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Osteoporosis (OP) is a chronic bone disease characterized by aberrant microstructure and
macrostructure of bone, leading to reduced bone mass and increased risk of fragile
fractures. Anti-resorptive drugs, especially, bisphosphonates, are currently the treatment
of choice in most developing countries. However, they do have limitations and adverse
effects, which, to some extent, helped the development of anabolic drugs such as
teriparatide and romosozumab. In patients with high or very high risk for fracture,
sequential or combined therapies may be considered with the initial drugs being
anabolic agents. Great endeavors have been made to find next generation drugs with
maximal efficacy and minimal toxicity, and improved understanding of the role of different
signaling pathways and their crosstalk in the pathogenesis of OP may help achieve this
goal. Our review focused on recent progress with regards to the drug development by
modification of Wnt pathway, while other pathways/molecules were also discussed briefly.
In addition, new observations made in recent years in bone biology were summarized and
discussed for the treatment of OP.
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INTRODUCTION

The pathogenesis of osteoporosis (OP) may result from different factors such as aging,
glucocorticoid use and heavy alcohol consumption. Aging is often associated with reduced
bone mass, abnormal microstructure and fragile fracture, which poses a tremendous challenge to
the medical communities (Compston et al., 2019; Tatangelo et al., 2019). Healthy bone has
dynamic and balanced formation and resorption. Thus, two types of drugs, namely, anti-
resorptive and pro-formative, are used to treat OP. Anti-resorptive drugs take their effect by
interfering normal functions of osteoclasts. This type of drugs includes bisphosphonates (BPPs),
estrogen, selective estrogen receptor modulators (SERMs), the antibodies against receptor
activator of nuclear factor κB (NF-κB) ligand (RANKL), etc. While BPs can increase bone
mineral density (BMD), they may decrease the flexibility of bone, increasing fracture risk
(Russell et al., 2007). As such, pro-formative (anabolic) drugs have attracted wide attention in
recent years (Langdahl, 2020). However, the concerns remain with regard to their cost-
effectiveness, the efficacy in cortical bone, the potential adverse effects on endocrine and
cardiovascular systems (Martin, 2016; Miller et al., 2016; Fuggle et al., 2020). Mounting data
indicates a critical role of Wnt signaling pathway in bone formation, and novel therapeutics may
be discovered through modifying inhibitors or activators of this pathway (Lerner and Ohlsson,
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2015). Our review summarized the working mechanisms of
both types of drugs and discussed the potential outcomes of
some investigative drugs with the focus on Wnt pathway.

METHODS

We searched PubMed for combinations of the following indexed
subject headings (MeSH): Osteoporosis, antiresorptive drugs,
anabolic drugs, Wnt signaling pathway, bone formation.

Skeletal Biology
Osteoclasts (OCs) are derived from hematopoietic stem cells
and formed by the fusion of monocytes through complicated
mechanisms. Multiple factors are involved in the
differentiation, activation and survival of OCs including
receptor activator of NF-κB ligand (RANKL), a molecule
produced by different types of cells including osteoblasts
(OBs), OCs, bone marrow stromal cells, lymphocytes, etc.
In an acidic microenvironment formed by the sealing zone
of OCs, cathepsin K is the most important enzyme to degrade
non-mineral components of bone such as collagen type I (Col-
I). The attachment of OCs on bone surface is mediated by
integrins, mainly αvβ3 (Lewiecki, 2011). OBs are derived from
mesenchymal stem cells (MSCs). Mature OBs produce osteoid
consisting of Col-I and non-collagenous proteins.
Mineralization of osteoid ensues and osteoblasts are
embedded in bone, referred to as osteocytes (OCTs)
(Lewiecki, 2011; Eastell et al., 2016). While OCTs were

thought to be quiescent cells, several lines of evidence
suggest they are active participants of bone metabolism.
They can perceive mechanical loading signal and be
regulated by hormones to coordinate coupling processes
of formation and resorption mediated by OCs and OBs.
In addition, OCTs are the major source of sclerostin, a
potent inhibitor of Wnt pathway (Eastell et al., 2016)
(Figure 1).

Anti-Resorptive Durgs
While some anti-resorptive agents such as BPPs, estrogen and
denosumab, have been proven effective in some patients (Cheng
et al., 2020), investigative agents targeting the molecules of
resorption lacuna hold great promises.

Currently Available Anti-resorptive Drugs
While BPPs are commonly used agents for primary and
secondary osteoporosis to increase BMD, they do affect the
flexibility of bone (Russell et al., 2007). They may cause
atypical subtrochanteric fractures and are not recommended
for young patients (Van den Wyngaert et al., 2006; Russell
et al., 2007). Another concern is osteonecrosis of jaw,
particularly, for those who will have dental procedures in the
near future (Van den Wyngaert et al., 2006; Russell et al., 2007).
Estrogen replacement therapy may increase cardiovascular
events, venous thromboembolism and breast cancer (Rossouw
et al., 2002; Almeida et al., 2017). While selective estrogen
receptor modulators (SERMs) have a reduced risk of breast
cancer (Cummings et al., 1999; Lindsay et al., 2009;

FIGURE 1 | Bone remodeling and therapeutic targets for osteoporosis. RANK: Receptor activator of nuclear factor-kb; RANKL: RANK ligand; OPG:
osteoprotegerin.
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Cummings et al., 2010), their efficacy is lower than estrogen
(Ettinger et al., 1999; Silverman et al., 2008; Reid, 2015).

Denosumab is a fully human IgG2 monoclonal antibody
(mAb) against the ligand of the RANK receptors on the
surface of osteoclast precursors (RANKL) (Lacey et al., 2012).
Binding of RANKL to RANK activates multiple signaling
pathways. The binding of TNF receptor-associated factors
(TRAFs) to specific sites in the cytoplasmic domain of RANK
is crucial for differentiation and survival of OCs (Boyce and Xing,
2008). Osteoprotegerin (OPG), a decoy receptor, may compete
with RANKL for the binding to RANK (Kearns et al., 2008;
Infante et al., 2019). Bone mass was significantly reduced in OPG-
knockout mice, while it is increased after overexpressing OPG
(Nakamura et al., 2003) (Figure 1).

Previous studies have demonstrated that denosumab can
improve the structure and thickness of cortical bone, and
reduce the porosity of trabecular bone although it decelerates
the turn-over of bone (Genant et al., 2013; Zebaze et al., 2016).
Clinical trials have shown that in the first year, it may reduce the
risk of vertebral and non-vertebral fractures (Cummings et al.,
2009). While prolonged treatment leads to continuous increase of
BMD, the risk of infection also increases. Besides, atypical
femoral fractures and osteonecrosis may occur although the
incidence is low (Bone et al., 2017). More studies are
warranted to maximize its efficacy and minimize its adverse
events. Of note, after withdrawal of denosumab, the BMD
rapidly declines with subsequent increase in fracture risk.
Thus, additional anti-resorptive drugs are required to maintain
the treatment outcomes (Rizzoli et al., 2010; Collison, 2017).

Anti-resorptive Drugs Under development
Targeting the Molecules of Resorption Lacuna
Cathepsin K, the primary cysteine protease secreted by mature
OCs, is involved in the degradation of Col-I and other bone
matrix proteins (Costa et al., 2011). The observations made from
different animal models have shown that inhibiting cathepsin K
decreases osteoclastic bone resorption and increases bone formation
(Gowen et al., 1999; Duong et al., 2016a; Duong et al., 2016b).
The selective cathepsin K inhibitors, such as Odanacatib (Langdahl
et al., 2012; Statham and Aspray, 2019), ONO-5334 (Engelke
et al., 2014) and MIV-711 (Lindström et al., 2018; Conaghan
et al., 2020), have been shown to reduce bone resorption and
continuously increases BMD at multiple sites. Unfortunately,
due to the adverse events, especially stroke, further development
is restricted (Mullard, 2016; McClung et al., 2019). One explanation
is that cathepsin K deficiency may disrupt the blood-brain
barrier via AKT-mTOR-VEGF signaling, causing neurological
deficits and neuron apoptosis (Zhao et al., 2019). Other concern
is the rapid loss of functions after cessation of treatment (Eastell et al.,
2014). Further, chloride channel-7 (ClC-7) and cathepsin K
coexists and works synergistically in the ruffled border of OCs.
The damage of ClC-7 results in severe OP, possibly due to the
defect in bone degradation caused by the inability to acidify
the sealing zone (Kornak et al., 2001). However, a CIC-7
inhibitor, N53736, showed a long-term anti-resorptive effect in
ovariectomized (OVX) rats (Schaller et al., 2004), thus, more
studies are needed.

As integrin αvβ3 mediates the attachment of OCs onto bone
matrix proteins, it is reasonable to hypothesize that inhibiting the
subunit of this integrin may prevent bone resorption. In different
animal models of induced osteoporosis, αvβ3 integrin antagonists
such as L-000845704 and HSA-ARLDDL significantly increase
the BMD (Murphy et al., 2005; Lin et al., 2017). In addition, a
dual-specific protein, macrophage colony-stimulating factor
(M-CSFRGD), may bind to and inhibit both c-FMS and αvβ3
integrin. In vitro and in vivo studies shows that it inhibits OCs
activity (Zur et al., 2018). These results indicate that targeting
molecules adjacent to resorption lacuna may pave a new way to
the treatment of OP.

All anti-resorptive agents mentioned above are listed in Table1.

Anabolic Drugs
Non-wnt Related Anabolic Drugs
Teriparatide (a recombinant human PTH 1–34) may enhance
bone formation by promoting osteoblast differentiation and functions.
In the early stage of treatment, intermittent administration of
teriparatide stimulates bone formation on cancellous, endosteal,
and periosteal surfaces. Its effects on cortical bone vary at different
sites (Martin, 2016). Randomised controlled trials (RCTs) show a
higher efficacy of teriparatide than risedronate regarding the incidence
of vertebral and non-vertebral fractures (Neer et al., 2001; Kendler
et al., 2018). Similarly, Abaloparatide, a synthetic analogue of PTHrP,
reduces the fracture risk in these sites. In addition, Abaloparatide has a
higher efficacy in the increment of BMD and lower incidence of
hypercalcaemia than Teriparatide (Leder et al., 2015a; Miller et al.,
2016). Further, it is superior to Teriparatide and Alendronate with
regard to the reduction of fracture risks (Miller et al., 2016; Reginster
et al., 2019; Leder et al., 2020). Compared with Teriparatide,
Abaloparatide has higher affinity to PTH1R and is able to
specifically stimulate osteogenesis. Nevertheless, there is a
controversy about whether these effects are due to decreased bone
resorption or increased bone formation (Reginster et al., 2018).
Although no increased risk of osteosarcoma is observed in
patients, laboratory studies have shown a dose-dependent increase
of osteosarcoma in rats treated with either Teriparatide or
Abaloparatide (Vahle et al., 2004; Jolette et al., 2017). Therefore, it
is recommended that the duration of Teriparatide treatment should be
limited to 24months (Andrews et al., 2012).

All currently available anabolic agents are in Table 2. In
detailed discussion of romosozumab and blosozumab will be
presented in the following section.

Wnt Signaling Pathways and Potential Agents and
Targets
Wnt Signaling Pathway Activation
The Wnts are secreted, lipid-modified glycoproteins. After
binding to their cell surface receptors, they can take effect via
either canonical or non-canonical pathways. The canonical
pathway is predominant in bone formation. The receptors of
different Wnts in the canonical pathway consist of the low-
density lipoprotein receptor related protein (LRP) single-pass
transmembrane co-receptors 5/6 and the seven-transmembrane
signaling receptor Frizzled (FZD) (Ng et al., 2019). In the
downstream of this pathway, there is a destruction complex
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containing Axin, adenomatous polyposis coli (APC), casein
kinase 1 (CK1) and glycogen synthase kinase 3β (GSK3β). In
the absence of Wnt ligands, β-catenin is phosphorylated by
GSK3β with subsequent ubiquitination and degradation
(MacDonald et al., 2009; Clevers and Nusse, 2012). Upon Wnt
binding, dishevelled (Dvl) disassembles the destruction complex,

preventing phosphorylation of β-catenin. Non-phosphorylated
β-catenin accumulates in the cytoplasm, and translocates to the
nucleus whereby it forms a nuclear complex with T-cell specific
transcription factor/lymphoid enhancing factor (TCF/LEF)
transcription factor, which then causes the recruitment of co-
activators and induction of gene transcription (Tolwinski and

TABLE 1 | Currently available and promising anti-resorptive agents.

Classification Category Medicine Property Adverse events/limitations

Antiresorptive
drugs

Bisphosphonates (Khosla
et al., 2012; McClung et al.,
2013)

Alendronate i) An analog of inorganic pyrophosphate with a
high affinity for bone hydroxyapatite
ii) Able to prevent endogenous bone
mineralization and inhibit functions and
survival of osteoclasts. (Fleisch, 1998)

i) Osteonecrosis of the jaw
ii) Atypical subtrochanteric femoral fractures
(Van den Wyngaert et al., 2006; Russell
et al., 2007)

Risedronate
Ibandronate
Zoledronic acid

Estrogen (Rossouw et al.,
2002; Eastell et al., 2016)

Estrogen i) Directly enhancing osteogenic differentiation
of MSCs and suppressing osteoblasts
apoptosis
ii) Up-regulating the expression of RANKL in
osteoblasts and the production of OPG, IGF1
and TGF-β, thus, interfering downstream
signal in osteoclasts. (Hofbauer and
Schoppet, 2004; Almeida et al., 2017)
iii) Indirect alteration the expression of
estrogen- responsive target genes, giving rise
to bone turnover. (Weitzmann and Pacifici,
2006; Eastell et al., 2016)
iv) Potential bone formation due to the
connection among estrogen, mechanical
loading, sclerostin and osteocytes. (Lee et al.,
2003; Modder et al., 2011)

i) Lingering risk on cardiovascular
ii) venous thromboembolic events
iii) breast cancer (Rossouw et al., 2002;
Almeida et al., 2017)

Selective estrogen receptor
modulators

Raloxifene (Ettinger
et al., 1999)

Interaction with ERs and a range of tissue-
specific agonist and antagonist effects

Compared to estrogen, without adverse
effects on the breast. (Cummings et al.,
1999; Cummings et al., 2010)Bazedoxifene

(Silverman et al.,
2008)

RANKL inhibitor Denosumab
(Cummings et al.,
2009)

Blocking RANKL-RANK interaction by
neutralizing RANKL to inhibit bone resorption.
(Lacey et al., 2012)

i) Osteonecrosis of the jaw
ii) Atypical subtrochanteric femoral fractures
(Bone et al., 2017)

Promising anti-
resorptive drugs

Cathepsin K inhibitor Odanacatib i) Prevention of bone resorption without
affecting bone formation and continuous
increase of spinal BMD in postmenopausal
women. (Statham and Aspray, 2019)
ii) Robust anti-fracture effect with good
tolerability (Rizzoli et al., 2016)

Stroke (McClung et al., 2019)

ONO-5334 Robust and persistent increase of trabecular
and integral BMD. (Engelke et al., 2014)

The effect on biochemical markers was
rapidly reversible on treatment cessation
(Eastell et al., 2014)

MIV-711 Significant reduction of the biomarkers of
bone resorption and cartilage loss. (Lindström
et al., 2018)

The RCT trails were conducted only in
osteoarthritis currently (Conaghan et al.,
2020)

αvβ3 integrin antagonist L-000845704 Significant increase in spinal BMD. (Murphy
et al., 2005)

Only several preclinical studies in vitro and
animal study

HSA-ARLDDL Prevention of ovariectomized-induced
reduction in cancellous bone volume, bone
surface, and trabecular number in rats (Lin
et al., 2017)

M-CSFRGD i) A dual-specific protein able to bind to and
inhibit both c-FMS and αvβ3 integrin
ii) Suppressing osteoclast activity (Zur et al.,
2018)

Chloride channel-7 inhibitor N53736 i) Overcoming the defect in bone degradation
due to the inability to acidify the sealing zone
ii) A long-term anti-resorptive effect in
ovariectomized rats (Schaller et al., 2004)

No clinical trials
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Wieschaus, 2004; MacDonald et al., 2009; Baron and Kneissel,
2013) (Figure 2).

Non-canonical Wnt signaling pathway is independent of
β-catenin, instead, it takes effects by activating the
heterotrimeric G-proteins and protein kinase C (PKC), which
inhibits MSC differentiation toward adipocyte lineage and

stimulates the nuclear factor of activated T cells (NFAT) to
regulate bone formation and bone resorption (Kohn and
Moon, 2005). Non-canonical Wnt signaling also induces Rho-
or c-Jun N-terminal kinase (JNK)-dependent changes in the actin
cytoskeleton, which facilitates Jun and Sp1 transcription factor to
regulate the bone related molecules such as RANK and Runx2

TABLE 2 | Available anabolic drugs.

Category Medicine Property Adverse events

Parathyroid hormone
receptor agonist

Teriparatide (Neer et al.,
2001)
Abaloparatide (Miller
et al., 2016)

i) Acting on PTH1R on the surface of osteoblasts and resulting in the
induction and transient signalling of intracellular cAMP. (Yang et al.,
2007)
ii) Mitogenic property for osteoblast and driving bone formation by
generating ATP from both glycolysis and mitochondrial respiration.
(Karner and Long, 2018)
iii) Indirectly enhancing Wnt signaling through a variety of other
signaling pathways, including IGF1, FGF2 and BMPs. (Estell and
Rosen, 2021)
iv) Binding toLRP6 to form a complex, leading to increased β-catenin
levels and the expression of osteogenic genes. (Wan et al., 2008)
v) Suppressing sclerostin and promoting osteoblast-driven bone
formation. (Bellido et al., 2013)
vi) Inducing transactivation of Runx2 and osteoblast differentiation
via the cAMP and/or protein kinase A (PKA) pathway. (Swarthout
et al., 2002)

i) Hypercalcaemia
ii) Osteosarcoma (Vahle et al., 2004; Miller
et al., 2016; Jolette et al., 2017)

mAb against sclerostin Romosozumab i) It is pro-anabolic but anti-resorptive by neutralizing sclerostin i) Cardiovascular events
ii) Osteoarthritis (Bouaziz et al., 2015)

Blosozumab Phase 3 results are awaited

FIGURE 2 |Wnt signaling pathway in bone formation. APC: adenomatous polyposis coli; CaMKII: calcium calmodulin-mediated kinase II; CK1: casein kinase one;
Dvl: dishevelled; FZD: frizzled; GSK3β: glycogen synthase kinase 3β; JNK: c-Jun N-terminal kinase; LRP: low density lipoprotein receptor related protein; NFAT: nuclear
factor of activated T cells; RUNX2: runt-related transcription factor 2; TCF/LEF: T-cell specific transcription factor/lymphoid enhancer binding factor.
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(Veeman et al., 2003; Krishnan et al., 2006; Amjadi-Moheb and
Akhavan-Niaki, 2019) (Figure 2).

Wnt Signaling and Bone Anabolism
Wnt signaling pathway enhances bone anabolism by inducing
osteoblast differentiation, suppressing osteoclastogenesis and
preventing adipogenesis. Expression of Wnt target genes such
as Runx2, induces differentiation of MSC precursors to
osteoblastic lineage, promoting bone formation (Gaur et al.,
2005; Davis and Zur Nieden, 2008). Activation of Wnt
pathway increases glycolysis in OBs, providing then the
energy needed for collagen synthesis and matrix
mineralization (Karner and Long, 2017). Remodeling on
cortical bone is increased markedly due to activation of OBs
on both the cortical and trabecular surface. In addition,
canonical Wnt signaling inhibits bone resorption by
increasing OPG production (Boyce et al., 2005). A study
showed that bone formation was reduced in mice deficient
with either FZD receptor or β-catenin although the production
of OPG was not changed. It is postulated that Wnt signaling
may repress osteoclastogenesis in a mechanism different from
RANK/RANKL/OPG axis (Albers et al., 2013). Moreover,
through enhancing phosphorylation of β-catenin, sclerostin
facilitates adipogenesis (Fairfield et al., 2017). In a mouse
model of myeloma, mAb against sclerostin increased bone
mass and decreased the number of bone marrow adipocytes
(McDonald et al., 2017).

Epigenetic Mechanisms Regulating Wnt Signaling
Epigenetic modification of some important molecules in Wnt
pathway may affect bone metabolism. Bone biopsy from
postmenopausal women with osteoporotic fractures shows a
higher serum level of sclerostin. Increased CpGs methylation
in the proximal region of the promoter of the Sost gene reduces
the inhibitory effect of slcerostin on Wnt pathway, thereby
enhancing bone formation (Reppe et al., 2015). Previous
studies have shown that histone acetylation of Wnt gene
promoter is reduced owing to the inhibition of lysine
acetyltransferase 2A (GCN5) expression, resulting in
suppression of Wnt signaling (Jing et al., 2018). In addition,
a histone-lysine N-methyltransferase enzyme, an enhancer of
zeste homolog 2 (EZH2), suppresses osteogenic differentiation
of MSCs. Inhibition of EZH2 prevents bone loss (Dudakovic
et al., 2015; Dudakovic et al., 2016). Overexpression of histone
deacetylases 5 (HDAC5) downregulates the expression of
sclerostin in osteocytes (Wein et al., 2015; Wein et al., 2016).
miRNAs also play an important role in regulation ofWnt signaling
(Amjadi-Moheb and Akhavan-Niaki, 2019). MiR-27a decreases
OC differentiation and bone resorption through a binding site in
the 3′-untranslational region of APC (Guo et al., 2018). During
osteogenic differentiation of human stromal/stem cells, by
inhibiting secreted frizzled-related proteins (sFRPs), dickkopf
(DKK) and sclerostin, the signal amplification circuit between
miR-218 and Wnt/β-catenin signals is established to drive Wnt-
related transcription and OB differentiation (Hassan et al., 2012;
Zhang et al., 2014). Other miRNAs, such as miR-29, miR-542-3p
and miR-335-5p, can also regulate different molecules in Wnt

pathway (Kapinas et al., 2010). Furthermore, miR-16-2*, by
regulating the expression of Runx2, may be involved in OB
differentiation, matrix mineralization and pathogenesis of OP
(Duan et al., 2018).

Wnt Antagonists
Inhibition of canonical Wnt signaling pathway can be done by
neutralizingWnt ligands or blocking their binding to the receptor
LRP/FZD. Wnt antagonists such as Wnt inhibitory factor 1
(WIF-1) and sFRPs prevent ligands binding to their cognate
receptor. WIF-1 is structurally similar to the extracellular portion
of the Derailed/Ryk class of transmembrane Wnt receptors. It
may inhibit Wnt activity during OB differentiation and
maturation (Vaes et al., 2005; Canalis, 2013). However,
overexpression of WIF-1 activates canonical Wnt signaling
and results in the loss of self-renewal potential of resident
hematopoietic stem cells, suggesting it is not an optimal target
for regulation of bone formation (Schaniel et al., 2011).

sFRPs block Wnt signaling by interacting with Wnts or FZD.
Previous studies have demonstrated that sFRP1 is a negative
regulator of cancellous bone formation and overexpression of
sFRP4 in OBs reduces bone mass (Kawano and Kypta, 2003;
Bodine et al., 2004; Nakanishi et al., 2008). Somewhat
surprisingly, deletion of sFRP4 decreases the thickness of
cortical bone, possibly by activating non-canonical signaling
(Kiper et al., 2016; Chen et al., 2019), suggesting that fine-
tuning the concentrations of sFRPs is needed before future trials.

Sclerostin and DKK1 block Wnt/β-catenin pathway by
binding to LRP5/6. Sclerostin is mainly expressed by OCTs,
and its binding to LRP5/6 inhibits bone formation and
enhanced bone resorption (Li et al., 2005). Besides, osteocyte-
produced sclerostin is transported to bone surface or adjacent
OCTs, where it inhibits osteoblast-mediated bone formation, and
increases bone resorption by OCs as well as osteocytic osteolysis
by stimulating RANKL production and downregulating OPG
expression (Ke et al., 2012; Appelman-Dijkstra and Papapoulos,
2018). Sclerostin may also play a role in other signaling pathways.
An in vivo study has shown that mechanical stress activates Wnt
pathway by down-regulating sclerostin expression, whereas
upregulation of sclerostin expression in unloaded bone leads
to bone loss (Robling et al., 2008). Of note, one underlying
mechanism for anabolic effects of intermittent administration
of PTH on bone is to inhibit sclerostin expression (Bellido et al.,
2013).

DKK1 is a secreted glycoprotein produced by OCTs and OBs,
and it contains the cysteine-rich domains that can bind to LRP5/
6. DKK1 coupled with transmembrane receptor Kremen may
form a complex with LRP to inhibit Wnt signaling (Mao et al.,
2002; Pinzone et al., 2009). Further, DKK1 antagonizes
osteoblastogenesis from MSCs and Wnt-mediated OB
differentiation. Increased production of RANKL and decreased
production of OPG mediated by DKK1 causes net bone loss
(Pinzone et al., 2009).

Drugs Related to the Wnt Signaling Pathway
Romosozumab, a humanized antibody that neutralizes sclerostin,
has been approved by the FDA for OP treatment. Several trials
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have demonstrated that it significantly increases BMD and
decreases new vertebral and non-vertebral fractures (McClung
et al., 2014). However, romosozumab did not improve the
fracture-healing-related outcomes of hip fractures (Schemitsch
et al., 2020). A recent study showed that romosozumab induced a
transient bone formation in the first 2 months and a sustained
suppression of bone resorption for up to 12 months (Chavassieux
et al., 2019). As the anabolic effects of anti-sclerostin therapy are
short-lived, it is reasonable to hypothesize that intermittent and
short-term treatment with romosozumab might be just as
effective as the continuous treatment for 12 months (Cosman
et al., 2016; Saag et al., 2017). Sustainable BMD gains can be
achieved by sequential therapy with romosozumab followed by
denosumab (McClung et al., 2018; Kendler et al., 2019; Lewiecki
et al., 2019). The STRUCTURE trial has shown that
romosozumab is superior to Teriparatide with regard to
increase in bone mass and strength (Langdahl et al., 2017).
Romosozumab is not recommended for patients with a
previous myocardial infarction or other cardiovascular events
because of potential adverse effects (Lewiecki et al., 2018). Two
meta-analyses showed inconsistent results in terms of the
increase in cardiovascular risk (Bovijn et al., 2020; Lv et al.,
2020). One explanation is that sclerostin is expressed in aortic
vascular smooth muscle and can inhibit angiotensin II-induced
atherosclerosis. Systemic blockade of sclerostin may affect the
remodeling process in the cardiovascular system (Krishna et al.,
2017; Asadipooya andWeinstock, 2019). A study showed that the
second course of treatment with romosozumab had similar effects
as the treatment in the first year (McClung et al., 2020), however,
the BMD increments were smaller than those observed during the
first year (McClung et al., 2018; Kendler et al., 2019). The
duration of romosozumab treatment remains a matter of
debates. At the moment, it is well accepted that the treatment
should be no longer than 12 months (Table 3).

Blosozumab, another mAb against sclerostin, has shown to be
well-tolerated in completed phase 1 and phase 2 trials. It

increased BMD in a dose-dependent manner. Phase 3 results
are awaited with excitement (McColm et al., 2014; Recker et al.,
2015). To the best of our knowledge, no clinical trials are
conducted to compare the efficacy in BMD increment between
blosozumab and romosozumab.

AbD09097, a new anti-sclerostin agent, was examined in vitro
about its effect on bone formation (Boschert et al., 2016).
Combination of mechanical loading and anti-sclerostin
antibodies in mice caused higher bone formation than either
anti-sclerostin antibodies or mechanical loading alone (Morse
et al., 2018). This study suggests that a combination of
pharmacotherapy and physiotherapy may achieve sustained
improvement of bone quality and persistent reduction of
fracture risk. The effectiveness of the available nanocarriers,
mesoporous silica nanoparticles (MSNs) loading with
osteostatin and SOST siRNA is evaluated, and its
subcutaneous injection up-regulated the expression of
osteogenic related genes, thus, improving bone
microarchitecture. More studies are needed before clinical
application of such delivery system (Mora-Raimundo et al.,
2021).

Preclinical studies have been performed to test the effect of
mAb to DKK1. It improved BMD improvement in OVX rodents,
whereas only a minimal improvement was observed in OVX
monkeys (Glantschnig et al., 2011; Li et al., 2011). Notably, a
bispecific antibody directed at both sclerostin and DKK1 has been
generated and shown a more significant BMD improvement than
mono-antibody in OVX rats (Florio et al., 2016). Because of the
concern of off-target effects of DKK1 inhibitors in non-skeletal
tissues, no clinical trials are currently going on.

Lithium, a GSK3β inhibitor, can activate Wnt-β-catenin
pathway. Mice treated with lithium chloride (LiCl) lowered
fracture risk. It stimulated bone formation, but did not affect
bone resorption (Clement-Lacroix et al., 2005; Vestergaard et al.,
2005). A newly-developed GSK3β inhibitor rapidly increased the
number of OBs and decreased the number of OCs, resulting in a

TABLE 3 | Clinical trials assessing the efficacy of romosozumab in osteoporosis.

Trial and year Rationale/Question
Behind study

Design Conclusion

Frame, 2016 (Cosman
et al., 2016)

Compare the incidence of fractures between
romosozumab-to-denosumab group and the
placebo-to-denosumab group in
postmenopausal women with osteoporosis

Subcutaneous injections of romosozumab
(210 mg monthly) or placebo for 12 months,
followed by subcutaneous injection of
denosumab (60 mg every 6 months) for
12 months

The rates of fractures were significantly lower in
the romosozumab group than in the placebo
group

Arch, 2017 (Saag
et al., 2017)

Compare the incidence of fractures between
romosozumab-to-alendronate group and the
alendronate-to-alendronate group in
postmenopausal women with osteoporosis

Randomly assigned patients to receive
monthly subcutaneous romosozumab
(210 mg) or weekly oral alendronate (70 mg)
for 12 months, followed by open label
alendronate

Compared to alendronate alone, romosozumab
treatment for 12 months followed by
alendronate resulted in a significantly lower risk
of fracture

STRUCTURE, 2017
(Langdahl et al., 2017)

Evaluated the effects of romosozumab or
teriparatide on BMD in women with
postmenopausal osteoporosis transitioning
from bisphosphonates therapy

Patients were randomly assigned to receive
subcutaneous romosozumab (210 mg once
monthly) or subcutaneous teriparatide (20 µg
once daily) after at least 3 years of oral
bisphosphonates

Compared to teriparatide, bone mass and
strength increased to a greater extent in women
treated with romosozumab

Bridge, 2018 (Lewiecki
et al., 2018)

Evaluate the safety and efficacy of
romosozumab in men with osteoporosis

The subjects were randomized to receive
romosozumab 210 mg subcutaneously
monthly or placebo for 12 months

Compared with placebo,treatment with
romosozumab for 12 months increased BMD
significantly and was well tolerated
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significant increase in bone volume, trabecular number and
trabecular thickness (Clement-Lacroix et al., 2005;
Amirhosseini et al., 2018). LY294002, an inhibitor of
phosphatidylinositol-3-kinase-protein kinase B (PI3K-AKT)
signaling pathway, can inhibit OC differentiation. However,
both LiCl and LY294002 are highly toxic at conventional
doses (Huang et al., 2018). Low doses of combined LiCl and
LY294002 not only promote bone formation and inhibit bone
resorption, but also are more effective in the treatment of OP than
either single compound (Bai et al., 2019). Additionally, ample
phytochemicals, such as Baicalin, Aspp049, Wedelolactone,
Ursolic acid, may enhance GSK3β phosphorylation, Runx2
expression, and nuclear translocation of β-catenin, thus,
enhancing osteogenic differentiation and bone formation
(Manandhar et al., 2020). Despite these results, lacking bone
specificity and potential off-target effects hinder further
development of GSK3β inhibitors for the treatment of OP
(Hall et al., 2015).

Animal study was conducted to evaluate the effect of sFRP1
inhibitors on OP and these included imino-oxothiazolidines,
diarylsulfone sulfonamides and N-substituted piperidinyl
diphenylsulfonyl sulfonamides (WAY-316606). The results
showed increased OB activation and bone formation (Claudel
et al., 2019) Further, miR-542-3p and miR-1-3p inhibited sFRP1
expression and induced OB differentiation (Zhang et al., 2018; Gu
et al., 2020). Based on these findings, miRNA-based therapies
targeting sFRPs are likely to become novel approach to prevent
and treat osteoporosis.

The possible therapeutic targets mentioned above have been
identified in Figure 1.

Interaction of Wnt Pathway With Other Signaling
Pathways
Bone morphogenetic proteins (BMPs) belong to the TGF-β
superfamily. Among them, BMP-2 up-regulates the expression
of Runx2 through Smad pathway, leading to enhanced bone
formation. In addition, BMP-2 inhibits the activity of E3
ubiquitin ligase to prevent degradation of β-catenin and up-
regulates the expression of WNT3A, WNT1, and LRP, which
causes accumulation of β-catenin and activation of Wnt signaling
pathway, thereby, increasing bone formation (Wu et al., 2016).

PI3K-AKT pathway can be activated in OBs by various growth
factors. This pathway positively regulates Wnt signaling by
stabilizing β-catenin and deactivating GSK3β. Previous studies
have demonstrated that AKT may form a complex with BMP-2,
and its related downstream signals are essential regulators for OB
differentiation and endochondral ossification. AKT knockout
mice had shorter bones and delayed bone ossification (Ulici
et al., 2009). In addition, AKT phosphorylation by upstream
kinase mTORC2 may cause accumulation of β-catenin both in
cytoplasm and nucleus (Sarbassov et al., 2005; Rybchyn et al.,
2011). One study shows that miR-483-5p mimic activates PI3K-
AKT signaling pathway and affects cell viability, with significant
down-regulation of the expressions of OPG, Runx2 and BMP2.
Consistently, LY294002 and miR-483-5p inhibitor reverse these
effects and increase BMD and biomechanical parameters for
anabolism (Zhao et al., 2021). Moreover, interaction of MAPK

pathway with Wnt signaling not only regulates survival and
apoptosis of OCs, but also enhances BMP-2 expression and
bone formation (Tang et al., 2008; Chen et al., 2014). A study
demonstrates that miR-182-5p inhibits the expression of adenylyl
cyclase isoform 6 (ADCY6) and activation of the Rap1/MAPK
signaling pathway. Down-regulation of miR-182 promotes OB
proliferation and differentiation (Pan et al., 2018).

Other pathways may also have cross-talks with Wnt pathway.
For example, Adenosine Monophosphate Activated Protein
kinase (AMPK) may activate canonical Wnt signaling pathway
and up-regulate the expression of BMP-2 (Zhao et al., 2010).
AMPK also phosphorylates HDAC5, resulting in the activation of
Wnt signaling (Zhao et al., 2011).

Protein kinase C-binding protein NELL-1 is an osteoinductive
growth factor that can bind to β1-integrin on the surface of bone
cells. It not only activates canonical Wnt pathway and regulates
the activity of Runx2, but also has a reciprocal impact on BMP-2
signaling by enhancing osteogenesis and inhibiting adipogenesis
(Zhang et al., 2011; Shen et al., 2016; Pakvasa et al., 2017). In OVX
mice, NELL-1 down-regulated RANKL expression and up-
regulated OPG expression, leading to enhanced bone
formation and decreased number of OCs (James et al., 2015).
Delivering NELL-1 to vertebrae of osteoporotic sheep or femurs
of OVX rats can improve the regeneration of cortical and
trabecular bone (James et al., 2016; James et al., 2017).
Additional studies are needed to determine the feasibility and
efficacy of this protein as an anabolic agent (Figure 3).

Combined and Sequential Therapies
Combined and Sequential Therapies
The effect of the most anti-osteoporotic drugs, except for BPs, is
not sustainable on bone metabolism. In some cases, an
overshooting response may occur when they are discontinued.
In particular, withdrawal of anabolic drugs often causes rapid
bone loss and increases risk of fractures. Further, anabolic
treatment with Teriparatide or Abaloparatide may incite
secondary stimulation of bone resorption. It is reasonable to
postulate that the effects of bone-forming treatments may be
improved and maintained with combined or sequential
treatments. Ongoing clinical studies on combination and
sequential therapies are summarized in Tables 4, 5. It is now
unanimously accepted that the administration of bone-forming
agents should be followed by an anti-resorptive agent. In
addition, the evaluation of the effectiveness of combined
therapies is still ongoing.

DISCUSSION

Pathogenesis of OP, especially, in postmenopausal women, is
multifaceted. Improved understanding of skeletal biology will
help us identify new therapeutic targets with maximal efficacy
and minimal adverse effects. Our review summarized recent
progress in molecular mechanisms and major signaling
pathways involved in bone homeostasis and OP pathogenesis.
The approaches to prevent OP include anti-resorption by
suppressing OC activity and pro-formation by enhancing OB
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functions. OCTs, used to be thought as the quiescent cells
embedded in bone matrix, have been demonstrated to be
critical in the regulation of OCs and OBs activities, warranting
in-depth understanding of OCT biology. Taking cost-
effectiveness into account, the mainstay of current treatments
is still anti-resorptive drugs, particularly, BPPs, in most

developing countries. However, as they can incorporate into
bone and prevent bone resorption, normal dynamic
remodeling process, especially in young adults, is interrupted,
which may reduce the flexibility of bone (Russell et al., 2007).

We focused on Wnt pathway because accumulating data
indicated a pivotal role of this pathway in bone metabolism.

FIGURE 3 | Interaction of Wnt signaling with other signaling pathways. AKT: protein kinase B; AMPK: adenosine monophosphate-activated protein kinase; BMP:
bone morphogenetic protein; BMPR: BMP receptor; ERK: extracellular signal-regulated kinase; GF: growth factor; MEK: mitogen-activated protein kinase; NELL-1:
NEL-like protein one; PI3K: phosphoinositide 3-kinase; Smad: small mothers against decapentaplegic; TRAF: TNF receptor-associated factors.

TABLE 4 | Combination therapies.

Anabolic
agents

Anti-resorptive drugs Methods Conclusions

PTH (1–84) Alendronate (Black et al.,
2003)

Randomly assigned patients to daily treatment with
parathyroid hormone (1–84) (100 µg), alendronate (10 mg),
or both for 12 months

i) There was no evidence of synergy between parathyroid
hormone and alendronate
ii) The anabolic effects of parathyroid hormone may be
reduced when use of alendronate simultaneously

PTH (1–84) Ibandronate (Schafer et al.,
2012)

Participants received either 6 months of concurrent PTH and
ibandronate, followed by 18 months of ibandronate
(concurrent) or two sequential courses of 3 months of PTH
followed by 9 months of ibandronate (sequential) over
2 years

i) BMD did not increasemore than with either treatment alone
ii) Concurrent monthly ibandronate may blunt the effects of
PTH(1–84)

Teriparatide Zoledronic Acid (Cosman
et al., 2011)

Randomly assigned patients to receive a single intravenous
infusion of zoledronic acid 5 mg plus daily teriparatide 20 mg
via subcutaneous injection, zoledronic acid alone, or placebo
infusion plus daily teriparatide 20 mg for 1 year

A beneficial effect of co-administration of teriparatide and
zoledronic acid treatment was shown as compared to
teriparatide or zoledronic acid monotherapy

Teriparatide Denosumab (Tsai et al.,
2013; Tsai et al., 2019)

Patients were assigned in a 1:1:1 ratio to receive 20 µg
teriparatide daily, 60 mg denosumab every 6 months, or
both

Combined teriparatide and denosumab increased BMD
more than either agent alone

Participants were randomly assigned (1:1) to receive
teriparatide 20 µg (standard dose) or 40 µg (high dose) daily
for 9 months. At 3 months, both groups were started on
denosumab 60 mg every 6 months for 12 months

Combined treatment with teriparatide 40 µg and
denosumab increased BMD more than standard
combination therapy
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Comparing with TGF-β and NF-kB pathways, Wnt signaling
pathway is more complicated and more targets are available for
modifications both extra- or intracellularly. Elegant studies from
different animal models have laid a solid foundation for new
drugs development by regulating Wnt pathway. In the canonical
Wnt pathway, the modification of the destruction complex is
under intensive studies. For example, manipulating the activity
GSK3β may enhance anabolic property of OBs (Amirhosseini
et al., 2018). Similarly, regulating the expression of Axin-2 and
APC may cause constitutive activation of canonical pathway to
promote bone formation (Nusse and Clevers, 2017; Huang et al.,
2019). However, the specificity and their potential off-target risks
of some newly developed agents for modifying Wnt pathways
have been halted after phase 1 or phase 2 trials. Delivery systems
using peptides or chemicals with high affinity to bone are
expected to overcome these drawbacks (Guan et al., 2012; Zur
et al., 2018; Rammal et al., 2019). Bi-specific Wnt mimetic
targeting both FZD and LRP has demonstrated a rapid and
robust effect on bone building and correction of bone mass
deficiency (Fowler et al., 2021), however, more studies are
needed before preclinical and clinical trials of this agent.
Besides, a cell/gene therapy in combination with miRNA
manipulation may become effective treatment for osteoporosis.
For example, hybrid vector engineered OVX-BMSCs were used to
lower miR-140*/miR-214 levels, promote osteogenesis and
enhance bone quality (Li et al., 2016). Further, the utilization
of nanocarriers-based therapies that interact Wnt pathway hold
great promise as novel therapy for osteoporosis. In contrast,
because of the complexity and multiple alternatives of non-
canonical Wnt pathway, there is a scarcity of data regarding
the role of non-canonical Wnt pathway in bone metabolism. New
targets may be identified after extensive studies of non-canonical
Wnt pathway (Lerner and Ohlsson, 2015).

Other research interests include the mechanisms and
treatment of the loss of cortical bone as it is more closely
related to osteoporotic fractures. Aging is also an important
factor for OP. Targeting the senescent cells by modification of
the aging-related genes or pharmacological methods, such as
Janus kinase (JAK) inhibitor, have both anti-resorptive and pro-
formative effects on bone (Farr et al., 2017). In addition, more
investigations should be carried out to elucidate the mechanism
for bone erosion in some autoimmune diseases, especially, in

rheumatoid arthritis (Minisola et al., 2021). Of note, osteoporosis
is common in patients with ankylosing spondyloarthritis (AS),
even in young males (Sambrook and Geusens, 2012). A recent
study showed that miR-96 may promote osteoblast
differentiation and bone formation in AS mice via Wnt
signaling activation by binding to sclerostin (Ma et al., 2019).
Further, the major pathway mediating glucocorticoid induced
bone loss need to be further dissected in order to preserve their
anti-inflammatory activity, but avoid the harmful skeletal effect of
this most commonly used drug in autoimmune rheumatic
diseases (Hartmann et al., 2016).

CONCLUSION

Although significant progresses have been made in recent years,
the prevention and treatment of osteoporosis and the related
fractures remain an unmet medical need. In-depth understanding
of molecular events in the pathogenesis of osteoporosis including
epigenetic regulation of Wnt pathway may facilitate the
development of new drugs with better efficacy and less side
effects.
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TABLE 5 | Sequential therapies.

Initial agents Subsequent agents Methods Conclusions

Teriparatide Denosumab Subjects were switched from both the combination and
teriparatide groups to denosumab, and subjects in the
denosumab group were switched to teriparatide. In all groups,
24 months of additional treatment were given. (Leder et al.,
2015b)

In postmenopausal osteoporotic women switching from
teriparatide to denosumab, BMD continued to increase

Denosumab Teriparatide In postmenopausal osteoporotic women switching from
denosumab to teriparatide results in progressive or transient
bone loss

Abaloparatide Alendronate (Bone
et al., 2018)

Patients who had been randomized to either placebo or
abaloparatide (80 µg daily) for 18 months were subsequently
treated with oral alendronate (70 mg weekly) for an additional
24 months

Sequential abaloparatide followed by alendronate had a greater
reducion in the risk of fractures and BMD increased more

Romosozumab Denosumab (Lewiecki
et al., 2019)

Patients received romosozumab or placebo (month 0–12)
followed by denosumab (month 12–36)

BMD were further augmented and fracture risk was reduced by
switching from romosozumab to denosumab
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GLOSSARY

AMPK Adenosine Monophosphate Activated Protein kinase

APC adenomatous polyposis coli

AS ankylosing spondyloarthritis

BMD bone mineral density

BMP Bone morphogenetic protein

BMSCs bone marrow stem cells

BPPs bisphosphonates

CIC-7 Chloride channel-7

CK1 casein kinase 1

Col-I collagen type I

DKK1 Dickkopf 1

EZH2 enhancer of zeste homolog 2

FZD Frizzled;

GCN5 lysine acetyltransferase 2A

GSK3β phosphorylating enzyme glycogen synthase kinase 3β

HDAC5 histone deacetylases 5

JAK Janus kinase

JNK c-Jun N-terminal kinase

LiCl lithium chloride

LRP low density lipoprotein receptor related protein

M-CSF macrophage colony-stimulating factor

MSCs mesenchymal stem cells

NELL-1 NEL-Like molecule-1;

NFAT nuclear factor of activated T cells

OBs osteoblasts

OCs osteoclasts

OP osteoporosis

OPG osteoprotegerin

OCTs osteocytes

OVX ovariectomized

PI3K-AKT phosphatidylinositol-3-kinase-protein kinase B

PKC protein kinase C

RANKL receptor activator of nuclear factor κB (NF-κB) ligand

Runx2 runt-related transcription factor 2

SERMs selective estrogen receptor modulators

sFRPs secreted frizzled-related proteins

TCF/LEF T-cell specific transcription factor/lymphoid enhancing factor

TRAFs TNF receptor-associated factors

WIF-1 Wnt inhibitory factor 1
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