been developed to infer cancer subclones using SNV

allele frequencies, CNV profiles and tumour purity

measures as input. The most remarkable examples are

PYCLONE-VI [167], PHYLOWGS [168], FASTCLONE [169],

SCICLONE [170] or MOBSTER [171]. However, this

approach has several limitations. First, only the muta-

tions that are present in all or the majority of cells will

be detected. Moreover, stromal contamination may

alter mutation frequencies. Finally, these bioinformat-

ics tools perform many prior inference steps that may

introduce errors, which can be propagated in subse-

quent steps [172].

Some drug prioritisation tools initially designed for

intertumour heterogeneity have been used for targeting

ITH as well [173]. In this work, PANDRUGS was run

independently for each inferred subclone and the

results aggregated in order to prioritise drugs that hit

both clonal and subclonal alterations. The term

‘clonetherapy’ was introduced to define the optimal

treatment regime that would cover patient ITH by tar-

geting all subclones, including the minority ones with

the ability to relapse (Fig. 2).

5.2. Single-cell transcriptomics-based drug

selection

Bulk RNA-seq allows for the use of the transcriptome as

a proxy for elucidating cellular phenotypic traits. This

has demonstrated to be useful in uncovering genes

important for cancer progression and possible drug tar-

gets. However, it involves the averaging of the expression

levels in a heterogeneous subpopulation of cells, hiding

what might result in important patterns defining tissue

dynamics, cell fate and transitions. The idea that the

study of predominant cancer subpopulations is insuffi-

cient for informing precision oncology has been already

suggested in several publications [174,175]. To prevent or

to overcome resistance, we need to implement more accu-

rate molecular profiling techniques. Single-cell technolo-

gies are able to dissect ITH at the scale of individual

tumour cells, revealing rare subpopulations and enhanc-

ing our understanding of drug resistance and relapse

[176,177]. In this context, the development of single-cell

RNA-seq (scRNA-seq) technologies has been seen as a

new stepping stone towards an increased understanding

of cancer biology.

In recent years, there have been significant advances

in the generation of computational tools capable of

addressing ITH from a single-cell point of view. How-

ever, the current lack of gold standard analysis guideli-

nes is one of the biggest challenges in the field [178].

Importantly, the generation of community-maintained

and versatile analysis pipelines could help in solving

this issue. The BOLLITO pipeline [179], the WEB-ACCESSI-

BLE SINGLE CELL RNA-SEQ PROCESSING PLATFORM

(WASP) [180] and the SINGLE CELL INTERACTIVE APPLI-

CATION (SCiAp) [181] are some of the latest efforts in

this direction. In general terms, current single-cell anal-

ysis workflows can be subdivided into three main

steps: the raw data processing steps or primary analy-

sis; the normalisation and clustering steps, also known

as secondary analysis, and the tertiary analysis that
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involves the functional interpretation of the results.

Depending on the sequencing platform, it will be nec-

essary to implement some particularities, although the

steps will maintain the same goal (Fig. 1).

The primary analysis is the foundation step in the

single-cell analysis pipeline and refers to the processing

of the raw data. It can be subdivided into sample

demultiplexing, alignment, QC and quantification. This

is a computationally demanding step with the goal of

obtaining a matrix of the gene expression profiles for

each cell in the experiment. Demultiplexing is usually

performed by the sequencer’s built-in software while

the most commonly used aligners include Cell Ranger

[182] and STARSOLO [183]. Pseudo-aligners such as

KALLISTO or ALEVIN [184], capable of performing an

accurate quantification by mapping the reads directly

to the transcriptome, are also frequently used because

of their increased speed.

The secondary analysis steps include cell-based QC,

normalisation, dimensionality reduction and clustering

of the samples. They can be performed using popular

single-cell analysis toolkits such as SEURAT [185] or

SCANPY [186]. Nevertheless, it is important to remark

that these are not the only methodologies available and

that the sparsity (meaning the high fraction of zeroes

present in single-cell matrices) of the analysed data set

or the amount of sequenced cells should guide the algo-

rithm selection. Interesting reviews from Du�o et al.

[187] and Yu et al. [188] could be helpful for performing

this algorithm selection. The manifold learning algo-

rithms are recommended for further exploratory single-

cell data visualisation [189]. For instance, the Uniform

Manifold Approximation and Projection (UMAP) [190]

is considered best practice thanks to its capacity for pre-

serving both global and local structure [178]. The final

goal of all these preprocessing steps is to cluster cells

based on the identification of distinct biological pat-

terns, cell types and cell states. Here, it is important to

note that the selection of a clustering algorithm will

strongly impact further downstream analyses [191].

Common clustering methodologies include

PHENOGRAPH [192], SC3 [193] TSCAN [194] or

SINCERA [195].

Finally, the tertiary analysis helps to describe and

interpret the functional processes that define the biol-

ogy of each cell subpopulation and thus enable the

study of ITH and facilitate finding suitable therapeutic

candidates. These downstream steps involve classic

DGE methods such as the Wilcoxon rank-sum test,

which has been shown to have an overall robust per-

formance in single-cell data sets [196,197] together

with bulk-based methods such as edgeR or LIMMA-

VOOM. Also, single-cell specific functional enrichment

methodologies such as VISION [198] and UCELL [199]

apply bulk-design approaches to individual cells or

groups of cells, generating gene signature scores in a

similar fashion to bulk methods. Further methodologi-

cal developments in this context involve prior

knowledge-driven cell-type annotation using built-in

reference marker collections with SINGLER [200] or

PANGLAODB [201]. In addition, the study of ligand–re-
ceptor interactions between cancer cells and the TME

can be crucial for studying the extrinsic factors that

contribute to ITH [202] and improving our treatment

selections. Tools such as CELLPHONEDB [203] or

NICHENET [204] are useful for modelling intercellular

Fig. 2. Concept of clonetherapy. The conventional approach in cancer treatment is to target the major subclone, since it is the most

represented in a bulk sample. However, if the drug does not hit clonal alterations, other subclones might survive the treatment and expand.

Clonetherapy aims to hit both clonal and subclonal alterations identified in a deconvoluted data set in order to target all subclones, thus

avoiding potential relapse.
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communication and linking ligands to target genes.

Moreover, trajectory inference and expression dynamic

methodologies can help us understand both ‘present’

and ‘future’ of the selected subpopulations. While the

‘present’ of a cell is represented by the captured spliced

mRNA transcripts, the analysis of the unspliced mRNA

can also be used to predict the cell’s future transcrip-

tome, the direction and the speed of that change. SLING-

SHOT [205] and VELOCYTO [206] or SCVELO [207] have been

developed to recapitulate the transcriptional dynamics

within a data set and furthering our understanding of cell

transitions. Such methods are complementary, as SLING-

SHOT allows the ordering of cells based on their current

snapshot, while VELOCYTO or SCVELO facilitates the study

of gene regulation by predicting its future steps.

Together, all these methodologies facilitate our under-

standing of the analysed cells, resulting in a better selec-

tion of subpopulations of interest and helping in the

study of possible clinical targets.

Expression-based drug prioritisation algorithms are

usually applied after functional characterisation of cell

subpopulations. Recent methods such as DEGAS associ-

ate individual cells with disease attributes such as diag-

nosis, prognosis and response to therapy [208],

whereas AUGUR prioritises cell types involved in

response to perturbations [209]. BEYONDCELL is a com-

putational method for identifying tumour cell subpop-

ulations with distinct drug responses and proposing

cancer-specific treatments. In order to do this, Beyond-

cell calculates a drug susceptibility score for each cell,

delineates therapeutic clusters defined as groups of

cells with a similar drug response and generates a pri-

oritised sensitivity-based ranking in order to guide

drug selection [26].

Still, the lack of information about the spatial context

is one the main drawbacks of scRNA-seq methodolo-

gies. This information is of special importance when

characterising new subpopulations, since it allows to

determine whether the observed differences in expres-

sion are a consequence of functional differences or they

rely on different interactions with the TME. Addition-

ally, establishing how the TME is going to affect drug

tolerance in these subpopulations will be crucial for

selecting suitable drug candidates. Spatial transcrip-

tomics (ST) profiling techniques have been recently

developed to tackle this question and hold promise of

generating much more informed tumoral maps. How-

ever, major caveats of this new approach are a lower

resolution (still not at the level of single cells) and a

lower number of captured genes than scRNA-seq [210].

In this context, integrative analysis methods for ST are

part of a trend aimed at generating a common frame-

work of spatial annotation that will help further

enriching scRNA-seq data sets. Tools such as TANGRAM

[211] or SPAOTSC [212], which map scRNA-seq data to

spatial data collected from the same region, could be

used to achieve this goal.

6. Incorporating drug prioritisation
tools into the clinical practice

Therapy selection guided by bioinformatics approaches

is still in its infancy. To date, drug prioritisation meth-

ods face technical and biological challenges (Box 6)

that constitute clear bottlenecks for their application

in routine clinical practice. However, there are cur-

rently remarkable efforts to translate these methodolo-

gies into medical practices for the benefit of patients.

The patient journey defines the evolution of cancer

patients, describing the different stages from disease

prevention to detection, diagnosis, treatment and

follow-up. To diagnose and decide on the best avail-

able treatment options, physicians will need integrated

patient’s information in a clear and interpretable way

through clinical decision support systems. Such sys-

tems will be able to efficiently access electronic medical

records containing multiple data types, including indi-

vidual genomic data at different points in the patient

journey.

Computational methodologies to analyse and inter-

pret NGS data, including drug prioritisation algo-

rithms, will be incorporated in the clinical decision

support systems relying on broad interoperability of

data, metadata, research software and computational

infrastructure. This will require harmonised nomencla-

tures, large and well-annotated genomic data sets

linked to patients’ clinicopathological information and

efficient data exchange (Fig. 3). To address this chal-

lenge, multimodal cancer data must be meaningfully

connected; thus, data harmonisation and standardisa-

tion are crucial. There are several ongoing efforts

towards this direction. For instance, the Findable,

Accessible, Interoperable, Reusable (FAIR) principles

have been proposed to facilitate an efficient clinical

data exchange [213]. The NIH Data Commons

(https://commonfund.nih.gov/commons) and the Can-

cer Research Data Commons (CRDC, https://

datacommons.cancer.gov/) are further examples of

data harmonisation initiatives. On the contrary, initia-

tives promoting the availability of genomic data linked

to enriched clinical annotation have been recently

launched such as the ICGC-ARGO (https://platform.

icgc-argo.org/) [214], which aims to collect a richer

data set of cancer genomes with clinical information,

health and response to therapy, and the Beyond 1 Mil-

lion Genomes initiative (B1MG, https://b1mg-project.
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eu/), which provides a framework for access and inter-

operability of genomic and medical data [215]. In

addition to computational implementations, the

incorporation of multi-omics approaches and in silico

drug prioritisation tools into routine clinical practice

will require further efforts in the healthcare scenario

(Box 7).

In silico drug prioritisation tool performance would

also greatly benefit by extensive and standardised clini-

cal, pathological and genomic annotations integrated

in a federated data-sharing model, storing retrospective

treatment response information while preserving

patients’ data privacy. Such a federated data-sharing

framework would also provide benchmarking, training

and validation data sets for the evaluation of reliability

of novel drug response prediction methods and to

identify new predictive biomarkers based on retrospec-

tive data [173,216]. Thus, clinical decision-making

regarding a particular patient would be supported by a

genomic report integrating comparative studies of

treatment and clinical response obtained from multiple

patients with similar genomic profiles. In this sense,

the Global Alliance for Genomics and Health

(GA4GH) outlines a framework of international poli-

cies and standards for the responsible access to geno-

mic and health-related data [217]. Projects such as the

GA4GH Genome Beacons provide a pioneer bioinfor-

matics framework for hospitals to interrogate clin-

icogenomics data without compromising the privacy

and the ownership of the data set [218]. Importantly,

such a scenario with controlled accession to clinicoge-

nomics information and secure data sharing would

also allow for more robust training, testing and valida-

tion of novel drug prioritisation methods, ultimately

resulting in direct benefit to patients.

7. Conclusions

Cancer is a complex disease that results from the inter-

action of multiple layers of information. The relation-

ship between tumour origin, the appearance of

genomic and transcriptomic variations or microenvi-

ronment interactions, all play a role in making tumour

treatment challenging. Moreover, cancer is charac-

terised by inter- and intratumour heterogeneity, mean-

ing that molecular alterations at multiple levels vary

among tumours from different patients, within the

same patient or even among cells within the same

tumour. For all these reasons, patients may exhibit dif-

ferent responses to the same treatment. As a conse-

quence, there is an urgent need to develop

computational methodologies addressing the design of

personalised anticancer treatment regimens [173]. Pre-

cision oncology aims to address this scenario by

proposing patient-specific treatments tailored to the

multi-omics profiles of individual tumours and the

Box 6. Main biological and technical challenges asso-

ciated with the problem of drug prioritisation.

Biological

1 Incomplete dissection of inter- and intratumour

heterogeneity and lack of knowledge of somatic

evolutionary processes.

2 Poor understanding of the interface between clo-

nal expansion and cancer initiation.

3 Poor understanding of tumour and TME topo-

logical relationships and cell–cell cross-talking.
4 Exhaustion of antitumor immunity during disease

progression.

5 Poor understanding of the specific events leading

to the onset and expansion of drug resistant sub-

clones.

6 Incomplete categorisation of short variants, SVs,

epigenomic and transcriptional driver alterations

and their relationship with drug response.

7 Poor understanding of interrelations between

ageing, senescence and drug response.

8 Missing information about the association of ger-

minal variants and ADRs for most anticancer

drugs.

Technical

1 FFPE preparation of samples, which favours

DNA fragmentation, degradation and alterations

that are difficult to identify as artefacts during

variant calling.

2 Trade-off between scope and read depth. In

genomics, the broader the region sequenced (all

regions using WGS, coding-only using WES or

specific genes using targeted sequencing), the

lower the coverage. Similarly, the higher the

number of sequenced cells, the lower the read

depth in single-cell technologies.

3 Dealing with multi-alignment reads due to repeti-

tive regions in the genome.

4 Short reads are not sufficient to resolve large

SVs, and long-read sequencing strategies have

higher error rates.

5 Lack of gold standard guidelines and information

about the spatial context in single-cell technolo-

gies.

6 Predicting toxic interactions or synergistic effects

of combination therapies.
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clinical characteristics of each patient. This challenge

cannot be met without bioinformatics, since it requires

the development, testing and application of algorithms

to interpret multi-source patient data and guide clini-

cal decision-making. There is an extensive catalogue of

drug prioritisation methods pursuing to respond to

this demand by proposing tailored treatments based

on lists of tumour genetic alterations, gene lists or

expression profiles.

This article has reviewed the state of the art in com-

putational drug selection methodologies. It also

reviewed the bioinformatics methods currently avail-

able for the processing, analysis and interpretation of

genomics and transcriptomics data. In particular, the

computational approaches used for the dissection,

characterisation and drug prioritisation for the thera-

peutic management of ITH, a major cause of variabil-

ity in responses to cancer treatment, were also

described.

Overall, these computational drug prioritisation

methods still rely on the one target–one drug–one dis-

ease notion, in contrast to current therapeutic

Fig. 3. Integration of drug prioritisation methods for clinical decision-making during the cancer patient journey. Integrated bioinformatics anal-

ysis of clinical and multi-omics data from individual cancer patients would generate a report that includes tumour genomics profiling during

the patient journey. Based on such profiles, drug prioritisation methods would provide predictions to propose tailored treatments during the

different stages of disease progression. The genomics report would be completed with retrospective treatment response information

obtained by comparison with other patients with similar clinical and genomic profiles. Data retrieved at each step of the patient journey

would be stored in federated databases for aiding future clinical decisions. DFS, disease-free survival.

Box 7. Main challenges for the integration of multi-

omics data into routine clinical care.

1 Lack of trained and specialised professionals.

2 Clinical sample accessibility, availability and lack

of unified sample processing protocols.

3 Clinical scalability.

4 Lack of standardised gold standard data sets for

training and validation of multi-omics data anal-

ysis methods.

5 Deficient computational infrastructures.

6 Implementation of data privacy policies.

7 Implementation of legal and ethical frameworks.

3897Molecular Oncology 16 (2022) 3881–3908 � 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

M. J. Jim�enez-Santos et al. Bioinformatics roadmap for cancer therapy selection



approaches, which often combine a rational and drug-

based synergistic therapeutic regime [219]. Moreover,

cancer treatment research has shifted from a cancer-

centred model to an TME-centred model [220] and

there are still a few methodologies oriented in this

direction. Some bioinformatics efforts predict drug

combination therapies [221] or suggest TME drug

immunomodulators [142] based on omics profiles, but

to date, very few methods exist as these areas are

underexplored and the challenge remains unsolved.

Bioinformatics is crucial to meet the goal of designing

precision medicine-based therapies [222] being capable

of selecting tailored treatments targeting tumour

heterogeneity efficiently and playing a key role in its

incorporation into the clinical practice.
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