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Abstract

We present artificial neural networks as a feasible replacement for a mechanistic model of

mosquito abundance. We develop a feed-forward neural network, a long short-term memory

recurrent neural network, and a gated recurrent unit network. We evaluate the networks in

their ability to replicate the spatiotemporal features of mosquito populations predicted by the

mechanistic model, and discuss how augmenting the training data with time series that

emphasize specific dynamical behaviors affects model performance. We conclude with an

outlook on how such equation-free models may facilitate vector control or the estimation of

disease risk at arbitrary spatial scales.

Author summary

Aedes aegypti mosquitoes affect millions of people each year through infectious diseases

such as chikungunya, dengue, and Zika. Because local vector levels need to be sufficiently

high for associated outbreaks to occur, the ability to estimate mosquito abundance is a

central component of assessing disease risk. The mosquito landscape model (MoLS) is a

mechanistic model that estimates Aedes aegypti abundance from local weather time series,

and is able to reproduce trends observed in surveillance data. However, scaling this up to

a large number of locations is resource intensive, requiring a high-performance comput-

ing system. In this article, we develop artificial neural network models that are signifi-

cantly faster than MoLS and can produce abundance estimates directly from local weather

data. This approach reduces the computational time associated with estimating local mos-

quito levels, thereby allowing for a corresponding increase in the spatiotemporal resolu-

tion of these predictions. We compare network design choices, including architecture and

training data, in their ability to accurately reproduce MoLS estimates and analyze model

performance in locations across the contiguous United States.
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Introduction

Artificial Neural Networks (ANNs) are ideally suited for modeling nonlinear, complex phe-

nomena, and have either achieved or surpassed human-level performance on tasks involving

image classification, anomaly detection, and event extraction [1–4]. This manuscript assesses

the feasibility of developing ANNs that provide estimates of mosquito abundance directly

from weather data. To this end, we train, validate, and test different types of neural networks

on simulated datasets. The training data consist of years of representative daily weather time

series for various locations in the US obtained from the Multivariate Adaptive Constructed

Analogs (MACA) datasets [5–8], and of corresponding daily mosquito abundance predictions.

The latter are estimated from a mechanistic model, the Mosquito Landscape Simulation

(MoLS) [9], which uses the MACA data as input. Our goal is to train ANNs that learn how

MoLS estimates mosquito abundance from weather time series. We introduce various metrics

that allow us to compare the ANN predictions to those of MoLS, including criteria relevant to

public health (e.g. mosquito season length and timing of peak mosquito abundance) and rank

the proposed ANNs based on a composite score derived from these metrics. We conclude that

artificial neural networks are able to quickly and accurately reproduce MoLS daily mean mos-

quito abundance estimates, provided they are given current and past weather data over a spe-

cific window of time; in the present case, we use windows of length 90 days, consisting of the

day each abundance estimate is made and the previous 89 days.

Vector-borne diseases infect hundreds of millions of people annually, disproportionately

impacting impoverished communities in tropical areas [10]. The past two decades have seen a

surge of outbreaks associated with the vector Aedes aegypti, including a 2004 dengue outbreak

in Singapore [11], a 2013–2014 chikungunya outbreak in the Americas [12], and the 2014–

2015 Zika outbreak in Latin America [13]. These outbreaks exemplify the public health risk of

arboviral diseases associated with severe clinical symptoms, but also demonstrate the impor-

tance of local vector control efforts to mitigate impact on affected communities [14–16].

Because vector-borne disease outbreaks require sufficiently high vector populations [15, 17,

18], the ability to predict vector abundance is a central component of assessing disease risk.

Forecasting outbreaks is, however, further complicated by global interconnectedness [19] and

climate change [20, 21]—factors shown to introduce vectors into previously uninhabited areas

and increase the viable range of vectors, respectively.

MoLS [9] is a mechanistic stochastic model that estimates Aedes aegypti abundance from

weather time series (temperature, precipitation, and relative humidity). It is parametrized

from information previously published in the literature and its output is proportional to

expected daily mosquito numbers. It was shown in [9] that when given accurate local weather

data, MoLS is able to reproduce Aedes aegypti abundance trends observed in surveillance traps

in Puerto Rico. Because its parameters are fixed and thus not location-dependent, MoLS is in

principle able to estimate weather-related abundance anywhere, provided local weather infor-

mation is available, and assuming the biological properties of local Aedes aegypti mosquitoes

are sufficiently well captured by the model parameters. Scaling this up to a large number of

locations is however resource intensive. Specifically, using MoLS to generate daily abundance

predictions associated with 10 years of weather data (from 01/01/2011 to 12/31/2020) takes

about 10 minutes per location (including file reading and writing time) on one core of a high

power computer (HPC) AMD Zen2 node. For county-scale resolution in the US, computing

10 years worth of daily abundance estimates therefore requires about 3000/6 = 500 HPC

hours. The advantage of a HPC is of course that predictions for many locations can be run in

parallel, reducing the user’s wait time by a factor equal to the total number of cores available.
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A faster, ANN-based alternative to MoLS is appealing since it would reduce computational

time even further, thereby allowing for a corresponding increase in the spatial resolution of

abundance estimates. Like MoLS predictions, the ANN output would reflect an arbitrary car-

rying capacity, and would need to be scaled to average abundance inferred from surveillance

information, in order to account for local conditions (e.g. due to the presence of a variable

number of water containers where mosquitoes can lay eggs). Of course, because the output of

MoLS or any of its ANN replacements is dependent on input weather data, the accuracy of

such estimates is limited by the reliability of the available weather information. Moreover,

human influences on mosquito populations (see e.g. [22–24] and references therein), other

than consequences of climate change on weather data, are not taken into account in these

models. Nevertheless, given that weather plays an important role in Aedes aegypti numbers

[25–27], quickly producing weather-based abundance estimates of this disease vector is

important.

The ability to replace a complex mechanistic model by an ANN that is faster and can easily

be scaled up opens a new range of applications for these models. However, because artificial

neural network predictions often lose accuracy in “unfamiliar” situations, the training data

may need to place special emphasis on specific dynamic behaviors that are deemed important

by the modeler. Estimating what type and what fraction of additional information is necessary

to improve performance plays an important role in the development of ANN-based models. It

is these questions that have motivated the work presented in this manuscript. Although they

are addressed in the specific context of Aedes aegypti abundance, the approaches discussed

here are general, and can be extended to other mechanistic models of vector abundance, such

as for instance DyMSim [28], a model for the abundance of Culex species.

Methods

Training and input data

The neural network models discussed in this article have the same input data as MoLS. These

consist of daily time series of maximum temperature, minimum temperature, precipitation,

and average relative humidity. In MoLS, this information is used to calculate Aedes aegypti
development, death, and reproductive rates, simulate daily mosquito abundance, and estimate

the daily expectation of the number of gravid females [9]. The ANNs work differently: at any

given location, a trained ANN converts weather time series for a fixed number of consecutive

days into a single number, which is the estimated gravid female abundance at the given loca-

tion on the last day of the given time series. Such an ANN is trained on a dataset consisting of

weather time series and associated MoLS estimates.

Weather input data. We obtain daily weather time series from the Multivariate Adaptive

Constructed Analogs (MACA) datasets website [5–8]. To train, validate, and test the models,

we define a principal dataset consisting of daily data for the years 2012–2020 at 144 locations

in 9 states: Arizona, California, Connecticut, Florida, New Jersey, New York, North Carolina,

Texas, and Wisconsin. States other than Arizona are chosen because of their participation in

the 2019 CDC Aedes Challenge [29] and the locations in this study are the centroids of coun-

ties that provided data for the challenge. For Arizona, we use MoLS predictions for the 50

most populated cities in the state. Together, these locations exemplify varying mosquito popu-

lation patterns associated with different climates: hot and dry summers, hot and humid sum-

mers, cold winters, etc. We define a second dataset, called Capital Cities, to assess the

performance of the trained ANNs across the contiguous US, in previously unseen locations

(see S8 Appendix). To this end, we downloaded the 2012–2020 MACA time series for all
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capital cities that are not situated in counties included in the principal dataset. Fig 1 shows the

locations whose time series we use for training, validation, and testing of the ANN models.

The weather time series used as input are noisy at the daily scale (with a correlation length

of about 2 to 4 weeks for temperature, depending on location, and of about 6 days for relative

humidity) but exhibit seasonal patterns. Fig A in S1 Appendix illustrates the temporal dynam-

ics of daily average temperature, precipitation, and relative humidity in Phoenix, AZ, as well as

the dependence of these quantities on two climate models (US GFDL-ESM2M and Canada

CanESM2). Fig D in S1 Appendix (left two panels) shows the correlation of the weather

between locations used for training and those used for testing. Choosing a range of geographi-

cal locations ensures the ANN models are tested on samples of varying weather trends.

Mosquito abundance input data. MoLS [9] is initiated with a specified number of Aedes
aegypti eggs, and the simulation follows the life cycle of each egg “laid” in the system. An egg

must survive through five immature stages before emerging as a fertile adult. At each stage in

the life cycle, MoLS uses environmental and entomological features to simulate the lifespan of

the mosquitoes, including temperature-dependent development rates and gonotrophic cycles,

daily survival rates that depend on temperature and relative humidity, precipitation-depen-

dent egg hatching, and carrying capacities estimated from water levels in simulated containers.

MoLS takes about 10–12 weeks to ramp up, after which the simulated pool of mosquitoes

(eggs, larvae, pupae, and adults) becomes representative of the weather data and local carrying

capacity. Although MoLS output includes information on all of the life stages of a mosquito

population, its default output is daily scaled gravid female abundance. This allows for direct

comparison with surveillance data, which are often collected in gravid mosquito traps. More

information about MoLS, including a comparison of its gravid female mosquito predictions

against trap data for four neighborhoods in Puerto Rico may be found in [9].

In contrast to weather data, MoLS time series show little noise because they represent abun-

dance expectation, smoothed over a two-week window. To illustrate how MoLS responds to

changes in its input time series, its predictions for Phoenix, AZ, associated with weather data

from two climate models are shown in Fig B in S1 Appendix. The correlation of its estimates

between testing and training locations is presented in the right panel of Fig D in S1 Appendix.

Weather input sample length. MoLS keeps track of the number of eggs laid by adult

female mosquitoes over many generations and, as a consequence, ANNs cannot be expected to

reproduce MoLS results with only one day of weather data. Instead, they are provided with

Fig 1. Map of the contiguous United States showing the locations used for training and validation (green squares),

and testing (orange triangles). The locations used in the Capital Cities dataset are indicated by red stars. See Tables A

and B in S7 Appendix for the names of the locations in the principal dataset. Base map obtained from the United States

Census Bureau (https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html).

https://doi.org/10.1371/journal.pcbi.1009467.g001
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weather information over a time window [t0 − Δ + 1, t0] of fixed length Δ days, in order to esti-

mate abundance on day t0. Because MoLS takes about 10–12 weeks to ramp up, we expect Δ to

be of comparable length, i.e. 90 days. Although large enough windows are needed for good

performance, there is a trade-off between larger values of Δ and accuracy. Longer windows

require users to provide reliable weather data over longer periods of time and increase compu-

tational cost. Moreover, windows that are too long may teach the ANNs to rely too much on

what happened during the previous mosquito season. The models discussed in this article use

Δ = 90 days and are able to reproduce MoLS output with high skill. For comparison, we pro-

vide an example of an ANN trained with Δ = 120 days in S6 Appendix. We note that the aver-

age lifetime of a mosquito is estimated to be 30 days (about two weeks in immature stages [9]

and two weeks in the adult stage [30]). Getting good results with Δ = 90 days suggests that 3

times the average individual lifespan is sufficient to capture any correlation between current

and future population trends.

Models

Baseline model. We utilize a simple linear regression model (LR) optimized with gradient

descent as a baseline model for comparison. The linear regression model is trained on the

same training subset as the ANNs and its weights are found using an Adam optimizer [31]

with learning rate α = 0.0001. Note that the LR model can output negative values; this is fixed

in post processing by taking the maximum of the output and zero.

Neural network models. We define three neural network models: a feed-forward neural

network, a long short-term memory neural network, and a gated recurrent unit neural net-

work. A schematic is provided in Fig 2. The layers in the thick-edged box are model depen-

dent: fully-connected (FC) for Model 1, long short-term memory recurrent units (LSTM) for

Model 2, and gated recurrent units (GRU) for Model 3, all of which we describe below. Each

model begins with two convolution layers with 64 units each, a kernel size of 3 with no pad-

ding, and a stride of 1. Both layers use rectified linear unit (ReLU) activation and are immedi-

ately followed by a batch normalization layer as a form of regularization. Batch normalization

scales layer outputs according to a learned mean and standard deviation to reduce overfitting

and improve generalizability. We considered dropout methods as an alternate means to reduce

overfitting, but removed them after they demonstrated no noticeable improvement on the vali-

dation set. The number of trainable parameters for each model is shown in Table 1. Addition-

ally, the reader is referred to S2 Appendix for details on the layers we use in the models and to

[32] for a more thorough discussion of neural networks. The loss function and optimization

are discussed in Loss function and hyperparameter selection.

Fig 2. Architecture of the models used in this study.

https://doi.org/10.1371/journal.pcbi.1009467.g002
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Model 1: Feed-forward convolutional neural network (FF). The feed-forward network

flattens the batch normalization output before applying two fully connected layers and an out-

put layer. The fully connected layers have 64 units and ReLU activation. The output layer is a

single unit with ReLU activation and ℓ2 regularization to reduce over-fitting on the training

data. The ℓ2 regularization on the output augments the loss function with the ℓ2 norm of the

output weights, ||w||2, which must be minimized alongside the mean square error (MSE) loss.

This penalizes large weight terms, requiring the model to utilize multiple features in its deci-

sion making, avoiding over-fitting as a result.

Model 2: Long short-term memory recurrent neural network (LSTM). Our second

model architecture is an LSTM, chosen to exploit the “memory” feature of recurrent neural

networks. LSTM units include gates that selectively allow information to propagate forward,

thereby making it possible for previous information to directly influence the model’s behavior.

Such a feature is relevant for abundance predictions since previous weather patterns impact

current populations. For example, significant heat or cold decreases the viability of offspring,

limiting future abundance. Moreover, Aedes aegypti eggs are known to be resistant to desicca-

tion: long droughts do not necessarily cause a decrease in viable eggs, which can later hatch

when rainfall creates new habitat (see for instance [33] and references therein). All of these fea-

tures are taken into account in MoLS and are thus expected to be captured by the ANNs. The

architecture of the LSTM model replaces the two fully connected layers of Model 1 with LSTM

layers (Fig 2), each with 64 units and tanh activation.

Model 3: Gated recurrent unit recurrent neural network (GRU). The final model archi-

tecture we consider is a GRU, chosen to leverage the benefits of the LSTM model while reduc-

ing the number of associated parameters. GRUs, like LSTMs, feature a gated unit to selectively

allow information to propagate forward. However, the GRU unit is simpler than a LSTM unit

(see Table 1), which reduces training time and the computational cost of using the model to

generate predictions. The GRU architecture is identical to the LSTM architecture, except the

LSTM layers are replaced by two GRU layers, each with 64 units and tanh activation (Fig 2).

Model training

Data processing. We define subsets of the principal dataset for training, validation, and

testing. The training subset contains daily weather data and corresponding MoLS predictions

from 2012–2018 for 115 locations, shown in green (squares) in Fig 1, and we use it to set the

weights in the ANNs. The validation subset contains data from 2019–2020 for the same 115

locations, and is used during hyperparmeter selection (Loss function and hyperparameter

selection) to optimize model performance. The testing subset contains the daily weather data

from 2012–2020 for the 29 locations not included in the training and validation subsets,

shown in orange (triangles) in Fig 1. The Capital Cities dataset contains daily weather data

from 2012–2020 for capital cities in the contiguous US that are not in a county used in the

principal dataset. The testing data do not include the corresponding MoLS time series, which

are subsequently used to evaluate the performance of the optimized models in terms of the

metrics defined in Performance metrics.

Table 1. Number of trainable parameters for each of the neural network models.

Model Trainable Parameters

FF 369,857

LSTM 79,425

GRU 63,297

https://doi.org/10.1371/journal.pcbi.1009467.t001
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During the training and validation process of each ANN model, we process the input

weather data in samples, where the ith input sample, xi 2 R
90�4, represents 90 consecutive

days of daily observations for the four weather variables (precipitation, maximum tempera-

ture, minimum temperature, and relative humidity) at a given location. For each training and

validation input sample xi, we define the corresponding output target, yi 2 R, as the gravid

female abundance prediction by MoLS for the 90th day of the input sample at the same loca-

tion. One thousand input samples, and their corresponding output targets, are randomly

selected from each location in the training and validation subsets, and randomly shuffled to

ensure the model is not dependent on spatiotemporal relationships among successive samples.

We scale each sample between 0 and 1 using the global minimum and maximum values of

each weather variable for the entire training subset before passing them to one of the ANN

models. The resulting scaling factors are considered model parameters and are required for

processing future weather samples. All future data, such as validation and testing data, are

scaled using the same global minimum and maximum values as the training data. This ensures

the data maintain the same relative scale across locations, while removing the differences in

scale between temperature, precipitation, and humidity variables. The training samples are

used to optimize the loss function and update the model layer parameters, while the validation

samples guide hyperparameter selection, described in Loss function and hyperparameter

selection.

After the training and validation process, the learned model weights, as well as the training

data extrema, are saved and can be used to make predictions on unseen data. For the testing

subset and the Capital Cities dataset, we again create input samples xi 2 R
90�4

and use the

ANNs to generate abundance estimates on the last day of each testing sample. For each combi-

nation of training, validation, and testing location and year, we create an associated abundance

curve by constructing a time series of consecutive daily abundance estimates.

Loss function and hyperparameter selection. For each ANN model, the model weight

parameters are selected during training by minimizing a loss function, defined as the mean

squared error (MSE) between model output and MoLS predictions:
Pn

i¼1
ðŷi � yiÞ

2
=n where n

is the number of data points, ŷi is the ith prediction by the ANN model and yi is the ith predic-

tion by MoLS.

Model hyperparameters include the learning rate α, first moment decay rate β1, and the sec-

ond moment decay rate β2 of the Adam optimizer [31], as well as the number of units and type

of activation function for each layer in the model. Given the extensive search space of hyper-

parameters for neural network models, it is not feasible to test all possible combinations of val-

ues. We construct each model by initializing layers with few units and iteratively increasing

the number of units in each layer until either the desired performance is achieved or diminish-

ing returns on validation performance are observed (“diminishing returns” are defined holisti-

cally; in particular, if the increase in the number of weights offers no significant decrease in the

validation error after training, the lesser number of weights is used). Activation functions are

similarly tested on a layer-by-layer basis. Finally, we test learning rates α 2 {0.01, 0.001, 0.0001,

0.00001}. We choose α = 0.0001, while the first moment decay rate β1 = 0.9 and second

moment decay rate β2 = 0.999 of the Adam optimizer are kept at their default values after

changes in their values demonstrated less efficient optimization patterns.

We use a batch size of 64 and train for 100 epochs (enough for models to reach early-stop-

ping convergence criteria; see Fig 3) with an early stopping patience level of 15 epochs. Early

stopping prevents over-fitting the training subset by stopping the training process once no

improvement is seen in model performance on the validation subset for 15 epochs. Once the
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early stopping is triggered, the model parameters for the best performing epoch are selected as

the learned weights for the model.

Data augmentation

The “base” training subset, described in Data processing, includes an equal number of input

samples from all training locations, but we also define additional training subsets biased

towards 1) the double peak pattern observed in hot and dry climates and 2) the absence of

mosquito populations during colder off-season periods. The reader is referred to S9 Appendix

for examples of these patterns. We test two data augmentation methods: high temperature

(HI) oversampling supplements the base training subset with additional samples from on-sea-

son periods for double peak locations, while low temperature (LO) oversampling amends the

training subset with additional samples from off-season periods from a diverse selection of

locations.

High temperature oversampling (HI). The goal of the high temperature oversampling

method is to increase the representation of samples featuring the loss of mosquito population

due to extreme heat, resulting in the double peak season pattern. We manually identify loca-

tions in the original training subset featuring such a pattern (see Table A in S7 Appendix), and

sample 1000 windows of length Δ at each selected location, which are then incorporated into

the training data. Each of these windows is such that its final day lies within the on-season

boundaries. As a consequence, the HI training subset includes 1000 randomly chosen input

samples from on-season times for each of the locations in Table A in S7 Appendix, in addition

to 1000 randomly chosen input samples from each training location.

Low temperature oversampling (LO). The second approach is low temperature oversam-

pling. Similar in construction to the high temperature oversampling method, we manually

select a diverse set of locations featuring consistent losses of mosquito population due to cold

weather, particularly during winter months. We randomly sample 1000 training windows for

Fig 3. Training loss curve for the GRU model. Training halts due to early stopping after 40 epochs, indicating that

the validation loss has reached its minimum value at 25 epochs.

https://doi.org/10.1371/journal.pcbi.1009467.g003

PLOS COMPUTATIONAL BIOLOGY Aedes-AI: Neural network models of mosquito abundance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009467 November 19, 2021 8 / 20

https://doi.org/10.1371/journal.pcbi.1009467.g003
https://doi.org/10.1371/journal.pcbi.1009467


each of the selected locations, with the final day of the training window lying in the colder, off-

season months. Thus, the LO training subset includes 1000 randomly chosen input samples

from off-season times for each of the low temperature oversampling locations listed in Table A

in S7 Appendix, together with 1000 randomly chosen input samples from each training

location.

Variant model training with augmented data. In addition to the HI and LO training

subsets, we define the HI LO training subset as the combination of the two; this training subset

contains the 1000 randomly chosen input samples from each location, the 1000 randomly cho-

sen HI samples, and the 1000 randomly chosen LO samples. Then we retrain the base models

(FF, LSTM, and GRU) using all three new training subsets. We use the same training process

as described in Model training. Thus, in addition to the three base models we have 9 variant

models, named according to the combination of base model and training subset: FF HI, FF

LO, FF HI LO, LSTM HI, LSTM LO, LSTM HI LO, GRU HI, GRU LO, and GRU HI LO.

Post-processing and evaluation

As mentioned above, for each 90-day input sample, the neural network models output the

number of gravid female mosquitoes expected on the 90th day. We evaluate these models by

first generating the 2012–2020 abundance curves for each of the testing locations. We then

smooth each time series of daily predictions, and assess both the global and seasonal fits com-

pared to the corresponding MoLS abundance curve.

Data smoothing. Because the output of MoLS is smoothed with two passes of a 15-day

moving average filter, we also smooth the ANN time series before evaluating the performance

of these models. This is necessary because the weather data and thus the ANN outputs are

noisy at the daily scale. We decided not to train the ANNs on the unsmoothed output of MoLS

because the latter is an average over a small number (30) of stochastic simulations and the

smoothing contributes to producing estimates that represent average abundance. Instead, we

expect the ANNs to process daily weather data in a way that produces estimates that fluctuate

daily about a time-dependent mean that is as close as possible to MoLS numbers. We use a

Savitzky-Golay filter with a window of 11 and polynomial of order 3 to filter the neural net-

work time series. This is an optimal setting that results in having the 11 day auto-correlation of

the predictions within 1% of the 11 day auto-correlation of the corresponding MoLS data. The

central point of the 3rd order polynomial curve used to fit each 11-day span is returned as the

smoothed data point. Any negative values resulting from the smoothing process are set to 0.

Fig 4 shows a comparison of the raw and smoothed abundance curves for Avondale, Arizona

in 2020. The reader is referred to [34] for more information on the Savitzky-Golay filter.

Performance metrics. We use a range of metrics to assess the performance of the neural

network models. These include four metrics that quantify global fit to the MoLS data, as well

as four metrics that focus on timing of abundance peaks and season length. These metrics are

then combined into a single score that is used to rank the neural network models in Compara-

tive model performance.

The global fit metrics are the non-negative coefficient of determination (R2
þ

), normalized

root mean square error (NRMSE), relative difference in area under the curve (Rel. AUC Diff.),
and Pearson correlation (r). Definitions are provided in S3 Appendix. While R2

þ
and r quantify

the fit of the predicted abundance curves, NRMSE and Rel. AUC Diff. quantify the overall accu-

racy of the magnitudes of the predicted abundances. High R2
þ

and r scores indicate the neural

network abundance curves match the shape of the true MoLS curves and low NRMSE and Rel.
AUC Diff. values indicate the magnitudes of the abundance predictions from the neural net-

work models are similar to the corresponding MoLS abundance predictions. These metrics are
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computed for output samples of varying sizes, such as the entire testing output vector (n = 100,

630) and the output vector for a specific testing location and year (n = 365). We use a normal-

ized RMSE to facilitate comparisons between output samples of different scales (i.e. locations

with high mosquito abundance and those with low mosquito abundance) and the non-nega-

tive R2
þ

to assign a score of 0 to all low-performing models.

The season feature metrics quantify differences in the observed time-frames at which cer-

tain thresholds of mosquito abundance are reached for the target MoLS data and the ANN

reconstructions. These are calculated in two steps: given a threshold T, we first identify a set of

time intervals (im, jm)T when MoLS estimates stably remain above T. Similarly, we identify

intervals ð̂in; ĵnÞT when the ANN estimates remain above T. See S3 Appendix for details. We

then quantify the agreement between the two sets of intervals by calculating the differences

Don � în � im and Doff � ĵn � jm in onset values (when MoLS and the ANN predictions first

remain above T) and offset values (when predictions return below T). We use approximation

symbols here because multiple intervals need to be properly matched to one another in order

to calculate Don and Doff. Details are provided in S3 Appendix.

To assess the ability of each ANN to reproduce the results of MoLS, we choose to generate

results for thresholds T that are proportional to MoLS data; we test predictions for thresholds

at 20%, 40%, 60%, and 80% of MoLS peak height to capture differences in both peak timing

and season length. This process is illustrated in Fig 5 for the GRU model in two locations: Col-

lier County, Florida and Avondale, Arizona. For a given year, the season length ℓS is defined as

ℓS = max(jm) − min(im), where the jm and im time points are calculated for T = 20% of the

MoLS peak value. Onsets and offsets are then scaled by the average of ℓS over the testing years

at the given location, to make errors relative to the environment in which they occur; if the

location in consideration has a longer average season length, the relative seasonal difference

Fig 4. Comparison of the raw and smoothed abundance curves in Avondale, Arizona (2020) for the FF (left), LSTM (center), and GRU (right)
models. Data are smoothed according to Data smoothing.

https://doi.org/10.1371/journal.pcbi.1009467.g004
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will be lower than the same absolute seasonal difference for a location with a shorter average

season length. For each combination of model, threshold value, and testing location we report

the means �D and standard deviations σ(D) of (the scaled) Don and Doff values over all years.

Additionally, we record the total number of times each neural network model did not reach

the selected threshold.

Finally, we introduce a composite score, S, defined in S3 Appendix. This number, which

takes into account performance on global and seasonal metrics, provides a convenient way of

comparing models, and is used to rank the models in Comparative model performance. It

penalizes errors in mean values as well as error variability. Low values of S are associated with

what the authors view as good overall ability for an ANN model to reproduce MoLS results.

Results

Performance of base models

During the model development process we use a MSE loss function to train the model parame-

ters and R2 accuracy to assess overall performance. As described in Loss function and hyper-

parameter selection, we vary the hyperparameters, mimicking a grid search, until we observe

diminishing returns on validation performance. The performance metrics for our trained

models with the final selected hyperparameter values are shown in Table 2 for each of the

three training, validation, and testing subsets (defined in Data processing). The output abun-

dance curves are smoothed according to Data smoothing, and the R2 and RMSE metrics for

each subset are calculated on the entire output vectors. In particular, the training metrics

Fig 5. Observed (black solid curve) and predicted (red dashed curve for the GRU model) scaled abundance in Collier County, FL (left) and

Avondale, AZ (right). To make it easier to visualize thresholds, each trace is scaled to the peak height of the observed (MoLS) abundance. The dots

mark the times when each time series reached 20%, 40%, 60%, and 80% of the maximum MoLS abundance. Points in matching pairs are connected by

dotted lines, whose projection on the horizontal axis has length Don or Doff. Black (resp. red) dots that are not matched to a red (resp. black) dot are

omitted in this figure for clarity.

https://doi.org/10.1371/journal.pcbi.1009467.g005
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reflect performance on the entire training subset, even though only 1000 input samples per

location were used during the training process (Data processing). Although the RMSE values

may seem high, the corresponding mean absolute errors are around half as large. Thus, on the

testing subset the GRU model differs from MoLS by an absolute average of� 57 mosquitoes

per day, a reasonable value when compared to MoLS abundance peak heights, which range

from several hundreds in Arizona to several thousands in Florida (MoLS time series for a

period of 9 years at the testing locations are provided in S9 Appendix). Later, we use the

NRMSE metric, which estimates error relative to local abundance values.

Table 2 shows that the ANN models perform well at replicating the mosquito abundance

predictions of MoLS, with the GRU model being the best performer overall. The gap between

the training and validation performance indicates slight over-fitting to the training subset, but

the results of training and validation are satisfactory, with R2 values above 0.96 and 0.94

respectively. Further, R2 values greater than 0.96 are achieved on the testing subset. The perfor-

mance of the baseline model (first row of Table 2) is clearly sub-par. This is not surprising

since MoLS predictions result from a complex process that is unlikely to be captured by a lin-

ear model. In what follows, we provide a detailed analysis of the ANN models performance on

the testing subset, using the metrics defined in Performance metrics. The results are expected

to be representative of what a future user would experience, since they apply to data that were

not used during the training and validation process.

Table 3 expands on Table 2 and estimates the global fit metrics for the three models. The

sample means reported in the R2
þ

column are lower than the R2 score in Table 2 because the

present analysis is performed at a more granular level, for each location and year, rather than

over the entire testing subset. The performance of ANN models is still quite good overall, but

the relatively large standard deviations associated with the Rel. AUC Diff metric indicate vari-

ability in the way their output fits MoLS results. Fig 6 illustrates the nature of this variability by

Table 2. RMSE and R2 metrics for the training, validation, and testing data subsets. The best performing values of RMSE and R2 for each subset are in bold.

Model Metric Training Validation Testing

Baseline RMSE 481.118 466.243 508.648

R2 0.558 0.551 0.558

FF RMSE 131.002 158.352 151.999

R2 0.967 0.948 0.961

LSTM RMSE 75.783 135.0 131.088

R2 0.989 0.962 0.971

GRU RMSE 62.788 131.073 116.376

R2 0.992 0.965 0.977

https://doi.org/10.1371/journal.pcbi.1009467.t002

Table 3. Global fit metrics calculated for the testing subset. The arrows point in the direction of more desirable magnitudes. The entries for metric � are formatted as

� � sð�Þ where � and σ(�) are the mean and standard deviation calculated over all locations and years. In each column, the entry in bold has the best performing mean.

See Performance metrics and S3 Appendix for a description of the metrics.

Model Metric

R2
þ
" NRMSE # Rel. AUC Diff. # r "

Baseline 0.301 ± 0.342 0.381 ± 0.27 -1.077 ± 1.294 0.737 ± 0.296

FF 0.871 ± 0.142 0.112 ± 0.073 0.09 ± 0.239 0.961 ± 0.038

LSTM 0.916 ± 0.118 0.088 ± 0.07 0.031 ± 0.224 0.974 ± 0.028

GRU 0.923 ± 0.119 0.083 ± 0.071 0.036 ± 0.207 0.975 ± 0.029

https://doi.org/10.1371/journal.pcbi.1009467.t003
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comparing model performance in two states with low (Arizona) and high (Florida) abundance

numbers. The consistent scores in the latter (small standard deviations for all metrics) and dif-

ferences between the two states (worse performing mean values associated with larger standard

deviations in Arizona) suggest that temporal-variability plays less of a role here than location-

variability.

We now turn to the season fit metrics, which explicitly capture deviations in the timing of

the predicted season onset, offset, and peaks (see Fig 5). Table 4 shows these metrics for Ari-

zona and Florida; as in Fig 6, averages are taken over all locations and years in each state.

Although the sample means of Don and Doff are typically low, they are better in Florida (less

than a few percents of the season length) than Arizona (up to 9% of the season length). More-

over, the standard deviations for Arizona are again larger than for Florida, especially at the

60% and 80% thresholds. This suggests that ANNs have more difficulties capturing the timing

of peaks than season onsets and offsets (corresponding to the 20% threshold). A similar trend

is observed in the first three rows (above the double line) of Table A in S4 Appendix, which

shows the means and standard deviations of Don and Doff over all locations and years in the

testing subset.

All of the ANN models are trained on samples randomly selected from the training subset.

As a consequence, different realizations of the same model, trained with the same hyperpara-

meters but with different samples, will produce slightly different results. To illustrate this vari-

ability, S6 Appendix provides performance results for the three base models trained either on a

different, or on a larger, set of samples. The stable performance, as documented by the various

tables presented in this appendix, suggests that the default hyperparameter values chosen dur-

ing model development are appropriate.

The above analysis reveals that lower model performance may be associated with a lack of

ability to capture the timing of abundance peaks. The next section explores whether training

the models on augmented datasets that specifically address how they respond to high and low

temperatures improves consistency.

Fig 6. Global fit metrics for Arizona (red, left-hand columns) and Florida (blue, right-hand columns). The thin

vertical lines have length equal to two sample standard deviations. In each state, all locations and years available in the

testing subset were used. See Performance metrics and S3 Appendix for a description of the metrics.

https://doi.org/10.1371/journal.pcbi.1009467.g006
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Performance of variant models

The augmentation methods only lead to nominal improvement in the global fit metrics, except

possibly for lower Rel. AUC Diff. values associated with the HI versions of each model. This is

illustrated in Fig 7, which shows these metrics, calculated for all locations and years in the test-

ing subset, for all models. In addition, the results of the seasonal feature analysis shown in

Table A in S4 Appendix. indicate slight performance improvement for the GRU variants, in

particular at high threshold values.

Table 4. Season feature metrics calculated for Arizona and Florida testing locations. Seasonal differences for a location and year are scaled by the average length of the

season at the 20% threshold. The entries, formatted as �D � sðDÞ, are calculated over all locations and years in each state. Bold entries correspond to the lowest values of

j�Dj � sðDÞ for each threshold, with D = Don or Doff. See Performance metrics and S3 Appendix for a description of the metrics.

Arizona

Model Metric Threshold (% of Max MoLS Prediction)

20% 40% 60% 80%

FF Don -0.011 ± 0.051 -0.021 ± 0.055 -0.055 ± 0.086 -0.028 ± 0.206

Doff 0.0 ± 0.066 0.015 ± 0.078 0.06 ± 0.126 0.092 ± 0.2

LSTM Don -0.004 ± 0.056 -0.006 ± 0.052 -0.03 ± 0.072 -0.043 ± 0.09

Doff -0.005 ± 0.036 0.0 ± 0.094 0.01 ± 0.115 0.043 ± 0.108

GRU Don -0.011 ± 0.049 -0.013 ± 0.051 -0.038 ± 0.111 -0.032 ± 0.138

Doff -0.008 ± 0.047 0.0 ± 0.087 0.009 ± 0.134 0.012 ± 0.141

Florida

Model Metric Threshold (% of Max MoLS Prediction)

20% 40% 60% 80%

FF Don -0.019 ± 0.04 -0.008 ± 0.032 0.0 ± 0.031 0.001 ± 0.06

Doff 0.009 ± 0.029 0.005 ± 0.039 -0.007 ± 0.048 -0.032 ± 0.052

LSTM Don -0.013 ± 0.037 -0.014 ± 0.021 -0.023 ± 0.031 -0.029 ± 0.05

Doff -0.003 ± 0.022 -0.003 ± 0.026 -0.004 ± 0.023 -0.01 ± 0.046

GRU Don -0.017 ± 0.039 -0.012 ± 0.02 -0.011 ± 0.024 -0.02 ± 0.036

Doff -0.001 ± 0.018 -0.006 ± 0.033 -0.003 ± 0.016 -0.008 ± 0.038

https://doi.org/10.1371/journal.pcbi.1009467.t004

Fig 7. Average performance metrics and standard deviation of the testing locations. The legend is in the bottom

right panel.

https://doi.org/10.1371/journal.pcbi.1009467.g007
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S5 Appendix contains a case study of the GRU variants for Avondale, Arizona and Collier

County, Florida. We show the 2020 abundance curves, as well as associated global fit and sea-

sonal feature metrics. The case study exemplifies differences in model variants and perfor-

mance between the two locations. In particular, the HI variant is able to capture the dip in

abundance due to hot summer temperatures. It should be noted however that variations in the

abundance curves produced by the ANNs are minimal when compared to changes in MoLS

dynamics due to weather data (see Fig B in S1 Appendix) or even location (Fig C in S1

Appendix).

Comparative model performance

The overall metric defined in S3 Appendix combines the global fit and season feature metrics

into a single score. It provides a balanced picture of the performance of each model by taking

into account accuracy in terms of season abundance, season length, and peak timing. We show

these results in Fig 8. The GRU, which was the best of the three base models, is only outper-

formed by its HI and LO variants. Similarly, the FF model is outperformed by all of its variants.

On the other hand, the LSTM variants led to a loss of performance, as well as did most of the

HI LO variants. Also evident from this figure is the significant impact of location on model

performance. In particular, all models score poorly for the left-most location in Arizona (For-

tuna Foothills). Further inspection of the associated time series reveals a significant decrease in

MoLS abundance starting at the end of 2018 which is not matched by the ANNs. We believe

this is due to a large spike in precipitation (more than 400 times the average daily value)

included in the MACA data set on 10/24/2017, which is then followed by months of lower-

than-average rainfall. MoLS takes into account the possibility that rain creates new habitat

(pools of water) where mosquitoes can develop. These come from a reserve of eggs that are

available in the environment and can hatch in newly created breeding grounds. In the case of

excessive rainfall, especially in regions of low mosquito abundance, the pool of eggs may be

exhausted in a single event. A drop in future abundance can ensue since not all recently

Fig 8. Combined scores on testing locations (see S3 Appendix for metric definition). The rows represent the models and are organized

bottom to top from highest score (worst model) to lowest score (best model). The columns represent individual locations (see Table B in S7

Appendix for the names), and the vertical, white lines separate states. The states are organized left to right from highest mean score to lowest,

and within each state the locations are organized left to right by descending score.

https://doi.org/10.1371/journal.pcbi.1009467.g008
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hatched eggs will survive to adulthood. In addition, during periods of dry weather, a depleted

reserve of eggs is likely to take a long time to rebuild to normal levels. If large precipitation

events occur outside of the Δ days window used for input, the ANNs cannot be aware of them

and, as a consequence, will produce results reflecting normal abundance given the local

weather conditions. For reference, the time series for MoLS and the GRU HI model at the loca-

tions listed in Fig 8 are provided in S9 Appendix. In the case of Fortuna Foothills, the ANN

correctly reproduces the double-peak pattern seen in MoLS results, but has higher abundance

in 2019–2020. This is consistent with our proposed explanation that the conjunction of a rare

high precipitation event and overall low pre-event abundance levels (less than 1000 mosquitoes

at peak height) led to a crash in MoLS population estimates that is not captured by the ANNs.

S8 Appendix presents an analysis of the performance of the GRU HI model on the Capital

Cities dataset, which covers 9 years of data over 44 locations. The map of Fig C in S8 Appendix

indicates that the model works very well in the eastern and southeastern regions of the United

States, but has inferior performance in the west. Arizona and California are not included

because the corresponding locations (Phoenix and Sacramento) are in the principal dataset

(see Fig 8 for results). In addition, we observe a strong correlation between abundance and

performance: regions of low or irregular MoLS abundance are typically associated with worse

ANN performance. This is illustrated in the top row of Fig D in S8 Appendix, for Nevada and

Montana, which have abundance peak heights of only a few hundred mosquitoes.

Discussion

MoLS, a stochastic agent-based model for Aedes aegypti abundance that was validated against

surveillance data in Puerto Rico [9], uses weather data to simulate the life cycle of a large num-

ber of mosquitoes and estimate expected daily abundance. It is natural to ask whether a prop-

erly trained artificial neural network is able to “learn” how MoLS combines weather-

dependent development, survival, and reproductive rates to make its predictions. In this paper

we demonstrate that it is possible to train ANNs that map meteorological data to mosquito

numbers in a way consistent with MoLS results. Although the 12 models considered here

achieve varying levels of success, they are generally able to replicate the trends observed in

MoLS time series, indicating a neural network can function as an equation-free model of

Aedes aegypti abundance.

As shown by the sub-par performance of the baseline model, learning how MoLS functions

requires a more complex setup than a linear regression. While all three base ANN models use

the same architecture, shown in Fig 2, incorporating recurrent layers (LSTM and GRU layers)

improves performance, compared to the FF model (Table 2). This suggests that a model using

the spatial feature extraction of convolution layers alone is unable to fully identify the relation-

ship between weather features and mosquito abundance, and that combining the sequential

“memory” feature of recurrent layers with the convolution layers better captures this

relationship.

The metrics shown in Table 3 and Table A in S4 Appendix indicate all ANN models have

high overall skill, with minimal differences in global level performance between them. At a

more granular level, the case study of S5 Appendix suggests the GRU HI model is better able

to capture abundance in hot summer months. Such an improvement is expected to be reflected

in the composite metric of S3 Appendix, which by design is sensitive to variability in local per-

formance. Indeed, Fig 8 indicates the HI and LO data augmentation methods improve the per-

formance of the GRU and FF models, although not that of the LSTM model. It is not clear at

this point why the HI LO models are inferior to their HI and LO counterparts. The most
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probable explanation is that the data augmentation puts too much emphasis on extremes com-

pared to typical temperatures, thereby lowering performance in generic situations.

The performance of the GRU HI model on the Capital Cities dataset (S8 Appendix) reveals

that ANNs perform well in regions where mosquito abundance is high—which is principally

where they would be expected to be used. Each year of abundance predictions presented in

this paper took an ANN only 0.33 seconds to generate using a laptop with a 1.6 GHz Dual-

Core Intel Core i5 processor with 8GB RAM (compare to the 10 mn needed by MoLS to gener-

ate 10 years of abundance estimates on a single HPC core) and approximately 1–2 minutes to

train per epoch for each model using a laptop with Intel Core i7–9750H CPUs with 16GB

RAM and a single Nvidia GeForce GTX 1650 GPU with 4GB memory, depending on the sam-

pling size and model architecture. The combination of speed and accuracy demonstrated in

this article therefore identifies neural network models as top contenders for efficiently convert-

ing weather data into Aedes aegypti and more generally mosquito abundance. To encourage

such applications of ANNs, all of our code is freely available on GitHub to researchers inter-

ested in improving on the present results. However, before using an ANN as a replacement for

MoLS, its performance should be assessed with metrics similar to those presented in this article

and the model that best captures local circumstances (e.g. the effect of hot summers on mos-

quito populations in Arizona) should be selected. A quantitative comparison with actual sur-

veillance data is also recommended. Both MoLS and its ANN replacements introduced here

produce daily numbers of scaled mosquito abundance. As previously mentioned, “scaled”

means that the estimates are up to a multiplicative factor that depends on location, but not on

time. If surveillance data are available, the value of this factor can be found via linear regression

of MoLS results against the data, as was done in [9]. The resulting estimate will depend on the

type of mosquito traps used for surveillance, as well as on local considerations, such as the

number of available breeding sites. Once rescaled, MoLS or ANN predictions should be able to

capture overall abundance trends fairly well.

Possible applications include the use of local weather data for vector control interventions.

In this case, abundance trends could be estimated on a daily basis and supplement routine sur-

veillance; reliable weather data, as well as the best performing ANNs should be selected, to

increase confidence in the results. Model limitations should also be taken into account. As sug-

gested by the Fortuna Foothills example, extreme weather events that are localized in time but

affect average population levels in the long term are not taken into account by the ANNs when

such events fall outside the range of their input window of Δ days. However, if the user knows

that such an event occurred, it is not difficult to recalibrate the ANNs by recalculating the scal-

ing factor that relates their output to local surveillance data. More qualitative, longer-term

planning, based on climate scenarios, should also be possible with the ANNs presented here,

since estimating general, weather-based trends of mosquito abundance would suffice in that

case. In addition, because Aedes aegypti is a known vector for diseases like dengue, chikungu-

nya, and Zika, many studies have provided environment suitability maps for this species and

have used them to estimate disease risk (see for instance [19, 35] and references therein). An

ANN trained on reproducing MoLS predictions would make it possible to create similar maps

from a weather-based mechanistic abundance model without the need of high power comput-

ing (HPC) typically required to generate the same quantity of predictions using MoLS. Finally,

the speed afforded by ANNs could allow the creation of interactive web apps able to produce

estimates of mosquito abundance from local weather data at a user’s request.

Another important application of abundance models is the development of probabilistic

forecasts. Going beyond the point estimates produced by the models discussed in this article

requires additional uncertainty quantification, especially in terms of the variability inherent to

the local weather forecast used to make predictions (an example of how different models affect
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MoLS output is provided in S1 Appendix). Looking forward, we believe that when combined

with assimilation of weather and surveillance data, the ANNs trained for this article can effec-

tively contribute to the development of probabilistic mosquito abundance forecasting models.

We leave this for future work.
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