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Background: Bladder urothelial carcinoma (BLCA) is a highly heterogeneous cancer with a wide range 
of prognoses, ranging from low-grade non-muscle-invasive bladder cancer (NMIBC), which has a good 
prognosis but a high recurrence rate, to high-grade muscle-invasive bladder cancer (MIBC), which has a 
poor prognosis. Glycosylation dysregulation plays a significant role in cancer development. Therefore, this 
study aimed to investigate the role of glycosyltransferases (GT)-related genes in the prognosis of BLCA and 
to develop a prognostic model based on these genes to predict overall survival (OS) and assess its clinical 
application.
Methods: The Cancer Genome Atlas (TCGA)-BLCA dataset, comprising 411 tumor and 19 normal 
samples. The validation set, GSE13507 from the Gene Expression Omnibus (GEO) database, included 165 
primary bladder cancer samples with survival data. Differentially expressed GT-related genes (DEGRGs) in 
BLCA were identified in the training set. Predictive DEGRGs were used to construct risk score models by 
univariate Cox regression, least absolute shrinkage and selection operator (LASSO) and multivariate Cox 
regression. The predictive value of the models was assessed using Kaplan-Meier survival analysis and receiver 
operating characteristic (ROC) analysis in the training and validation sets. A nomogram was developed and 
its performance was evaluated with calibration curves. In addition, the relationship between the risk score 
and the tumor immune microenvironment was explored, and tumor immune dysfunction score (TIDE) and 
immune signature scores were used to predict the response to immunotherapy in BLCA patients.
Results: Thirty-three DEGRGs were identified in the comparison of BLCA patients with control samples. 
A risk score model was constructed based on 11 of these genes (GYS2, GALNTL6, GLT8D2, PYGB, 
B3GALNT2, GALNT15, ST6GALNAC3, ST8SIA6, CHPF, ALG9 and B3GALT2). The model performed 
well in predicting 3-, 5-, and 7-year overall survival (OS), with areas under the curve (AUC) of 0.65, 0.67, 
and 0.68, respectively. In addition, patients in the high-risk group had significantly lower survival than those 
in the low-risk group, and there were significant differences in immune status between the two groups. Based 
on age, tumor stage, T stage, and risk score, a Nomogram was constructed to predict the probability of OS, 
and the results of the calibration curves showed that the model had high predictive accuracy. Further analysis 
showed that the rejection score and TIDE were higher in the high-risk group, while the GT-related pathway 
was significantly upregulated in the high-risk group.
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Introduction

Bladder cancer is the most prevalent malignant tumor of 
the urinary system, with over 90% of cases being bladder 
urothelial carcinoma (BLCA) (1). BLCA is a highly 
heterogeneous cancer with varied prognoses ranging from 
low-grade non-muscle-invasive bladder cancer (NMIBC), 
which has a high recurrence rate despite a good prognosis, 
to high-grade muscle-invasive bladder cancer (MIBC), 
which has a poor prognosis (2,3). Treatment options depend 
on the disease type, with transurethral resection of bladder 
tumor (TURBT) being the primary treatment for NMIBC, 
followed by intravesical chemotherapy or immunotherapy, 
whereas MIBC is treated with cystectomy combined with 

chemotherapeutic drugs (4). Despite these treatments, 
BLCA mortality rates remain high due to the recurrence 
rate post-TURBT, the risk of progression to more invasive 
and metastatic forms, and the lack of reliable biomarkers (5). 

Glycosylation, a major posttranslational modification 
in eukaryotic cells, occurs in the endoplasmic reticulum 
and Golgi apparatus and is driven by glycosyltransferases 
(GT) and glycosidases (6-8). It contributes to tumor 
growth by contributes to tumor growth by enabling cancer 
cells to bypass cell cycle checkpoints, evade apoptosis, 
and resist immune surveillance during metastasis (9,10). 
Glycosylation dysregulation is an early event in carcinogenesis 
and significantly influences cancer development and 
progression (6), contributing to tumor heterogeneity (2,11), 
and determining the stage, direction, and fate of tumor 
development (8,11). Altered glycosylation patterns, which 
lead to the production of abnormal tumor-associated 
polysaccharides or glycoproteins, are cancer hallmarks. 
These molecules, secreted or shed into the bloodstream, 
serve as tumor-associated biomarkers (12). The currently 
published model, which is dominated by a single tumor 
marker, therefore, lacks diagnostic and predictive efficacy 
(1,13). Comprehensive glycomic analysis is essential for 
evaluating cancer progression, as demonstrated by the 
accurate identification of indolent and metastatic prostate 
cancer using glycomic analysis of biopsy samples, with an 
accuracy of 91% compared to the conventional evaluation 
accuracy of 72% (14). Glycosylation dysregulation 
contributes to the immunosuppressive microenvironment 
in gliomas (15) and ovarian cancer heterogeneity, with 
specific glycoforms associated with disease development and 
severity (16). Therefore, detecting multiple biomarkers is 
a more practical and comprehensive approach to studying 
cancer glycosylation patterns (12). 

We utilized bioinformatics tools and public databases 
to identify prognostic GT-related genes in BLCA and 
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developed predictive models. We also analyzed the immune 
microenvironment differences between high- and low-
risk BLCA groups, providing novel insights for BLCA 
treatment. We present this article in accordance with the 
TRIPOD reporting checklist (17) (available at https://tau.
amegroups.com/article/view/10.21037/tau-2024-632/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
flowchart is presented in Figure S1.

Data source

The messenger RNA (mRNA) expression dataset of BLCA 
from The Cancer Genome Atlas (TCGA-BLCA) was 
downloaded (https://portal.gdc.cancer.gov/), including 
411 BLCA tumor samples (406 samples with survival 
information) and 19 normal samples. The GSE13507 
dataset from the Gene Expression Omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/geo/) was used 
as a validation set, including 165 primary bladder cancer 
samples with survival information. The clinical information 
of the relevant samples of the dataset is shown in Table S1. 
Additionally, 169 GT-related genes were obtained from 
the GlycoGene database (GGDB; http://jcggdb.jp/rcmg/
ggdb/).

Identification of differentially expressed GT-related genes 
in BLCA

In TCGA-BLCA, differentially expressed genes (DEGs) 
between the BLCA (n=411) and control (n=19) groups 
were screened using the “DESeq2” package in R (The R 
Foundation for Statistical Computing) (18). The cutoff 
criteria for statistical significance were absolute log2 fold 
change (logFC) >1 and adjusted P value (adj. P) <0.05. 
The DEGs’ volcano plot and heatmap were drawn using 
the “ggplot2” and “pheatmap” packages in R (19). The 
intersections of the DEGs and GT-related genes were 
considered the differentially expressed GT-related genes 
(DEGRGs) in BLCA.

Functional enrichment of DEGRGs

The DEGRGs were used to conduct the Gene Ontology 
(GO) annotation and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses 
via the R package “clusterProfiler” (20). The GO terms 
comprised the following three divisions: biological process 
(BP), cellular component (CC), and molecular function 
(MF). Adj. P<0.05 was considered to indicate statistical 
significance.

Identification of survival-related DEGRGs and 
establishment of the risk score model

In the training set, the DEGRGs associated with the OS of 
patients with BLCA were identified with a univariate Cox 
proportional hazards (PH) regression model. DEGRGs 
with hazard ratio (HR) ≠1 and P<0.05 were considered 
statistically significant and were included in subsequent 
analyses. The least absolute shrinkage and selection 
operator (LASSO) regression analysis was performed to 
minimize the risk of overfitting via 10-fold cross-validation 
based on the “glmnet” package in R (21). A PH hypothesis 
test was performed on the genes screened with LASSO 
regression. Following this, a multivariate Cox regression 
analysis was performed on the genes that successfully passed 
the PH hypothesis test. The risk score of patients with 
BLCA was calculated based on the regression coefficients 
from the multivariate Cox regression model. Patients in 
the training set were divided into high-risk and low-risk 
groups according to the median risk score, which was used 
as the cutoff value. Kaplan-Meier (KM) survival analysis 
and the log-rank test were used to analyze and compare the 
difference in OS between the high- and low-risk groups. 
Subsequently, receiver operating characteristic (ROC) curve 
and area under the curve (AUC) analyses were applied 
to test the predictive power of the prognostic risk score 
model. AUC value greater than 0.6 was considered to have 
predictive value. Furthermore, the risk score model was 
tested in the GEO validation set.

Gene expression analysis of different cisplatin 
chemotherapy responses and molecular subtypes

According to  the response of  d i f ferent  c i splat in 
chemotherapy regimens, the patients with BLCA in 
GSE169455 could be classified as pathologic complete 
response (pCR; y-pathological (yp) T0N0), pathologic 
partial response (pPR; ypT1N0, ypTaN0, or ypTisN0), or 
no response (yp ≥ T2 or ypN+). The five main LundTax 
molecular subtype proportions were identified via RNA-
based classification and included urothelial-like (Uro; further 

https://tau.amegroups.com/article/view/10.21037/tau-2024-632/rc
https://tau.amegroups.com/article/view/10.21037/tau-2024-632/rc
https://cdn.amegroups.cn/static/public/TAU-2024-632-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-2024-632-Supplementary.pdf
http://jcggdb.jp/rcmg/ggdb/
http://jcggdb.jp/rcmg/ggdb/
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subdivided into UroA, UroB, and UroC), genomically 
unstable (GU), basal/squamous (Ba/Sq), mesenchymal-like 
(Mes-like), and small cell/neuroendocrine-like (Sc/NE). 
The expressions of the model genes in different cisplatin 
response groups and molecular subtypes were analyzed.

Tumor-immune microenvironment analysis in the high- 
and low-risk groups

The ESTIMATE algorithm was used to evaluate the 
ratio of the immune to stromal components in the tumor 
microenvironment via the “estimate” R package (22), 
which generated four scores, including the immune score 
(reflecting the level of immune cell infiltrations), stromal 
score (reflecting the presence of stroma), ESTIMATE score 
(reflecting the sum of both), and tumor purity (percentage 
of tumor cells). Infiltrating immune cells are critical to 
effective tumor immunotherapies. The CIBERSORT 
algorithm (23) was adopted to calculate the abundance of 
22 immune cell types in patients with BLCA, with RNA-
sequencing data being used to compare the infiltrating 
immune cells in samples with different risk scores. We also 
analyzed expression differences of immune checkpoints and 
human leukocyte antigen (HLA) family genes between the 
high- and low-risk groups.

Predictive nomogram construction and evaluation

The nomogram, integrating multiple risk factors, was an 
excellent tool in the assessment and quantification of risk for 
individuals in a clinical setting. The independent predictive 
factors identified by univariate Cox regression (P<0.05) 
were integrated to construct a predictive nomogram 
via multivariable Cox regression analysis, and the 
corresponding calibration curve was built using the “rms” 
R package. The closer the calibration curve was to the 45° 
line, which represented the best prediction, the better the 
prognostic prediction performance of the nomogram.

The tumor immune dysfunction and exclusion (TIDE), 
immunophenoscore, cell stemness, and functional 
enrichment analyses

In TCGA-BLCA, the TIDE indicators were calculated 
via the TIDE database (http://tide.dfci.harvard.edu), and 
their differences between high- and low-risk groups were 
analyzed separately. To further extrapolate the response 
of patients with BLCA to immunotherapy, the immune 

prognostic signature data including immunophenoscore 
(IPS), IPS-CTLA4- and PD1/PD-L1/PD-L2 blocker, IPS-
CTLA4 blocker, and IPS-PD1/PD-L1/PD-L2 blocker 
were accessed via The Cancer Immunome Atlas website 
(https://tcia.at/home), and their differences between high- 
and low-risk groups were compared. Next, Spearman 
correlation analysis was carried out for the risk score and 
32 angiogenesis-related genes. The one-class logistic 
regression (OCLR) algorithm was used to calculate the 
mRNA expression-based stemness index (mRNAsi) for 
each patient with BLCA, and the stemness difference in the 
two risk groups was compared. Additionally, the Spearman 
correlation between the risk and mRNAsi scores was 
analyzed. The KEGG pathway enrichment analysis for the 
high- and low-risk groups was also applied to identify the 
related biological functions and pathways.

Statistical analysis

Differential analysis was performed using the DESeq2 
package (v1.34.0) (18) in R. Functional enrichment 
analysis was performed using ClusterProfiler (v4.0.5) (20). 
LASSO regression analysis was conducted using the glmnet  
package (21). Additionally, the estimate package (v1.0.13) (22) 
was used to evaluate the immune stromal components of the 
tumor microenvironment. The CIBERSORT algorithm (23) 
was employed to calculate the abundance of 22 immune cell 
types in BLCA patients. A P value of <0.05 was considered 
statistically significant.

Results

Identification of DEGRGs in BLCA

A total of 8,864 DEGs (BLCA vs. control) were identified 
with a threshold of adj. P <0.05 and |logFC| >1, including 
5,651 upregulated genes and 3,213 downregulated genes 
(Figure 1A). The expressions of the top 10 upregulated 
genes and top 10 downregulated genes (sorted by logFC) 
are shown in Figure 1B. The Venn diagram showed that 
33 genes crossed among 8,864 DEGs and 169 GT-related 
genes, and these were used as the DEGRGs (Figure 1C).

Functional enrichment of DEGRGs

The DEGRGs were significantly enriched into 79 BPs, 
6 CCs, 22 MFs, and 20 KEGG pathways (table available 
at https://cdn.amegroups.cn/static/public/tau-2024-

https://cdn.amegroups.cn/static/public/tau-2024-632-1.xlsx
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632-1.xlsx, Table S2). The significantly enriched GO-
BP terms included “glycoprotein biosynthetic process”, 
“protein glycosylation”, “macromolecule glycosylation”, 
“glycosylation”, and “glycoprotein metabolic process”. 
For the GO-CC analysis, the significantly enriched 
terms were “Golgi cisterna”, “Golgi stack”, “Golgi 
cisterna membrane”, “Golgi apparatus subcompartment”, 
and  “ in tegra l  component  o f  Golg i  membrane” . 

Finally, for the GO-MF analysis, the significantly 
enriched terms were “glycosyltransferase activity”, 
“hexosyltransferase activity”, “UDP-glycosyltransferase 
activity”, “acetylgalactosaminyltransferase activity”, and 
“sialyltransferase activity” (Figure 2A). In addition, the 
markedly enriched KEGG pathways for these DEGRGs 
were “other types of O-glycan biosynthesis”, “mucin-type 
O-glycan biosynthesis”, “glycosphingolipid biosynthesis-
lacto and neolacto series”, “glycosphingolipid biosynthesis-
ganglia series”, and “various types of N-glycan biosynthesis” 
(Figure 2B).

Prognostic prediction model of BLCA based on the 
DEGRGs

Using the univariate Cox regression model, we analyzed 
the prognostic value of DEGRGs in 406 BLCA patents 
with prognostic information. Among them, 12 survival-
related DEGRGs were identified (Figure 3A). The 
LASSO regression algorithm was used for a more precise 
prediction of BLCA prognosis using DEGRGs, and the 
optimal model with 12 genes could be attained at lambda.
min =0.001187783 (Figure 3B,3C). The PH hypothesis 
test was performed on the 12 genes selected by LASSO, 
and 11 genes passed the test. After further implementation 
of stepwise multivariate Cox regression analysis, these 11 
genes were ultimately used to construct the prognostic 
model. The risk score of each patient was calculated 
with the gene expression value of the 11 genes and the 
corresponding regression coefficient (Table 1). Among the 
genes, GALNTL6, GLT8D2, and GYS2 were low-risk genes 
(HR <1), while ALG9, B3GALNT2, B3GALT2, CHPF, 
GALNT15, PYGB, ST6GALNAC3, and ST8SIA6 were high-
risk genes (HR >1, Figure 3D). The correlation between the 
risk score and each clinical characteristic was investigated. 
Figure 3A shows that the risk score significantly differed 
among subgroups divided by age and stage (Figure 3E). In 
GSE169455, the expression data of only 7 model genes 
(ALG9, B3GALNT2, B4GALNT2, CHPF, GALNTL6, 
GLT8D2, PYGB) could be extracted. In both the cisplatin 
response groups and molecular subtypes, CHPF expression 
was the highest, while GLT8D2 expression was the lowest 
(Figure 3F).

Evaluation of the prognostic value of risk score and 
validation of an external independent cohort

We categorized patients into high- and low-risk groups 
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based on their median risk score. The risk score distribution 
and associated survival status indicated that as risk score 
increases, so does the likelihood of death (Figure 4A). 
Next, we evaluated this model using the KM and ROC 
curves. The KM curve showed that patients in the high-
risk group had significantly shorter OS times than did those 
in the low-risk group (Figure 4B). The ROC curve analysis 
showed that the 3-, 5-, and 7-year AUC values were 0.65, 
0.67, and 0.68 based on the risk score alone (Figure 4C). 
To confirm the risk signature independently, we applied 
an 11-gene prognostic signature to an independent GEO 
cohort. The risk score increase was correlated with higher 
patient mortality rates (Figure 4D). The low-risk group 
had a considerably better chance of survival as compared to 
the high-risk group (Figure 4E). In the ROC curve analysis 
of risk score alone, the AUC values of the validation set 
for 3 years, 5 years, and 7 years were 0.64, 0.65 and 0.63, 
respectively (Figure 4F), and the results were all greater 
than 0.6, indicating that the model had better prediction 
accuracy.

Tumor immune microenvironment analysis of risk score

We proceeded to investigate the immune-stromal components 
present in the tumor microenvironment (Figure 5A). Immune, 
stromal, and ESTIMATE scores positively correlated with 
risk scores and were significantly higher in the high-risk 
group. The tumor purity was negatively correlated with risk 

score and was considerably lower in the high-risk group. 
To further characterize the immune microenvironment 
of tumors, we estimated the abundance of 22 immune 
cells in patients with BLCA (Figure 5B), and 11 cell types 
were significantly different between the high- and low-
risk groups (Figure 5C). We also compared the expressions 
of immune checkpoints and HLA family genes between 
the high- and low-risk groups. We found that 33 immune 
checkpoints and 18 HLA family genes significantly differed 
in expression between the two groups (Figure 5D,5E).

Predictive nomogram construction and evaluation

Based on the results of the univariate Cox regression and 
multivariate Cox regression analyses (Figure 6A,6B), we 
further constructed a nomogram based on four independent 
prognostic factors, including age, stage, T stage, and risk 
score, to provide a quantitative method for clinicians to 
predict the probability of 3-, 5- and 7-year OS for patients 
with BLCA (Figure 6C). Moreover, the calibration curve 
indicated that in comparison with an ideal model, the 
nomogram had a similar performance (Figure 6D).

High-risk group patients had less effective immunotherapy, 
and the glycan synthesis-related pathways were upregulated 
in the high-risk group

Both the exclusion and TIDE scores were significantly 
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higher in the high-risk group than in the low-risk group, 
implying that patients in the high-risk group may have 
a more severe rejection of T cells, resulting in poorer 
outcomes from receiving immunotherapy (Figure 7A). 
The box plot showed a significant difference in IPS scores 
between the high- and low-risk groups, with a lower 
expression in the high-risk group, further illustrating the 
poorer immunotherapy outcome of high-risk group patients 
(Figure 7B). In addition, the risk score was significantly 
positively correlated with most angiogenesis-related genes, 
such as FSTL1, COL5A2, and COL3A, and was significantly 
negatively correlated with VEGFA, TNFRSF21, S100A4, 
and LRPAP1 (Figure 7C). There was a notable stemness 
difference between the high- and low-risk groups, 
and as anticipated, mRNAsi was negatively correlated 
with risk score (Figure 7D). Additionally, the O-glycan 
biosynthesis, glycosphingolipid biosynthesis ganglia series, 
glycosaminoglycan biosynthesis chondroitin sulfate, and 
other KEGG pathways were upregulated in the high-risk 
group. Meanwhile, insulin signaling, bladder cancer, and snare 
interactions in vesicular transport pathways, among others, 
were downregulated in the low-risk group (Figure 7E).

Discussion

BLCA is the most prevalent malignant tumor in the 
urinary system and is a highly heterogeneous tumor with 
multiple pathologic types and varied prognoses (1,5), such 
as the nested variant of urothelial carcinoma is a variant 
of urothelial carcinoma with aggressive behavior and poor 
prognosis (24). Moreover, due to the high recurrence rate, 
the risk of redevelopment to more invasive and metastatic 
malignancies, and the lack of sensitive biomarkers, 
existing treatment approaches do not reduce mortality 
rates in BLCA; the survival rate has remained poor (5). 
Furthermore, while recently published tumor markers such 
as FLG (25) and TWIST1 (26) have potential prognostic 
value, a single biomarker is insufficient for diagnostic and 
prognostic purposes. Therefore, it is vital to discover novel 
biomarkers. The study developed a model and evaluated 
its performance by measuring the AUC for OS at 3, 5, 
and 7 years, which yielded AUCs of 0.65, 0.67, and 0.68, 
respectively. These results indicate that the model has good 
predictive ability. Additionally, KM curves demonstrated 
that patients placed in the high-risk group had high tumor 
grades and worse prognoses. 

Glycosylation dysregulation contributes to tumor 
heterogeneity. Changes in glycosylation have been 
associated with cancer progression and poor prognosis in a 
variety of malignancies and are now generally acknowledged 
to be one of the hallmarks of cancer. However, the role of 
GT-related genes in the outcome and progression of BLCA 
is unknown. Therefore, we aimed to develop a GT-related 
predictive model to improve BLCA prognosis prediction.

In this study, we found 11 GT-related genes associated 
wi th  BLCA:  GYS2,  GALNTL6 ,  GLT8D2 ,  PYGB , 
B3GALNT2, GALNT15, ST6GALNAC3, ST8SIA6, CHPF, 
ALG9, and B3GALT2. CHPF (chondroitin polymerizing 
factor) with dual GlcAT-II and GalNAcT-II activity 
participates in energy metabolism and may be associated 
with glycolysis (27). CHPF regulates TGF-β1 expression, 
a significant regulator of cancer cell contact with the 
tumor microenvironment. CHPF stimulates SMAD3 
and JNK via activating TGF-β1, enhancing breast cancer 

genes (ALG9, B3GALNT2, B4GALNT2, CHPF, GALNTL6, GLT8D2, PYGB) could be extracted. CHPF expression was the highest, and 
GLT8D2 expression was the lowest. CI, confidence interval; pR, pathologic response; pCR, pathologic complete response; pPR, pathologic 
partial response; Ba/Sq, basal/squamous; GU, genomically unstable; Mes, mesenchymal; NE, small cell/neuroendocrine; UroA, urothelial-
like A; UroB, urothelial-like B; UroC, urothelial-like C; DEGRG, differentially expressed glycosyltransferase-related gene; BLCA, bladder 
urothelial carcinoma; LASSO, least absolute shrinkage and selection operator; GT, glycosyltransferase.

Table 1 The risk coefficients for the 11 GT-related genes in the 
multivariable Cox regression model

Gene coef

CHPF 0.15754823

PYGB 0.10346106

GLT8D2 −0.11193863

B3GALNT2 0.10101936

ALG9 0.24668539

GALNT15 0.09162525

ST6GALNAC3 0.09646491

B3GALT2 0.24225244

ST8SLA6 0.13149067

GYS2 −0.71745428

GALNTL6 −0.65704759
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Figure 4 The risk score, survival status, and DEGRG expression varied in the different cohorts. (A) The risk score and survival status in the 
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overall survival than did those in the low-risk group. (C) ROC curve analysis of the risk score alone resulted in 3-, 5-, and 7-year AUC 
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values of 0.65, 0.67, and 0.68, respectively. (D) The risk score and survival status for the high- and low-risk patients in the GSE13507 (n=165) 
validation set. (E) The KM curve showed that patients in the high-risk group had significantly shorter overall survival. (F) In the ROC curve 
analysis of risk score alone, the 3-, 5-, and 7-year AUC values were 0.64, 0.65, and 0.63, respectively, in the validation set. KM, Kaplan-
Meier; ROC, receiver operating characteristic; AUC, area under the curve; DEGRG, differentially expressed glycosyltransferase-related 
gene; TCGA, The Cancer Genome Atlas.
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Figure 6 Predictive nomogram construction and evaluation. The (A) univariate and (B) multivariate Cox regression analyses of the 
prognostic capability of the risk score and other clinical variables. (C) A nomogram based on the risk score and other clinicopathological 
factors was constructed to predict the overall survival of patients with BLCA at 3, 5, and 7 years. (D) Calibration curves of the nomograms 
for validating the consistency between nomogram results and the actual 3-, 5-, and 7-year survival outcomes of BLCA. CI, confidence 
interval; BLCA, bladder urothelial carcinoma.

cell proliferation, migration, and invasion (28). GYS2 
is an isoform of GYS (glycogen synthase) that directly 
controls glycogen synthesis and is primarily expressed 
in the liver (29). Low GYS2 expression in intrahepatic 
cholangiocarcinoma implies a poor prognosis, but GYS2 
overexpression dramatically reduces cholangiocarcinoma 
cell proliferation, migration, and invasion through activating 
the p53 pathway (30). PYGB (glycogen phosphorylase) is 
the rate-limiting enzyme in glycogen degradation (29) and 
is highly expressed in lung cancer (31), prostate cancer (32), 
breast cancer (33), gastric cancer (34), and ovarian cancer 
(35,36). PYGB can serve as a diagnostic molecular marker 
for gastric cancer (34), and its overexpression is associated 
with poor prognosis in patients with ovarian cancer (35). 
PYGB influences cancer cell proliferation via multiple routes, 
including the Wnt/β-catenin pathway (34), the PI3K/AKT 
pathway (31), and the NF-κB/Nrf2 signaling network (32). 
GLT8D2 (glycosyltransferase 8 domain containing 2) has 
been linked to cisplatin resistance, and its overexpression 
in ovarian cancer cells can promote resistance. Inhibiting 
the FGFR and PI3K signaling pathways can considerably 

reduce GLT8D2-induced cisplatin resistance and improve 
cisplatin’s therapeutic efficacy in ovarian cancer. Targeting 
the GLT8D2–FGFR–PI3K/AKT axis may improve 
platinum therapy response in patients with chemotherapy-
resistant ovarian cancer (37). B3GALNT2 (β-1,3-N-
acetylgalactosaminyltransferase II) is a B3GT (β-1,3-
glycosyltransferases) family member (38) that affects normal 
and malignant tissue development (39). B3GALNT2 
lowers acetate secretion, inhibits macrophage inhibitory 
factor activity, increases macrophage recruitment, and 
promotes tumor growth in hepatocellular carcinoma, 
consequently performing metabolic reprogramming 
and microenvironment remodeling tasks (40). ALG9 
(alpha-1,2-mannosyltransferase) mutations can develop in 
polycystic kidney and liver (41). ST6GALNAC3 (ST6(alpha-
N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-
acetylgalactosaminide alpha-2,6-sialyltransferase 3) catalyzes 
the transfer of sialic acid to GalNAc and is a member of the 
sialyltransferase enzyme family implicated in the synthesis of 
sialylated glycoproteins and lipids (42,43). ST6GALNAC3 
expression is elevated in several cancers (42,44,45) and plays a 
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Figure 7 The TIDE, IPS, cell stemness, and functional enrichment analyses. (A) The exclusion and TIDE scores were significantly higher 
in the high-risk groups. (B) The IPS score between the high- and low-risk groups. (C) The risk score was significantly positively correlated 
with most angiogenesis-related genes. (D) A notable stemness difference between the high- and low-risk groups was observed, and mRNAsi 
was negatively associated with risk score. (E) The KEGG pathway enrichment analysis for the high- and low-risk groups. ns, no significance; 
***, P<0.001; ****, P<0.0001. IPS, immunophenoscore; KEGG, Kyoto Encyclopedia of Genes and Genomes; TIDE, tumor-immune 
dysfunction and exclusion.
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P<0.001

0.171 
P<0.001

0.183 
P<0.001

0.163 
P<0.001

0.169 
P<0.001

0.141 
P=0.004

0.148 
P=0.003

0.125 
P=0.01

0.13 
P=0.009

0.119 
P=0.02

0.123 
P=0.01

−0.109 
P=0.03

−0.111 
P=0.031

0.106 
P=0.03
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central role in cancer biology and immunity (42). According 
to Haldrup et al., extremely cancer-specific hypermethylation 
of the ST6GALNAC3 and ZNF660 promoters may be 
biomarkers for prostate cancer (44). GALNTL6 (polypeptide 
N-acetylgalactosaminyltransferase-like 6) overexpression is 
linked to a decreased survival time in individuals with thyroid 
cancer (46). ST8SIA6 (ST8 alpha-N-acetyl-neuraminide 
alpha-2,8-sialyltransferase 6) modulates immune cell 
infiltration and immunotherapy response in colon cancer (47). 
Except for those of B3GALT2 (UDP-Gal:betaGlcNAc beta 
1,3-galactosyltransferase, polypeptide 2), which is a reliable 
predictor of BLCA (48), the functions of the remaining 10 
GT-related genes in BLCA are unknown.

The high-risk and low-risk groups also exhibited 
differences in the abundance of immune cells, including 
memory B cells, resting dendritic cells, M1 and M2 
macrophages, neutrophils, activated natural killer cells, 
plasma cells, resting and activated memory CD4 T cells, 
naive T cells, and regulatory T cells, and immune status is 
an essential factor in determining the prognosis of BLCA 
(49-51). The immune status of BLCA is determined by the 
types and proportions of immune cells and matrix cells in 
tumor tissue (49). Notably, the 11-gene GT-related model 
can be used to determine whether a patient can respond 
to immunotherapy. The exclusion score and TIDE score 
were significantly higher in the high-risk group, indicating 
that patients in the high-risk group had greater T-cell 
rejection and did not respond to immunotherapy, which was 
further confirmed by IPS analysis. In addition, there were 
significant differences in mRNAsi between the high-risk and 
low-risk groups. Cancer stem cells (CSCs) are significantly 
correlated with tumorigenesis, prognosis, clinical stage of 
American Joint Committee on Cancer (AJCC), and bone 
metastasis in patients with BLCA. CSC is essential to 
tumor recurrence and chemotherapy resistance (52). The 
characteristics of CSC can be identified by the mRNAsi 
DNA methylation-based stemness index (53). mRNAsi 
was significantly upregulated in BLCA and increased with 
higher tumor stage, with T3 having the profile with greatest 
cell stemness. mRNAsi is considered a repredictor of BLCA 
occurrence, metastasis, and patient prognosis (54). The 
lower the mRNAsi score is, the better the OS and treatment 
outcome (53).

We discovered a novel set of molecular indicators that 
reliably predict clinical outcomes in patients with BLCA. 
According to KM analysis, patients with high-risk scores 
have a relatively short OS. These findings emphasize the 
critical predictive impact of risk scores for the 11 GT-

associated genes. This model not only provides a new means 
to predict the prognosis of patients with BLCA but may 
also generate therapeutic alternatives in clinical practice. 
Furthermore, assessing multiple biomarkers simultaneously 
may be a more feasible and thorough means of diagnosing 
BLCA.

However, certain limitations of our research should be 
acknowledged. This study depended on database analysis, 
and the results were not confirmed in vitro or in vivo. 
Moreover, we employed a retrospective design; further 
validation through a prospective study is required to support 
our findings. Finally, additional study with experimental 
confirmation is required to understand the relationship 
between GT-related genes and BLCA prognosis.

Conclusions

In conclusion, we identified 11 GT-related genes that are 
associated with OS in patients with BLCA, which may 
be useful for prognostic prediction. However, further 
validation and experimental studies are required to fully 
comprehend the function of these genes and their effect on 
BLCA.
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