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Glutamatergic transmission in drug
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Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are

a significant burden on healthcare systems all over the world. The positive reinforcing

(rewarding) effects of the above mentioned drugs play a major role in the initiation

and maintenance of the drug-taking habit. Thus, understanding the neurochemical

mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing

the burden of drug addiction in society. Over the last two decades, there has been

an increasing focus on the role of the excitatory neurotransmitter glutamate in drug

addiction. In this review, pharmacological and genetic evidence supporting the role of

glutamate in mediating the rewarding effects of the above described drugs of abuse will

be discussed. Further, the review will discuss the role of glutamate transmission in two

complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the

ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In

addition, several medications approved by the Food and Drug Administration that act by

blocking glutamate transmission will be discussed in the context of drug reward. Finally,

this review will discuss future studies needed to address currently unanswered gaps in

knowledge, which will further elucidate the role of glutamate in the rewarding effects of

drugs of abuse.

Keywords: cocaine, nicotine, alcohol, heroin, reward, nucleus accumbens, prefrontal cortex, microdialysis

Abbreviations: ACPC, 1-aminocyclopropanecarboxylic acid; AMPA, amino-3-hydroxy-5-methyl-4-

isoxazolepropionate/kainate; AP-5, (2R)-amino-5-phosphonovaleric acid; AMN082, N,N′-Bis(diphenylmethyl)-

1,2-ethanediamine; BINA, Biphenyl-indanone A; CGP39551, (E)-(±)-2-Amino-4-methyl-5-phosphono-3-pentenoic

acid ethyl ester; CPP, conditioned place preference; DNQX, 6,7-Dinitroquinoxaline-2,3-dione; 3,4 DCPG, (R)-3,4-

Dicarboxyphenylglycine; (+)-HA-966, -(+)-3-Amino-1-hydroxypyrrolidin-2-one; GABA, γ-aminobutyric acid; GLT,

Glutamate transporter; ICSS, intracranial self-stimulation; L-701,324, 7-Chloro-4-hydroxy-3-(3-phenoxy)phenyl-

2(1H)-quinolinone; LY37268, (1R,4R,5S,6R)-4-Amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid; LY235959,

3S-[3α,4aα,6β,8aα])-decahydro-6-(phosphonomethyl)-3-isoquinolinecarboxylic acid; MK-801, (5R,10S)-(-)-5-Methyl-

10,11-dihydro-5H-dibenzo[a,d]cylcohepten-5,10-imine; mGlu, metabotropic glutamate; MPEP, 2-Methyl-6-

(phenylethynyl)pyridine; MTEP, 3-((2-Methyl-1,3-thiazol-4-yl)ethynyl)pyridine; NAAG, N-acetylaspartyl glutamate;

NAcc, nucleus accumbens; NMDA, N-methyl-D-aspartate; VTA, ventral tegmental area; xCT, light chain of the

cystine-glutamate transporter; PAMs, positive allosteric modulators; 2-PMPA, 2-(Phosphonomethyl)pentane-1,5-

dioic acid; Ro-25-6981, (αR,βS)-α-(4-Hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidinepropanol; ZK200775,

[[3,4-Dihydro-7-(4-morpholinyl)-2,3-dioxo-6-(trifluoromethyl)-1(2H)-quinoxalinyl]methyl]phosphonic acid.

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2015.00404
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2015.00404&domain=pdf&date_stamp=2015-11-05
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:m-dsouza@onu.edu
http://dx.doi.org/10.3389/fnins.2015.00404
http://journal.frontiersin.org/article/10.3389/fnins.2015.00404/abstract
http://loop.frontiersin.org/people/197334/overview


D’Souza Glutamate and drug reward

INTRODUCTION

Rewards increase motivation to perform or repeat tasks and can
be broadly classified as natural and drug rewards (Schultz, 2006).
Natural rewards are critical for survival and include food, water,
and sex. In contrast, drug rewards are consumed for their ability
to produce pleasure and euphoria. Although both natural and
drug rewards activate similar systems in the brain, the stimulation
of reward systems by drug rewards is often much more powerful
than that produced by natural rewards (Wise, 1987; Koob, 1992a;
Berridge and Robinson, 1998; Kelley and Berridge, 2002; Dileone
et al., 2012). Furthermore, changes in neuronal communication
induced by drug rewards in the brain are so powerful that they
can alter controlled social use of a substance into uncontrolled
compulsive use in vulnerable individuals (Koob et al., 2004 but
also see Pelchat, 2009; Volkow et al., 2013). This transition to
uncontrolled compulsive use is termed addiction, which results
in significant mortality and morbidity all over the world.

Drug rewards can be broadly classified into licit (e.g., alcohol
and nicotine) and illicit (e.g., cocaine, heroin) substances. These
drugs can also be classified based on their effects in humans as
stimulants (cocaine and nicotine) and depressants (alcohol and
heroin). Irrespective of the type of drug, the rewarding effects
associated with drugs of abuse play a role in the initiation and
maintenance of the drug taking habit (Wise, 1987). Therefore,
identifying neural substrates that mediate the rewarding effects
of drugs of abuse will help in our understanding of processes
involved in the development of drug addiction and help in the
discovery of medications for its treatment.

Over the last three decades, the role of the excitatory
neurotransmitter glutamate has been extensively studied in
several aspects of drug addiction, including drug reward.
Interestingly, some recent studies have demonstrated that
glutamate may be involved in mediating natural reward as well
(Bisaga et al., 2008; Pitchers et al., 2012; Mietlicki-Baase et al.,
2013). However, this review will restrict its focus on the role of
glutamate in drug reward. Specifically, the review will describe
the role of glutamate in the rewarding effects of drugs such
as cocaine, nicotine, alcohol, and heroin. First the effects of
glutamate transmission blockade on behavioral measures of drug
reward will be discussed. Next, the role of glutamate in specific
brain sites such as the ventral tegmental area (VTA) and nucleus
accumbens (NAcc), which are associated with the rewarding
effects of drugs of abuse will be discussed. Finally, the review
will discuss gaps in knowledge that may be addressed by future
studies with respect to the role of glutamate in drug reward.

BEHAVIORAL MEASURES OF THE
REWARDING/REINFORCING EFFECTS OF
DRUGS OF ABUSE

In this review, discussion will be restricted to three models
commonly used to assess the rewarding effects of drugs of
abuse. These include drug self-administration, drug-induced
conditioned place preference (CPP), and intracranial self-
stimulation (ICSS). Drug self-administration is the most robust

and reliable model to measure the rewarding effects of drugs
of abuse (O’Connor et al., 2011). Drug self-administration can
be operant (e.g., animal has to press a lever or poke its nose
into a designated hole) or non-operant (e.g., oral consumption
of a drug when presented with a choice of drug and non-
drug bottles). Operant drug self-administration is commonly
used to assess the reinforcing effects of nicotine, cocaine,
alcohol, and heroin, while non-operant self-administration is
used to assess the reinforcing effects of alcohol. Operant drug
self-administration involves either fixed- or progressive-ratio
schedules. Fixed-ratio schedules, in which the animal has to
press a lever (or poke its nose into a particular hole) a
fixed number of times to obtain the drug, are generally used
to measure the reinforcing effects of a drug. In contrast,
progressive-ratio schedules, which require increasing responses
to obtain each successive drug infusions/delivery, are used
for measuring the motivational effects of a drug. The main
measure determined by the progressive-ratio schedules is the
break point, defined as the number of ratios completed by
the subject per session. In other words, break point, reflects
the maximum work an animal will perform to obtain another
infusion/delivery of the drug. Several studies have demonstrated
reliable intravenous self-administration of cocaine, nicotine,
and heroin under both fixed- and progressive-ratio schedules
(e.g., Roberts and Bennett, 1993; Duvauchelle et al., 1998;
Paterson and Markou, 2005). Additionally, several studies have
demonstrated oral self-administration of alcohol using the two
bottle choice paradigm (e.g., Grant and Samson, 1985; Pfeffer
and Samson, 1985; Samson and Doyle, 1985; Suzuki et al.,
1988).

The rewarding effects of drugs of abuse can also be studied
using the CPP procedure (for review see Tzschentke, 2007).
In this procedure, the preference of an animal for a drug-
paired environment is compared to its preference for a vehicle
(control)-paired environment. Typically, the apparatus used for
the procedure consists of atleast two chambers with distinct
characteristics (e.g., color, texture, flooring). The animal is
initially given a choice to explore both chambers, and the time
spent by the animal in each chamber is noted. Subsequently,
during training, the animal is consistently confined to one of
the two chambers (drug-paired chamber) after administration
of drug of abuse being studied. In another temporally distinct
training session, the animal is treated with vehicle (control) and
placed in the other chamber, referred to as the vehicle-paired
chamber. After several pairings of the drug and vehicle with
the drug- and vehicle-paired chamber, respectively, the animal is
given a chance to simultaneously explore both chambers during
a test session. The repeated pairing of the drug-paired chamber
with the rewarding effects of the drug over time results in a
preference for the drug-paired chamber compared to the vehicle-
paired chamber during the test session, reflected by the animal
spending more time in the drug-paired chamber. Notably, the
test session is conducted without administration of the drug of
abuse being studied. Several studies have demonstrated CPP with
cocaine, nicotine, alcohol, and heroin (e.g., Reid et al., 1985;
Schenk et al., 1985; Nomikos and Spyraki, 1988; Le Foll and
Goldberg, 2005; Xu et al., 2015).
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The rewarding effects of drugs of abuse can also be assessed
using ICSS, which involves stimulation of brain reward circuits
using brief electrical pulses (Markou and Koob, 1993). In this
procedure, animals are surgically implanted with electrodes,
which stimulate discrete brain areas associated with reward (e.g.,
the lateral hypothalamus or NAcc). After recovery from surgery,
the animals are trained to self-stimulate using brief electrical
currents of different strengths. Once the animals are trained,
a reward threshold, defined as the minimal strength of the
electric current required to maintain self-stimulation behavior, is
determined. Administration of drugs of abuse lower the reward
threshold required to maintain ICSS behavior (e.g., Kornetsky
and Esposito, 1979; Harrison et al., 2002; Gill et al., 2004; Kenny
et al., 2009).

In summary, several different animal models are available to
assess the rewarding effects of drugs of abuse. The readers are
referred to other scholarly work for detailed discussion of these
and other models to assess the rewarding effects of drugs of abuse
(for review see Brady, 1991; Markou and Koob, 1993; Sanchis-
Segura and Spanagel, 2006; Tzschentke, 2007; Negus and Miller,
2014). The subsequent sections of the reviewwill focus on the role
of glutamate in drug reward, which has been elucidated using the
above described animal models.

GLUTAMATE AND DRUGS OF ABUSE

General Overview of Glutamate
Transmission
Glutamate is the major excitatory neurotransmitter in the
mammalian brain and accounts for approximately 70% of
synaptic transmission in the central nervous system (Nicholls,
1993; Niciu et al., 2012). The actions of glutamate are mediated
by both fast-acting ligand-gated ion channels, commonly
referred to as ionotropic glutamate receptors, and slow-acting
G-protein coupled receptors also known as metabotropic
glutamate (mGlu) receptors (Wisden and Seeburg, 1993;
Niswender and Conn, 2010). The ionotropic glutamate
receptors include N-methyl-D-aspartate (NMDA), amino-3-
hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and kainate
receptors. NMDA receptors are heterotetramers composed
of NR1, NR2 (NR2A-D), and rarely NR3 subunits (Zhu
and Paoletti, 2015). NMDA receptors are complex receptors
and require binding of glutamate, the co-agonist glycine,
and membrane depolarization for removal of a magnesium
block. This membrane depolarization occurs via activation of
AMPA receptors, which are described as workhorses amongst
the glutamate receptors. AMPA receptors are also tetramers
and are composed of GluR 1–4 subunits (Hollmann and
Heinemann, 1994). Unique subunit combinations confer
differential glutamate signaling properties to the NMDA and
AMPA receptors.

In addition to the ionotropic receptors, eight mGlu receptors
have been identified and are classified into three Groups (I, II, and
III) depending on their signal transduction pathways, sequence
homology, and pharmacological selectivity (Pin and Duvoisin,
1995; Niswender and Conn, 2010). Group I (mGlu1 and mGlu5)

receptors are predominantly located postsynaptically, and Group
II (mGlu2 and mGlu3) and Group III (mGlu4, mGlu6, mGlu7,
and mGlu8) receptors are primarily found on presynaptic
glutamate terminals and glial cells. Notably, the Group II and III
mGlu receptors negatively regulate glutamate transmission, i.e.,
activation of these receptors decreases glutamate release. In other
words, an agonist or positive allosteric modulator at Group II
or III mGlu receptors decreases glutamate transmission. There
is an increasing focus on the role of metabotropic receptors
in drug reward and addiction (Duncan and Lawrence, 2012).
Activation of either the ionotropic or mGlu receptors results
in stimulation of a number of intracellular signaling pathways,
ultimately leading to neuronal plasticity. In fact, drug-induced
plasticity in glutamatergic transmission is critically involved in
the development of drug addiction (Kalivas, 2004, 2009; van
Huijstee and Mansvelder, 2014).

Extracellular glutamate is cleared from the synapse by
excitatory amino acid transporters (EAATs) and vesicular
glutamate transporters (VGLUTs). The EAATs are located on
glutamate terminals and presynaptic glial cells and play an
important role in glutamate homeostasis (O’Shea, 2002; Kalivas,
2009). Till date several different types of EAATs have been
reported in animals (GLT-1, GLAST, and EAAC1) and humans
(EAAT1, EAAT2, and EAAT3) (Arriza et al., 1994). VGLUTs are
mainly responsible for the uptake and sequestration of glutamate
into presynaptic vesicles for storage. So far three different
isoforms of VGLUTs (VGLUT1, VGLUT2, and VGLUT3) have
been discovered (El Mestikawy et al., 2011). Glutamate can also
be transported back into the extrasynaptic space via the cystine-
glutamate antiporter located on glial cells (Lewerenz et al., 2012).
The cystine-glutamate antiporter exchanges extracellular cystine
for intracellular glutamate and serves as a source non-vesicular
glutamate release. Glutamate transporters can serve as targets for
attenuating the rewarding effects of drugs of abuse (Ramirez-
Niño et al., 2013; Rao et al., 2015a).

Drugs of Abuse and Alteration of
Glutamate Transmission
Drugs of abuse alter glutamate transmission via different
mechanisms. The primary site of action of cocaine is the
dopamine uptake transporter (DAT; Ritz et al., 1987). Cocaine
blocks DAT and increases dopamine levels, which mediates
the rewarding effects of cocaine. Cocaine-induced increase in
synaptic dopamine levels activates presynaptic or postsynaptic
D1 dopamine receptors, which indirectly increases glutamate
transmission. Activation of presynaptic D1 receptors regulates
cocaine-induced increase in glutamate levels (Pierce et al.,
1996b). Additionally, dopamine can bind to postsynaptic D1
receptors and regulates ionotropic glutamate transmission via the
NMDA and AMPA receptors (for review see Wolf et al., 2003).
For example, D1 receptor activation increases AMPA receptor
trafficking and insertion into the membrane via protein kinase
A-mediated phosphorylation (Gao and Wolf, 2007). Further,
activation of D1 receptors increases NMDA-mediated glutamate
signaling via either increased insertion in the postsynaptic
membrane or functional cross-talk between D1 and NMDA
receptors (Dunah and Standaert, 2001; Ladepeche et al., 2013).
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On the other hand nicotine, another stimulant, increases
glutamate transmission by binding to excitatory α7 homomeric
nicotinic acetylcholine receptors located on presynaptic
glutamate terminals (Mansvelder and McGehee, 2000). In
addition, nicotine possibly increases glutamate signaling via
dopaminergic mechanisms such as those described for cocaine
(Mansvelder et al., 2002). In summary, psychostimulants like
cocaine and nicotine increase glutamate transmission without
directly interacting with glutamate receptors.

Studies using patch-clamp and other electrophysiological
techniques in brain slices report that alcohol inhibits postsynaptic
NMDA- and non-NMDA-mediated glutamate transmission
(Lovinger et al., 1989, 1990; Nie et al., 1993; Carta et al.,
2003). Further, electrophysiology studies suggest that alcohol
inhibits presynaptic glutamate release (Hendricson et al., 2003,
2004; Ziskind-Conhaim et al., 2003). Conversely, using in vivo
microdialysis, some studies report an increase in glutamate
levels after alcohol administration (Moghaddam and Bolinao,
1994). This alcohol-induced increase in glutamate release is
possibly due to inhibition of GABAergic interneurons that
in turn inhibit presynaptic glutamate terminals. Another
presynaptic mechanism for alcohol-induced increase in
glutamate transmission could be via activation of D1 receptors
(Deng et al., 2009; for review see Roberto et al., 2006).
Electrophysiological studies suggest that repeated exposure
to alcohol facilitates presynaptic and postsynaptic glutamate
transmission (Zhu et al., 2007).

Finally, heroin, which mainly binds to mu opioid receptors,
alters glutamate transmission via several different mechanisms.
For example, activation of mu opioid receptors decreases
NMDA- and non-NMDA mediated glutamate transmission via
presynaptic mechanisms (Martin et al., 1997). Further, direct
interaction between mu opioid receptors and NMDA receptors
has been demonstrated in several brain regions (Rodriguez-
Muñoz et al., 2012). Interestingly, mu-opioid receptor activation
increases postsynaptic NMDA-mediated glutamate transmission
via activation of protein kinase C (Chen andHuang, 1991;Martin
et al., 1997). Heroin, similar to alcohol, can potentially increase
glutamate transmission by inhibiting GABAergic interneurons,
which inhibit presynaptic glutamate terminals (Xie and Lewis,
1991). Finally, heroin can increase glutamate signaling indirectly
via dopaminergic mechanisms as described above for cocaine
(for review see Svenningsson et al., 2005; Chartoff and Connery,
2014).

In summary, amongst the drugs of abuse being discussed in
this review, only alcohol directly interacts with the glutamate
receptors. The other drugs of abuse discussed in this review
alter glutamate transmission indirectly via presynaptic and
postsynaptic mechanisms. In the subsequent section, we will
discuss the effects of blocking glutamatergic transmission using
pharmacological compounds on behavioral measures of drug
reward.

Blockade of Glutamatergic Transmission
and Behavioral Measures of Drug Reward
Systemic administration of pharmacological compounds that
block glutamate transmission attenuated the reinforcing effects

of drugs of abuse (see Table 1). For example, systemic
administration of NMDA receptor antagonists attenuated self-
administration of cocaine (Pierce et al., 1997; Pulvirenti et al.,
1997; Hyytiä et al., 1999; Allen et al., 2005; Blokhina et al., 2005;
but see also Hyytiä et al., 1999), alcohol (Shelton and Balster,
1997), and nicotine (Kenny et al., 2009). Additionally, systemic
administration of the NMDA receptor antagonists attenuated
cocaine- and alcohol-induced CPP (Cervo and Samanin, 1995;
Biala and Kotlinska, 1999; Boyce-Rustay and Cunningham, 2004;
Maldonado et al., 2007) as well as nicotine-induced lowering
of ICSS thresholds (Kenny et al., 2009). Together, the above
studies support a role for NMDA receptors in the rewarding
effects of cocaine, nicotine and alcohol. Interestingly, systemic
administration of NMDA receptor antagonists increased heroin
self-administration. The increase in heroin self-administration
was however observed in the first hour of a three hour self-
administration session, thus suggesting that the increase in
heroin self-administration may be an attempt to compensate for
the decrease in the rewarding effects of heroin (Xi and Stein,
2002). Alternatively, NMDA-mediated glutamate transmission
may have a differential role in the reinforcing effects of
heroin compared to cocaine, nicotine, and alcohol. Further
work using a progressive-ratio schedule will be required, to
determine if NMDA receptor blockade increases or decreases the
rewarding effects of heroin. In summary, one can conclude that
systemic administration of NMDA receptor antagonists generally
attenuates the rewarding effects of drugs of abuse.

Intriguingly, several animal studies have shown that NMDA
receptors have rewarding effects of their own (Carlezon and
Wise, 1993). Further in humans, NMDA receptor antagonists
induce a psychosis-like state (Malhotra et al., 1996). The
psychotic effects, though, are less pronounced or even absent
in some NMDA receptor antagonists and NMDA receptor
antagonists have been approved for use in humans. For
example, the FDA has approved memantine, a non-competitive
NMDA antagonist, for the treatment of Alzheimer’s disease
(Cummings, 2004). Interestingly, clinical studies report that
memantine decreased the positive subjective effects of cigarette
smoking and intravenous heroin in human subjects (Comer
and Sullivan, 2007; Jackson et al., 2009). In contrast, high
doses of memantine increased the subjective effects of cocaine
in humans (Collins et al., 1998). Acamprosate, a FDA
approved medication for the treatment of alcohol use disorder,
decreases glutamatergic transmission by blocking NMDA-
mediated glutamate transmission (Rammes et al., 2001; Mann
et al., 2008; but see Popp and Lovinger, 2000). In animals,
acamprosate attenuated the rewarding effects of alcohol and
cocaine (Olive et al., 2002; McGeehan and Olive, 2003a). Finally,
another non-competitive NMDA antagonist called ketamine, not
yet approved by the FDA, has shown promise in the treatment of
severely depressed patients (for review see Coyle and Laws, 2015).
Together, the above described medications suggest that NMDA
receptor is a viable target for future drug development.

NMDA-mediated glutamate transmission can be disrupted
using other approaches. One such approach may be the
use of subunit selective NMDA receptor antagonists such as
ifenprodil, which is selective for the NR2B subunit of the
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NMDA receptor. Administration of ifenprodil did not reduce
oral alcohol self-administration or alcohol-induced CPP (Yaka
et al., 2003). However, the role of specific NMDA receptor
subunits in rewarding effects of other drugs of abuse has not
been systematically addressed. Currently, the lack of NMDA
subunit-specific pharmacological ligands is an impediment to the
systemic assessment of the role of NMDA receptors composed
of different subunits in drug reward. NMDA-mediated glutamate
transmission can also be decreased by manipulating the glycine
site of the NMDA receptors. Glycine is a co-agonist required for
activation of the NMDA receptor and administration of a partial
agonist that binds to the glycine site of the NMDA receptor
decreased self-administration of cocaine (Cervo et al., 2004) and
nicotine (Levin et al., 2011). Further, ACPC, a partial agonist at
the glycine site of the NMDA receptor, attenuated cocaine- and
nicotine-induced CPP (Papp et al., 2002; Yang et al., 2013).

Decrease in ionotropic-mediated glutamate transmission via
blockade of AMPA receptors attenuated self-administration
of cocaine (Pierce et al., 1997) and alcohol (Stephens and
Brown, 1999). In addition, activation of AMPA receptors
facilitated heroin-induced CPP (Xu et al., 2015). Together,
these studies support a role for the AMPA receptors in drug
reward. Topiramate, a FDA-approved anti-epileptic medication,
attenuates AMPA-mediated glutamate transmission (Gryder and
Rogawski, 2003). Relevant to this review, administration of
topiramate decreased consumption of alcohol in C57BL/6J
mice compared to vehicle, further supporting a role for the
AMPA receptors in the reinforcing effects of alcohol. Notably,
in abstinent human smokers, topiramate treatment increased
the subjective effects of cigarette smoking. This enhancement
in rewarding effects of cigarette smoking could be due to an
increase in nicotine withdrawal effects in abstinent smokers (Reid
et al., 2007). In support of this hypothesis, a study reported
that blockade of AMPA receptors induced aversive withdrawal-
like effects in nicotine-dependent rats (Kenny et al., 2003).
More recently, a preliminary study reported that topiramate
compared to placebo resulted in higher quit rates amongst
smokers (Oncken et al., 2014). In addition to blocking AMPA
receptors, topiramate can act via other mechanisms including
blockade of presynaptic voltage-gated calcium and sodium ion
channels, which must be kept in mind while interpreting
the findings of the above described studies (Rosenfeld, 1997).
Considering that drugs of abuse, especially psychostimulants,
significantly affect AMPA-receptor trafficking (Wolf, 2010), it is
surprising that the role of AMPA receptors in drug reward has
not been extensively studied. Future studies targeting specific
AMPA receptor subunits may help in better understanding of
the role of AMPA receptors in drug reward. More recently, the
FDA approved a non-competitive AMPA receptor antagonist,
perampanel, for the treatment of epilepsy. Although the effects of
perampanel on drug reward have not been explored, the approval
of an AMPA receptor antagonist for clinical use suggests that
the AMPA receptors may be a safe and viable target for the
discovery and development of drugs targeting drug reward and
the treatment of drug addiction.

Blockade of glutamate transmission via mGlu receptors also
attenuated the rewarding effects of drugs of abuse. Blockade

of mGlu1 receptors attenuated alcohol-induced CPP (Kotlinska
et al., 2011). The role of mGlu1 receptors in the rewarding effects
of other drugs of abuse has not been explored. Blocking glutamate
transmission via the mGlu5 receptor using mGlu5 receptor
negative allosteric modulators MPEP or MTEP attenuated self-
administration of cocaine (Tessari et al., 2004; Kenny et al., 2005;
Martin-Fardon et al., 2009; Keck et al., 2014), nicotine (Paterson
et al., 2003; Paterson and Markou, 2005; Liechti and Markou,
2007; Palmatier et al., 2008), alcohol (Olive et al., 2005; Schroeder
et al., 2005; Hodge et al., 2006; Tanchuck et al., 2011), and heroin
(van der Kam et al., 2007). Further, the blockade of mGlu5
receptors using the above compounds attenuated cocaine- and
nicotine-induced CPP (McGeehan and Olive, 2003b; Herzig and
Schmidt, 2004; Yararbas et al., 2010). In summary, the above
studies suggest that mGlu5-mediated glutamate transmission
mediates the rewarding effects of cocaine, nicotine, alcohol, and
heroin.

On the other hand, not all studies are consistent with
respect to the role of mGlu5 receptors in drug reward. For
example, blockade of mGlu5 receptors using the negative
allosteric modulators MPEP orMTEP had no effects on nicotine-
and cocaine-induced CPP, respectively (Herzig and Schmidt,
2004; Veeneman et al., 2011). In contrast, another study found
that mGlu5 negative allosteric modulator MPEP facilitated
cocaine-, nicotine-, and heroin-induced CPP (van der Kam
et al., 2009a; Rutten et al., 2011). Furthermore, MPEP was
self-administered by rats and induced CPP when administered
alone in rats (van der Kam et al., 2009b). These findings
indicate that MPEP probably has rewarding properties of its
own, which possibly facilitated cocaine-, nicotine-, and heroin-
induced CPP. Surprisingly, when administered intraperitoneally,
MPEP elevated brain reward thresholds, suggesting that MPEP
induced an aversive state (Kenny et al., 2005). These conflicting
findings could be due to methodological differences between
the studies, such as strains of animals used, doses of MPEP,
mode of administration (intravenous vs. intraperitoneal), model
used to assess reward (CPP vs. ICSS), and design of the CPP
model itself. Finally, MPEP can act via other targets such as
norepinephrine transporters and mGlu4 receptors (Heidbreder
et al., 2003; Mathiesen et al., 2003). Further work is required to
understand the role of mGlu5 receptors in the rewarding effects
of drugs of abuse.

As described earlier, activation of Group II (mGlu2/3) and
Group III (mGlu7 and mGlu8) mGlu receptors decreases
glutamate transmission. In accordance, administration of the
mGlu2/3 agonist LY379268 decreased self-administration of
cocaine (Baptista et al., 2004; Adewale et al., 2006; Xi et al.,
2010), nicotine (Liechti et al., 2007), and alcohol (Bäckström
and Hyytia, 2005; Sidhpura et al., 2010). Further elevation
of N-acetylaspartylglutamate (NAAG), an endogenous agonist
of the mGlu2/3 receptors, using a NAAG peptidase inhibitor,
attenuated cocaine self-administration and cocaine-induced
lowering of brain reward thresholds (Xi et al., 2010). Together,
these studies point to an important role for mGlu2/3 receptors
in the reinforcing effects of cocaine, alcohol and nicotine. But
LY379268 also attenuated food self-administration at doses that
attenuated the reinforcing effects of nicotine (Liechti et al., 2007).
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Thus, the effects of the mGlu2/3 agonist were not specific for
drug rewards. Moreover, LY379268 activates both mGlu2 and
mGlu3 receptors. To differentiate between the roles of these
two mGlu receptors, mGlu2 selective ligands were developed.
MGlu2 receptor positive allosteric modulators (PAMs) decreased
self-administration of cocaine and nicotine, but not food self-
administration (Jin et al., 2010; Sidique et al., 2012; Dhanya
et al., 2014). Further, blockade of mGlu2 receptors using a mGlu2
antagonist (LY341495) facilitated alcohol consumption (Zhou
et al., 2013). Together, these data support a role for mGlu2
receptors in drug reward. The role of mGlu3 receptors in drug
reward, in contrast, needs to be further explored. Availability of
selective ligands for mGlu2 and mGlu3 receptors in the future
will help better understand the function of mGlu2 and mGlu3
receptors in drug reward.

Blockade of glutamate transmission via activation of mGlu7
receptors attenuated cocaine self-administration (Li et al., 2009)
and alcohol-induced CPP (Bahi et al., 2012). The role of
mGlu7 receptors in nicotine and heroin reward remains to be
investigated. Similarly, activation of mGlu8 receptors attenuated
alcohol self-administration, suggesting that these receptors are
involved in the reinforcing effects of nicotine (Bäckström and
Hyytia, 2005). The role of mGlu8 receptors in the rewarding
effects of other drugs of abuse has not yet been explored.

Glutamate transmission can also be decreased via activation
and/or upregulation of the glutamate transporter GLT-1.
Administration of a GLT-1 activator decreased cocaine-induced
CPP (Nakagawa et al., 2005). Further, repeated administration
of ceftriaxone, attenuated alcohol consumption in the two
bottle choice paradigm (Sari et al., 2011). Ceftriaxone-induced
attenuation of alcohol consumption was mediated by an
upregulation of GLT-1 in the NAcc and prefrontal cortex
(PFC). Moreover, administration of GPI-1046 attenuated alcohol
consumption in alcohol preferring P-rats, possibly due to
upregulation of GLT-1 in the NAcc (Sari and Sreemantula,
2012). Alcohol consumption in P rats was also reduced after
administration of 5-methyl-1-nicotinoyl-2-pyrazoline (MS-153)
(Alhaddad et al., 2014b). This MS-153-induced attenuation of
alcohol consumption was possibly mediated by an upregulation
of GLT-1 and/ or xCT (light chain of the cystine-glutamate
exchanger) in several brain sites including the NAcc, amygdala
and hippocampus (Alhaddad et al., 2014b; Aal-Aaboda et al.,
2015). Further, these studies also showed that MS-153 mediated
upregulation was mediated by activation of p-Akt and NF-
kB pathways. In summary, these findings suggest that efficient
clearance of synaptic glutamate helps in reducing the rewarding
effects of cocaine and alcohol.

Glutamate transmission can also be regulated bymanipulating
glutamate release and uptake via glial cells. Activation of the
cystine-glutamate exchanger, using N-acetylcysteine, increases
extrasynaptic glutamate levels. Surprisingly, N-acetylcysteine
attenuated nicotine self-administration in rats (Ramirez-Niño
et al., 2013). One possible explanation for the reported
findings is that the increase in extrasynaptic glutamate levels
induced by N-acetylcysteine in turn stimulates the presynaptic
mGlu2/3 receptors, which then reduces synaptic glutamate
release (Moussawi and Kalivas, 2010).

Another way to attenuate glutamate transmission is by
blocking calcium ion channels located on presynaptic glutamate
terminals. Such drugs which decrease presynaptic glutamate
releasemay be useful in attenuating the rewarding effects of drugs
of abuse. Gabapentin, a FDA-approved antiepileptic medication,
reduces release of several neurotransmitters, including glutamate,
by inhibiting the α2δ-1 subunit of voltage-gated calcium
channels (Gee et al., 1996; Fink et al., 2000). Whole-cell patch
clamp recordings showed that gabapentin attenuated electrically
stimulated excitatory neurotransmission in NAcc slices obtained
from cocaine-experienced animals (Spencer et al., 2014). Further,
the same study showed that cocaine self-administration increased
expression of the α2δ-1 subunit in the NAcc. In addition, α2δ-1
subunit expression increased in the cerebral cortex after exposure
to alcohol, methamphetamine, and nicotine (Hayashida et al.,
2005; Katsura et al., 2006; Kurokawa et al., 2011). A recent
study reported that gabapentin attenuated methamphetamine-
induced CPP (Kurokawa et al., 2011). However, the effects of
gabapentin or other α2δ-1 subunit antagonists on the rewarding
effects of other drugs of abuse have not been directly assessed.
Another FDA-approved antiepileptic medication, lamotrigine,
also decreases glutamate release from presynaptic glutamate
terminals (Cunningham and Jones, 2000). In rats, lamotrigine
attenuated cocaine-induced lowering of brain reward thresholds
(Beguin et al., 2012). But, this effect of lamotrigine was seen at
doses that elevated brain reward thresholds when administered
alone, suggesting that lamotrigine may have induced an aversive
state in animals. Nonetheless, in clinical trials, lamotrigine did
not alter subjective effects of cocaine (Winther et al., 2000). The
effects of lamotrigine on the rewarding effects of other drugs of
abuse have not been systematically explored. Nonetheless, it must
be remembered that in addition to inhibiting glutamate release,
lamotrigine has other mechanisms of action (Yuen, 1994).

In summary, mounting evidence suggests that compounds
that block glutamate transmission attenuate the rewarding effects
of drugs of abuse. Both ionotropic and mGlu receptors have been
implicated in mediating the rewarding effects of the different
drugs of abuse. A better understanding of the role of Group III
metabotropic receptors in drug reward is necessary and will likely
be possible as good pharmacological ligands for these receptors
become available.

Future Directions: Glutamate and Drug
Reward
Glial cells in the extrasynaptic space are key players in
the regulation of glutamate transmission and neuronal
communication (Scofield and Kalivas, 2014). Consequently,
modulation of glial function may be able to attenuate the
rewarding effects of drugs of abuse. In support of this hypothesis,
administration of ibudilast, a glial cell modulator, attenuated
alcohol intake in a two bottle choice paradigm in selectively
bred alcohol-preferring rats, suggesting that it decreases the
reinforcing effects of alcohol (Bell et al., 2015). Although the
effects of ibudilast on the rewarding effects of heroin have not
been evaluated, ibudilast attenuated morphine-induced CPP,
and increase in NAcc dopamine after morphine administration
(Hutchinson et al., 2007; Bland et al., 2009). The mechanism
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of action of ibudilast is not fully understood, and it is not clear
how ibudilast alters glutamate transmission. It also remains to
be determined if ibudilast can affect the rewarding effects of
other drugs of abuse, such as cocaine and nicotine. Nevertheless,
modulating the rewarding effects of drugs of abuse by influencing
the function of glial cells may be a critical future strategy.

Also of interest is the fact that glutamate receptors cross-
talk either directly or via signal transduction pathways with
ion channels (e.g., calcium channels) and receptors for other
neurotransmitters such as serotonin, dopamine, and GABA
(Kubo et al., 1998; Cabello et al., 2009; Molinaro et al.,
2009). Therefore, one way to reduce glutamate transmission
to attenuate the rewarding effects of drugs of abuse could be
via exploitation of heterooligomeric complexes formed between
glutamate and non-glutamate receptors or ion channels (Duncan
and Lawrence, 2012). A recent study has reported cross-talk
between mGlu2 receptors and 5HT2C receptors (González-
Maeso et al., 2008). Indeed, blockade of 5HT2C receptors in the
NAcc attenuated cocaine-induced increase in glutamate levels
in cocaine-experienced animals (Zayara et al., 2011). Similarly,
there is evidence of interaction between mGlu5 receptors and
adenosine A2A receptors (Ferre et al., 2002). Administration of
an adenosine A2A receptor antagonist attenuated an increase in
striatal glutamate levels observed after mGlu5 receptor agonist
administration (Pintor et al., 2000). Taken together, these studies
suggest that glutamate signaling can be manipulated via non-
glutamate receptors. However, much work still remains to
understand the interaction of glutamate receptors with non-
glutamate receptors, and it is not known if these receptor
complexes can be manipulated to attenuate the rewarding effects
of drugs of abuse.

Drugs of abuse like alcohol and cocaine increase expression of
certain microRNAs (miRNAs) in brain regions associated with
reward (Hollander et al., 2010; Li et al., 2013; Tapocik et al.,
2014). In fact, manipulating expression of miRNAs can attenuate
the rewarding effects of cocaine and alcohol (Schaefer et al.,
2010; Bahi and Dreyer, 2013). MiRNAs also regulate glutamate
receptor expression and function (Karr et al., 2009; Kocerha et al.,
2009). In addition, some miRNAs, such as miRNAs-132 and 212,
are specifically regulated by mGlu receptors, but not ionotropic
receptors (Wibrand et al., 2010). Therefore, future studies may
need to explore if the rewarding effects of drugs of abuse can be
attenuated by manipulating miRNAs that regulate glutamatergic
signaling. Nevertheless, one must be cautious, as manipulating
miRNA expression may affect the functioning of multiple targets
andmay not be restricted to glutamate signaling (Bali and Kenny,
2013).

Drug addiction in humans is frequently initiated by the
consumption of drugs during adolescence. In fact, in humans,
the processing of rewards differs between adults and adolescents
(Fareri et al., 2008). Similarly, several studies have reported
differences in the rewarding effects of drugs of abuse between
adult and adolescent rats (Philpot et al., 2003; Badanich
et al., 2006; Zakharova et al., 2009; Doherty and Frantz, 2012;
Schramm-Sapyta et al., 2014; Lenoir et al., 2015). Additionally,
gender influences drug addiction in humans (Rahmanian et al.,
2011; Bobzean et al., 2014; Graziani et al., 2014) and the

rewarding effects of drugs of abuse in animals (Lynch and
Carroll, 1999; Russo et al., 2003a,b; Torres et al., 2009; Zakharova
et al., 2009). Further, alcohol differentially affects basal glutamate
levels in male compared to female rats (Lallemand et al., 2006,
2011). However, the impact of age and gender, either alone or
combined, on the role of glutamate in drug reward has not been
systematically explored. Future studies addressing the impact
of age and gender on glutamate transmission and drug reward
will enhance our understanding of the role of glutamate in drug
addiction.

DRUGS OF ABUSE AND GLUTAMATE
TRANSMISSION IN SPECIFIC BRAIN
REGIONS ASSOCIATED WITH DRUG
REWARD

The rewarding effects of drugs of abuse are mediated by
mesolimbic dopaminergic neurons, which originate in the VTA
and project to several limbic and cortical sites such as the NAcc,
amygdala and prefrontal cortex (PFC). Amongst these regions,
the NAcc is a major terminal region of dopaminergic neurons
originating in the VTA. Systemic administration of cocaine,
nicotine, alcohol, and heroin increase dopamine levels in the
NAcc (Di Chiara and Imperato, 1988; Wise et al., 1995a,b; Doyon
et al., 2003; Kosowski et al., 2004; D’Souza and Duvauchelle,
2006; D’souza and Duvauchelle, 2008; Howard et al., 2008;
D’Souza et al., 2011). This drug-induced increase in activity of
the mesocorticolimbic dopaminergic neurons is hypothesized
to mediate the rewarding effects of all drugs of abuse,
including nicotine, cocaine, alcohol, and heroin (Wise, 1987;
Koob, 1992b; Koob and Volkow, 2010; Salamone and Correa,
2012). Interestingly, blockade of glutamatergic transmission via
systemic administration of glutamate receptor ligands attenuated
cocaine- and nicotine-induced increases in NAcc dopamine (see
Table 2). Both the VTA andNAcc receive extensive glutamatergic
afferents. The next section will therefore describe the effects
of drugs of abuse on glutamatergic transmission in the VTA
and NAcc. Further, we will discuss effects of pharmacological
manipulation of glutamate transmission in the VTA and NAcc
on drug reward. While glutamate transmission in other brain
regions may also be associated with reward, in this review we will
restrict our discussion to the VTA and NAcc.

VTA
The VTA receives extensive glutamatergic inputs from different
limbic, cortical, and subcortical nuclei, such as the amygdala,
PFC, lateral habenula, lateral hypothalamus, ventral pallidum,
medial septum, septofimbrial nucleus, and ventrolateral bed
nucleus of the stria terminalis (Geisler and Zahm, 2005; Geisler
and Wise, 2008; Watabe-Uchida et al., 2012). VTA dopaminergic
neurons also receive glutamatergic projections from brainstem
structures, such as the mesopontine reticular formation,
laterodorsal tegmental, and pedunculopontine tegmental
nucleus, cuneiform nucleus, median raphe, and superior
colliculus (Geisler and Trimble, 2008). These glutamatergic
inputs regulate the burst firing of VTA dopaminergic neurons
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and thus can regulate drug-induced rewarding effects (Taber
et al., 1995; Overton and Clark, 1997). Moreover, direct injection
of glutamate receptor antagonists into the VTA attenuated
nicotine-induced increase in NAcc dopamine (Schilstrom et al.,
1998; Fu et al., 2000).

Drugs of Abuse and VTA Glutamate Levels
Effects of drugs of abuse on VTA glutamate levels is shown in
Table 3. Cocaine administration increased VTA glutamate levels
in both cocaine-naïve and -experienced animals. In cocaine-
experienced animals, cocaine-induced increase in VTA glutamate
levels was observed at doses that are associated with the
rewarding effects of cocaine (Kalivas and Duffy, 1998; Zhang
et al., 2001). Conversely, in cocaine-naïve animals, the increase
in glutamate was brief and less pronounced compared to that
seen in cocaine-experienced animals (Kalivas and Duffy, 1995;
Zhang et al., 2001). The facilitation of glutamate release following
repeated cocaine exposure is mediated by an upregulation
of D1 receptor signaling and was attenuated by blockade of
D1 dopamine receptors (Kalivas and Duffy, 1998; Kalivas,
2009). Consistent with the above studies, increase in VTA
glutamate levels was observed after cocaine self-administration
in cocaine-experienced animals, but not in cocaine-naïve animals
with saline self-administration experience (You et al., 2007).
However, the increase in VTA glutamate levels in cocaine-
experienced animals was transient and was not seen throughout
the cocaine self-administration period. Interestingly, the increase
in VTA glutamate levels in cocaine-experienced animals was also
observed after self-administration of saline, suggesting that VTA
glutamate release may be linked to expectation of cocaine and
induced by cocaine-associated cues (Wise, 2009). Intriguingly,
increase in VTA glutamate levels was also observed in cocaine-
experienced animal after an intraperitoneal injection of cocaine
methiodide, which does not cross the blood brain barrier (Wise
et al., 2008). These data support the hypothesis that peripheral
interoceptive cues associated with cocaine may be sufficient for
VTA glutamate release. However, further work is required to
determine if changes in VTA glutamate levels observed after
administration of cocaine and/or cocaine-associated cues results
from activation of similar or different brain inputs to the VTA.

In accordance with the effects of cocaine on VTA glutamate
levels, an increase in VTA glutamate levels was also observed
after nicotine administration using in vivo microdialysis (Fu
et al., 2000). Then again, Fu and colleagues observed the increase
in VTA glutamate levels at doses higher than those required
to observe the rewarding effects of nicotine. More recently, a
study reported a transient increase in VTA glutamate levels
following passive intravenous nicotine infusion (0.03mg/kg)
using in vivo voltammetry (Lenoir and Kiyatkin, 2013). In
contrast to cocaine and nicotine, administration of alcohol did
not result in an increase in VTA glutamate levels in drug-naïve
alcohol-preferring rats (Kemppainen et al., 2010). Anatomically,
the VTA can be divided into anterior and posterior VTA
(Sanchez-Catalan et al., 2014). A more recent study has reported
biphasic glutamate response in the posterior VTA to different
doses of alcohol in female Wistar rats (Ding et al., 2012).
Low dose (0.5 g/kg; i.p.) of alcohol resulted in a significant
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increase in glutamate levels compared to baseline in alcohol-
naïve animals. On the other hand, high dose (2 g/kg; i.p.) of
alcohol resulted in delayed decrease in VTA glutamate levels.
Importantly, administration of a challenge dose of 2 g/kg (i.p.) of
alcohol in alcohol-experienced animals also resulted in a decrease
in VTA glutamate levels. The differences in findings between the
Kemppainen et al. (2010) andDing et al. (2012) studies is possibly
due to methodological differences such as localization of probes
in the VTA and strain of rats (alcohol preferring vs. Wistar rats)
used in the two studies.

In contrast to cocaine, self-administration of heroin did not
alter VTA glutamate levels in heroin-experienced animals (Wang
et al., 2012). However, the same study also reported that self-
administration of saline in heroin-experienced animals resulted
in an increase in VTA glutamate levels. Taken together, these
findings suggest that VTA glutamate release is responsive to
heroin-associated cues but inhibited by heroin itself. It must
be mentioned here that the effects of self-administered heroin
on VTA glutamate levels in heroin-experienced animals was
done after a single extinction session, which may have altered
expectations of heroin reward. In summary, cocaine, nicotine,
and alcohol administration in increase VTA glutamate levels.
Next, the effects of blocking VTA glutamate transmission on the
rewarding effects of drugs of abuse will be discussed.

VTA Glutamatergic Transmission and Behavioral

Measures of Drug Reward
Blockade of glutamatergic transmission in the VTA via inhibition
of ionotropic glutamate receptors decreased the rewarding effects
of drugs of abuse (see Table 4). For example, blockade of
NMDA or AMPA or both receptors in the VTA attenuated
nicotine (Kenny et al., 2009) and alcohol self-administration
(Rassnick et al., 1992; Czachowski et al., 2012). Furthermore,
combined blockade of both NMDA and AMPA receptors in
the VTA attenuated cocaine-induced CPP (Harris and Aston-
Jones, 2003). Interestingly, blockade of AMPA receptors in
the VTA increased heroin self-administration compared to
control (Xi and Stein, 2002; Shabat-Simon et al., 2008). The
increase in heroin self-administration was observed for a higher
heroin dose (0.1mg/kg/inf) that normally resulted in fewer self-
administration responses. Based on this pattern of responding,
the observed increase in heroin self-administration is actually
hypothesized to be due to a decrease in the reinforcing
effects of heroin. Interestingly, Shabat-Simon et al. (2008)
showed that AMPA receptors in the anterior VTA, but not the
posterior VTA, mediated the observed effects on heroin self-
administration. Overall, the role of AMPA receptors in the VTA
on the reinforcing effects of heroin are not clear, and further
studies using a progressive ratio schedule, which measures the
motivation of the animal to work for an infusion of heroin,
are needed. In summary, glutamate transmission via ionotropic
receptors in the VTA mediates the rewarding effects of alcohol,
cocaine, nicotine, and possibly heroin.

Blockade of glutamatergic neurotransmission via
metabotropic receptors in the VTA also attenuated the rewarding
effects of drugs of abuse. For example, blockade of glutamate
transmission in the VTA either via activation of mGlu2/3

receptors or blockade of mGlu5 receptors decreased nicotine
self-administration (Liechti et al., 2007; D’Souza and Markou,
2011). Microinjections of the mGlu2/3 agonist or the mGlu5
negative allosteric modulator in these studies were directed
toward the posterior VTA. Interestingly, the blockade of mGlu5
receptors in the VTA also attenuated food self-administration
(D’Souza and Markou, 2011). Thus, the mGlu5 receptors in the
VTA appear to mediate the reinforcing effects of both natural
and drug rewards. Then again, it must be noted here that the
role of the mGlu receptors in the reinforcing effects of cocaine,
alcohol, and heroin has not been explored. Further, animals self-
administer cocaine and alcohol directly into the posterior VTA,
but not into the anterior VTA (Rodd et al., 2004, 2005). The role
of glutamate in the anterior or posterior VTA in the reinforcing
effects of cocaine and alcohol has not been determined.

Future Directions: VTA Heterogeneity, Drug Reward,

and Glutamate Transmission
Research over the past decade has shown that the VTA
dopaminergic neurons consist of different subtypes based on
their inputs, distinct anatomical projections, and molecular, and
electrophysiological features (Margolis et al., 2006, 2008; Lammel
et al., 2011, 2012, 2014). Although amajority of the neurons in the
VTA are dopaminergic, approximately 2–3% of the neurons are
glutamatergic and do not express markers seen in dopaminergic
and GABAergic neurons (Nair-Roberts et al., 2008). However,
the precise role of these glutamatergic neurons originating in
the VTA in drug-induced reward is not known. Additionally,
some dopaminergic neurons in the VTA co-express tyrosine
hydroxylase and the VGLUT2 and possibly co-release glutamate
and dopamine at their respective terminal sites (Tecuapetla et al.,
2010; Hnasko et al., 2012). In fact, optogenetic studies have
shown that midbrain dopaminergic neurons that project to the
NAcc, but not the dorsal striatum, co-release glutamate as a
neurotransmitter (Stuber et al., 2010). It is not clear if drugs
of abuse have any preferential effect on dopaminergic neurons
that co-release both dopamine and glutamate in the NAcc
and other terminal regions compared to neurons that release
only dopamine. Further, it will be interesting to see if drug-
induced firing patterns of dopaminergic neurons that co-release
both glutamate and dopamine are different from dopaminergic
neurons that release dopamine only. Interestingly, a recent study
has shown that cocaine increases dopamine transmission but
attenuates glutamate transmission in the NAcc (Adrover et al.,
2014).

The glutamatergic inputs to VTA dopaminergic neurons are
organized in a specific manner. For example, inputs from the
PFC project onto VTA dopaminergic neurons that project back
to the PFC and not to other brain regions like the NAcc
(Carr and Sesack, 2000). Furthermore, glutamatergic projections
from specific brain regions differentially influence dopaminergic
neurons with different electrophysiological properties. For
example, glutamatergic inputs from the lateral hypothalamus
excite VTA dopaminergic neurons that display long-duration
action potential waveforms, but inhibit VTA dopaminergic
neurons that display short-duration waveforms (Maeda and
Mogenson, 1981). Further, glutamatergic inputs from the PFC
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to the VTA dopaminergic neurons play a key role in mediating
cocaine-induced behavioral responses (Pierce et al., 1998).
However, the specific role of the different glutamatergic inputs
to the VTA dopaminergic neurons in the rewarding effects of
drugs of abuse needs to be further explored. Future studies using
either optogenetic approaches or neuron specific genetic deletion
of glutamate receptors will be required to address the issue.

Nucleus Accumbens
Like the VTA, the NAcc receives extensive glutamatergic
projections from the PFC, amygdala, hippocampus, and thalamic
nuclei (Brog et al., 1993). Glutamate can also be co-released with
dopamine in the NAcc by VTA dopaminergic neurons expressing
VGLUT (Hnasko et al., 2012). Together, these inputs provide
spatial and contextual information, determine degree of attention
allocated to stimuli, inhibit impulsive behavior, and regulate
motivational and emotional responses to stimuli. Accordingly,
the NAcc plays a critical role in the decision making process to
obtain drug rewards. Anatomically, the NAcc is broadly divided
into the core and shell subdivisions (Zahm and Brog, 1992), with
the NAcc shell reported to mediate rewarding effects of drugs of
abuse (Di Chiara, 2002).

Drugs of Abuse and NAcc Glutamate Levels
Increase in NAcc glutamate levels in both drug-naïve and drug-
experienced animals have been reported after administration of
various drugs of abuse (see Table 2). Using in vivomicrodialysis,
increases in NAcc glutamate levels has been reported in drug-
naïve animals after cocaine (Smith et al., 1995; Reid et al.,
1997), nicotine (Reid et al., 2000; Kashkin and De Witte,
2005; Lallemand et al., 2006; Liu et al., 2006), and alcohol
administration (Moghaddam and Bolinao, 1994; Selim and
Bradberry, 1996; Dahchour et al., 2000). Then again, the increases
in NAcc glutamate levels after cocaine and alcohol were seen at
doses higher than those required to produce rewarding effects.
In fact, at doses that produce rewarding effects, no change
in glutamate levels was observed after cocaine and alcohol
administration in drug-naïve animals (Dahchour et al., 1994;
Selim and Bradberry, 1996; Zhang et al., 2001; Miguéns et al.,
2008). Glutamate can be neurotoxic and result in cell death
(Choi, 1988). Therefore, the increase in glutamate in response
to high drug doses possibly suggests neurotoxic effects rather
than rewarding effects. One possible reason why studies did
not detect an increase in glutamate levels after administration
of rewarding doses of cocaine could be due to slow temporal
resolution of the in vivo microdialysis technique. A recent
study using voltammetry, which has faster temporal resolution,
was able to detect a transient increase in glutamate in the
NAcc after intravenous self-administration of a rewarding dose
of cocaine (Wakabayashi and Kiyatkin, 2012). In contrast to
drug-naïve animals, the increase in NAcc glutamate levels in
cocaine- and alcohol-experienced animals after administration
of cocaine and alcohol was observed at doses frequently used
to assess rewarding effects of cocaine and alcohol, respectively
(Pierce et al., 1996a; Reid and Berger, 1996; Zhang et al.,
2001; Kapasova and Szumlinski, 2008; Miguéns et al., 2008;
Suto et al., 2010; Lallemand et al., 2011). This is possibly

due to drug-induced plasticity at presynaptic glutamatergic
terminals (Kalivas, 2009). Interestingly, basal NAcc glutamate
levels were lower in cocaine-experienced animals compared to
saline-experienced animals (Suto et al., 2010). Further, the same
study showed opposite effects of cocaine self-administration vs.
yoked cocaine administration on NAcc glutamate levels in rats
trained to self-administer cocaine. Cocaine-self-administration
increased NAcc glutamate levels in cocaine-experienced rats. In
contrast, yoked administration of cocaine in the presence of
cocaine-associated cues lowered NAcc glutamate levels below
baseline in cocaine-experienced rats. Together, these data suggest
that expectancy of cocaine reward in response to an operant
behavior can influence cocaine-induced glutamate levels.

Remarkably, high doses of alcohol produced a decrease
in NAcc glutamate levels (Moghaddam and Bolinao, 1994;
Yan et al., 1998). This decrease could possibly be due to
an increase in alcohol-mediated GABAergic inhibition of
presynaptic glutamate terminals. The effects of alcohol on NAcc
glutamate levels may be determined by behavioral sensitivity of
animals to alcohol. For example, alcohol had opposite effects on
NAcc glutamate levels in drug-naïve rats bred specifically for
their high vs. low sensitivity to the behavioral effects of alcohol
(Dahchour et al., 2000). Rats with low sensitivity to the behavioral
effects of alcohol showed an increase in NAcc glutamate levels,
while rats with high sensitivity to alcohol showed a decrease in
NAcc glutamate levels (but also see Quertemont et al., 2002).
In line with these findings, a differential effect of alcohol on the
NAcc glutamate levels was also observed in alcohol-experienced
mice with differential susceptibility to the behavioral effects of
alcohol (Kapasova and Szumlinski, 2008). Thus, alcohol-induced
glutamate release may be determined by genetic underpinnings
that determine susceptibility to alcohol dependence.

A differential effect of alcohol on glutamate transmission
based on gender has also been reported (Lallemand et al., 2011).
For example, using a model intended to mimic binge drinking
in teenagers, Lallemand et al. (2011) reported increased alcohol-
induced glutamate levels in the NAcc in alcohol-experienced
male rats but not female rats. It must be highlighted here that
chronic alcohol exposure significantly elevated basal glutamate
levels in female, but not male rats. Gender differences in alcohol
metabolism have been reported across species, including rats
(Sutker et al., 1983; Iimuro et al., 1997; Robinson et al., 2002). It is
not clear if differences in alcohol metabolism between male and
female rats could account for the differences in alcohol on NAcc
glutamate levels and the precise mechanism for this differential
effect of alcohol on basal glutamate levels needs to be determined.
Similarly, differences in basal glutamate levels have been reported
between male and female rats after chronic nicotine exposure
(Lallemand et al., 2006, 2011). Studies are needed to determine
if there are sex-dependent differences in glutamate release after
chronic cocaine exposure.

In contrast to the drugs described above, administration of
heroin does not increase NAcc glutamate levels in drug-naïve
rats. In fact, researchers showed a slight decrease (non-
significant) in NAcc glutamate levels after heroin administration
(Lalumiere and Kalivas, 2008). In contrast, acute morphine
injection in drug-naïve rats increased NAcc glutamate levels.
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However, an increase in glutamate levels was observed
downstream from the NAcc in the ventral pallidum during
heroin self-administration (Caille and Parsons, 2004). Overall,
the effects of heroin on NAcc glutamate levels are not clear.

Interestingly, heroin-associated cues have been shown to
increase glutamate levels in the NAcc core (Lalumiere and
Kalivas, 2008). In addition, in cocaine-experienced animals,
presentation of cues predictive of cocaine availability increased
NAcc glutamate levels (Hotsenpiller et al., 2001; Suto et al.,
2010, 2013). Moreover, glutamate levels in the NAcc core were
depressed on presentation of cues predicting unavailability of
cocaine (Suto et al., 2013). Taken together, these data suggest
that NAcc glutamate levels can be modulated by cues predicting
availability or unavailability of cocaine. However, it is not known
if the temporal resolution (transient vs. sustained), localization
(synaptic vs. extrasynaptic) of glutamate release and activity of
glutamatergic afferents to the NAcc in response to drug and/or
drug-associated cues is similar or different. Future studies may
need to address these issues.

In summary, repeated exposure to drugs of abuse facilitates
drug-induced increase in NAcc glutamate levels compared to
drug-naïve animals. Nevertheless, more work is required to
determine factors [e.g., genetic factors, effects of gender (male vs.
female), location (synaptic vs. extrasynaptic), temporal resolution
(transient vs. sustained), precise glutamatergic inputs activated]
that can influence changes in NAcc glutamate levels in response
to drug and/or drug-associated cues.

NAcc Glutamatergic Transmission and Behavioral

Measures of Drug Reward
Blockade of glutamate neurotransmission in the NAcc had a
differential effect on rewarding effects of drugs of abuse (see
Table 4, discussed below). Blockade of NMDA receptors in the
NAcc decreased both alcohol self-administration and alcohol-
induced CPP (Rassnick et al., 1992; Gremel and Cunningham,
2009, 2010). Together, these studies suggest that NMDA-
mediated glutamate transmission in the NAcc mediates the
rewarding effects of alcohol.

In contrast, blockade of NMDA receptors into the NAcc using
the competitive NMDA receptor antagonist LY235959 increased
nicotine self-administration under a fixed-ratio schedule
(D’Souza and Markou, 2014). This effect was seen specifically in
the NAcc shell and not in the NAcc core. Furthermore, LY235959
injections into the NAcc shell decreased food self-administration,
suggesting that the effects of LY235959 were specific for the
reinforcing effects of nicotine. Moreover, LY235959 injections
into the NAcc shell increased nicotine self-administration
under a progressive-ratio schedule, suggesting that blockade of
the NMDA receptors increased motivation to self-administer
nicotine. Motivation to self-administer nicotine under a
progressive-ratio schedule of reinforcement was also increased
after local infusion of the α7 nAChR antagonist α-conotoxin
ArIB into the NAcc shell and decreased after infusion of the
α7 nAChR agonist PNU282987 into the NAcc shell (Brunzell
and McIntosh, 2012). Nicotine binds to α7 nAChRs located on
presynaptic glutamatergic terminals and increases glutamatergic
transmission, and blockade of α7 nAChRs decreases glutamate

transmission. In line with the above findings, blockade of NMDA
receptors in the NAcc shell using another competitive antagonist,
AP-5, resulted in increased cocaine self-administration under a
fixed-ratio schedule (Pulvirenti et al., 1992). But the same study
showed no effect of the same NMDA receptor antagonist in the
NAcc on heroin self-administration. Taken together, decreased
glutamate transmission via NMDA receptors in the NAcc shell
increases the reinforcing effects of stimulants like nicotine and
cocaine, but not that of depressants like alcohol and heroin.

The precise mechanism for the increase in the reinforcing
effects of nicotine after injection of NMDA receptor antagonists
in the NAcc is not fully understood. One potential mechanism
could be that NMDA receptor antagonists inhibit medium
spiny neurons that send inhibitory projections directly back
to the VTA dopaminergic neurons (Kalivas, 1993). In other
words, injections of NMDA antagonists in the NAcc increase
the firing of VTA dopaminergic neurons. This hypothesis will
need to be tested in future studies. Interestingly, rats have been
shown to self-administer both competitive and non-competitive
NMDA antagonists directly in the NAcc (Carlezon and Wise,
1996). In summary, blockade of NMDA-mediated glutamate
transmission in the NAcc can have differential effects on drug
reward depending on the drug being studied. Future studies using
subunit specific NMDA receptor ligands may be needed to fully
understand the role of NAcc NMDA receptors in drug reward.
Studies are also required to address mechanisms responsible for
the differential effect of NMDA-mediated glutamate transmission
in the reinforcing effects of nicotine, cocaine, heroin, and alcohol.

It is intriguing that studies assessing the effects of blockade
of AMPA receptors in the NAcc on drug reward are lacking.
Therefore, it is not known if the effects of NMDA receptor
blockade on drug reward can be extended to other ionotropic
receptor-mediated glutamate transmission. It is very likely that
the AMPA receptor blockade has different effects from that of
NMDA receptor blockade, because numerous studies have shown
differential drug-induced effects on NMDA and AMPA receptor
expression and trafficking in the NAcc (Lu et al., 2003; Conrad
et al., 2008; Kenny et al., 2009; Ortinski et al., 2013).

In contrast to the effects of NMDA receptor blockade
described above, blockade of glutamatergic transmission via
either activation of mGlu2/3 receptors or blockade of mGlu5
receptors in the NAcc shell attenuated nicotine and alcohol self-
administration (Liechti et al., 2007; Besheer et al., 2010; D’Souza
and Markou, 2011). Consequently, it appears that ionotropic and
mGlu transmission in the NAcc may have a differential effect
on the rewarding effects of nicotine. The effects of blocking of
glutamatergic transmission via mGlu receptors in the NAcc on
cocaine and heroin reward have not yet been studied. MGlu1
and mGlu5 receptors in the NAcc play an important role in
alcohol reward. Direct injections of the mGlu1 negative allosteric
modulator (JNJ-16259685) in the NAcc attenuated the rewarding
effects of alcohol (Lum et al., 2014). In addition, the study showed
that these mGlu1 mediated effects on alcohol reward involve the
scaffolding protein homer and signaling molecule phospholipase
C. Direct injections of the mGlu5 receptor negative allosteric
modulator MPEP in the NAcc also decreased consumption of
alcohol in mice (Cozzoli et al., 2012). Interestingly, chronic
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alcohol consumption in male alcohol-preferring P rats resulted
in decreased expression of xCT in the NAcc, suggesting that
manipulation of the exchanger in the NAcc may alter the
rewarding effects of alcohol (Alhaddad et al., 2014a). Moreover,
based on results obtained after systemic administration of drugs
that modulate glutamate transmission, studies exploring the
role in drug reward of the cystine-glutamate exchanger, GLT-
1 transporters, mGlu8 and mGlu7 receptors in the NAcc are
warranted.

Future Directions: NAcc Heterogeneity, Drug Reward,

and Glutamate Transmission
The NAcc is composed of medium spiny GABAergic neurons
(∼90–95%) mixed with GABA and cholinergic interneurons.
The medium spiny GABAergic neurons project to several brain
regions, including the ventral pallidum and VTA, that are
responsible for behavioral activity required to obtain rewards
(Haber et al., 1990; Zahm and Brog, 1992). As described above,
anatomically, the NAcc can be divided into the medial shell and
lateral core (Zahm and Brog, 1992). Further, based on dopamine
receptor signaling, medium spiny neurons in the striatum
including the NAcc are organized into circuits expressing D1-like
(includes D1 and D5 receptors) or D2-like (includes D2, D3, and
D4) receptors (Gerfen, 1992). The NAcc, as described above, is a
major terminal of dopaminergic neurons originating in the VTA.
Glutamatergic inputs from the PFC to the NAcc terminate on
dendrites of the medium spiny GABAergic neurons and form a
triad with dopaminergic inputs from the VTA (Sesack and Grace,
2010). As a consequence, the activity of the different accumbal
medium spiny neurons in the different accumbal subterritories is
regulated by both dopamine and glutamate inputs.

In vivo recordings of single neuronal activity in the NAcc
have shown that different sets of accumbal neurons are activated
during the different phases (pre lever press, during the actual
drug infusion, post lever press) of cocaine and nicotine self-
administration (Peoples et al., 1999, 2004; Guillem and Peoples,
2011). Furthermore, a majority of accumbal neurons respond
differently to cocaine self-administration compared to heroin
self-administration (Chang et al., 1998). Moreover, different
subsets of accumbal neurons are activated during consumption
of natural and drug rewards (Carelli and Deadwyler, 1994;
Carelli, 2002). However, the role of glutamate in the firing
of accumbal neurons during drug self-administration has
not been addressed. Further, the role of specific glutamate
receptors in drug-induced accumbal neuronal firing has not
been studied. An understanding of NMDA- and non-NMDA-
mediated glutamate signaling in accumbal neuronal firing
during drug self-administration may help us better interpret the
evidence obtained from the different pharmacological studies
described above.

MODULATION OF GLUTAMATE
TRANSMISSION USING GENETIC
APPROACHES AND DRUG REWARD

Genetic manipulation of glutamate transmission has further
strengthened our understanding of the role of both ionotropic

and mGlu receptors in drug reward. For example, selective
knockout of NMDA receptors located on VTA dopaminergic
neurons in mice attenuated the acquisition of nicotine-induced
CPP (Wang et al., 2010). Further, unlike wildtype mice, mice
lacking the NR2A subunit did not acquire alcohol-induced
CPP, supporting a role for NR2A subunits in alcohol reward
(Boyce-Rustay and Holmes, 2006). In addition, overexpression
of GluR1 in the VTA increased cocaine self-administration
under a progressive-ratio schedule (Choi et al., 2011). In
other words, increased AMPA receptor-mediated glutamate
transmission increased motivation to self-administer cocaine.
The same study also showed that expression of a mutant
form of GluR1 receptors that do not increase PKA-mediated
phosphorylation decreased cocaine self-administration. Overall,
one can conclude that AMPA receptors contribute to both
the reinforcing and motivational effects of cocaine via a PKA-
mediated pathway. Interestingly, mice lacking either the GluR1
or GluR3 AMPA receptor subunits did not show a difference
in alcohol consumption compared to their respective wildtype
mice, suggesting that these subunits do not contribute to the
reinforcing effects of alcohol (Cowen et al., 2003; Sanchis-Segura
et al., 2006). Finally, mice lacking the gene for the synaptic
scaffolding protein Homer 2b showed reduced alcohol preference
and alcohol-induced CPP, suggesting that Homer 2b protein is
involved in the reinforcing effects of alcohol (Szumlinski et al.,
2005). The Homer protein is involved in interaction between
NMDA and mGlu5 receptors. Thus, deleting Homer 2b proteins
decreases glutamate transmission, which possibly accounts for
the decreased rewarding effects of alcohol.

Mice lacking mGlu2 receptors demonstrated increased
alcohol consumption, thus supporting an important role for
mGlu2 receptors in alcohol reward (Zhou et al., 2013).
Mice lacking mGlu5 receptors in contrast to their wildtype
counterparts did not acquire cocaine self-administration, which
suggests that the mGlu5 receptors play a critical role in
the reinforcing effects of cocaine (Chiamulera et al., 2001).
Interestingly, mice lacking mGlu5 showed decreased alcohol
consumption in the two bottle choice model compared to
wildtypemice (Bird et al., 2008). The same study also showed that
the mGlu5 knockout mice displayed alcohol-induced CPP at a
low dose (1 g/kg), which was not effective in the wildtype mice.
Taken together, it appears that knockout of mGlu5 receptors
increases sensitivity to alcohol. These findings are in contrast
to the role of mGlu5 receptors in the reinforcing effects of
alcohol, as reported by pharmacological studies using mGlu5
negative allosteric modulators described above (section Blockade
of Glutamatergic Transmission and Behavioral Measures of
Drug Reward). This discrepancy could be due to compensatory
changes that occur following congenital manipulation of
expression of a particular receptor. Knockout of mGlu4 receptors
in mice did not affect alcohol consumption compared to their
wildtype counterparts (Blednov et al., 2004), thus indicating that
mGlu4 receptors have a limited role in the reinforcing effects
of alcohol. Viral-mediated knockdown of the mGlu7 receptors
in the NAcc potentiated alcohol-induced CPP and consumption
of alcohol in a two bottle choice model compared to controls
(Bahi, 2013). These findings suggest that lower expression of
the mGlu7 receptors facilitates the reinforcing effects of alcohol.
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MGlu7 receptors negatively regulate glutamate transmission,
and decreased expression of these receptors facilitates glutamate
transmission and possibly the reinforcing effects of alcohol.
Overall, findings from genetic studies involving the mGlu7
receptors are consistent with findings from pharmacological
studies described above (section Blockade of Glutamatergic
Transmission and Behavioral Measures of Drug Reward). In
summary, findings from genetic studies confirm the role
of ionotropic and mGlu receptors in drug reward. It will
be interesting to see if genetic polymorphisms in glutamate
receptors that make individuals more vulnerable to the rewarding
effects of drugs of abuse, and subsequently to drug addiction, can
be identified in humans.

CONCLUDING REMARKS

In summary, the rewarding effects of drugs of abuse play a
crucial role in continued drug use and development of drug
addiction. Over the years, there has been considerable progress
in understanding the role of the excitatory neurotransmitter
glutamate in drug reward. Drugs of abuse discussed in this
review increase glutamatergic transmission in the VTA and
facilitate the firing of mesocorticolimbic dopaminergic neurons.
Significantly, blockade of glutamate transmission via ionotropic
and mGlu receptors attenuates the rewarding effects of drugs of
abuse. Further, blocking glutamate transmission in brain regions
associated with reward, such as the NAcc and VTA, likewise
attenuates drug reward. Finally, repeated exposure to drugs of
abuse induces plasticity in several brain regions including the

NAcc and VTA that leads to development of drug addiction.
Taken together, these findings make glutamate transmission
an alluring target for developing medications to treat drug
addiction.

The ubiquitous distribution of glutamate makes targeting
glutamate transmission to decrease the reinforcing effects of
drug rewards very challenging. Further, it must be emphasized
here that glutamate transmission is involved in many other
physiological functions such as learning, memory, regulation
of normal behavior and reinforcing effects of natural rewards.
Hence, there is a need to develop medications that selectively
attenuate the reinforcing effects of drugs of abuse without
affecting other physiological functions. Nevertheless, as described
in this review, the FDA has approved several medications that
attenuate glutamate transmission, which suggest that glutamate
transmission remains a viable target formedication development.
In fact, drugs targeting the mGlu receptors are in various stages
of clinical development for several CNS disorders. In conclusion,
while much has been understood about the role of glutamate in
drug reward, more work needs to be done to fully exploit the
therapeutic potential of glutamate in drug reward and addiction.
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