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A B S T R A C T   

Despite extensive research on the gut microbiome of healthy individuals from a single country, there are still a 
limited number of population-level comparative studies. Moreover, the sequencing approach used in most 
related studies involves 16 S ribosomal RNA (rRNA) sequencing with a limited resolution, which cannot provide 
detailed functional profiles. In the present study, we applied a combined analysis approach to analyze whole 
metagenomic shotgun sequencing data from 2035 healthy adult samples from six countries across four conti-
nents. Analysis of core species revealed that 13 species were present in more than 90 % of all investigated in-
dividuals, the majority of which produced short-chain fatty acids (SCFA)-producing bacteria. Our analysis 
revealed consistently significant differences in gut microbial species and pathways between Western and non- 
Western countries, such as Escherichia coli and the relation of MetaCyc pathways to the TCA cycle. Specific 
changes in microbial species and pathways are potentially related to lifestyle and diet. Furthermore, we iden-
tified several noteworthy microbial species and pathways that exhibit distinct characteristics specific to China. 
Interestingly, we observed that China (CHN) was more similar to the United States (USA) and United Kingdom 
(GBR) in terms of the taxonomic and functional composition of the gut microbiome than India (IND) and 
Madagascar (MDG), which were more similar to the China (CHN) diet. The current study identified consistent 
microbial features associated with population and geography, which will inspire further clinical translations that 
consider paying attention to differences in microbiota backgrounds and confounding factors.   

1. Introduction 

The human gut harbors a wide, complex, and diverse community of 
microorganisms that play a fundamental role in human health and dis-
ease [1,2]. Each person harbors approximately 150–400 bacterial spe-
cies in the gut, representing the largest number and concentration of 
microorganisms in the human body [2–4]. 

The microbiome is extensively involved in physiology and 

metabolism [3]. Various studies have revealed that changes in the 
microbiota are significantly associated with various diseases, such as 
obesity [5], type 2 diabetes [6], inflammatory bowel disease [7], and 
hypertension [8]. Moreover, emerging research has highlighted the as-
sociation between microbial dysbiosis and a range of diseases, including 
colorectal cancer [9], oral diseases [10], rheumatoid arthritis [11] and 
cardiovascular diseases [12]. Therefore, an important step in restoring a 
healthy microbiota and intervening in microbial dysbiosis in patients is 
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to understand the characteristics of a healthy human microbiome. 
Recently, several studies have investigated the characteristics of 

healthy microbiomes in various countries such as the United States [13], 
China [14], South Korea[15], Japan[16], the Netherlands [17] and 
Belgium [18]. These studies provide a better understanding of the 
relationship between microbiota variation and the covariates of an 
average healthy population and demonstrate the variability in compo-
sition and function of the gut microbiota associated with host and 
environmental factors, such as age, sex, and geographical region. 
However, the majority of these studies only considered individuals from 
a single country and focused on assessing the association between gut 
microbiota and host covariates. For instance, two US-based gut micro-
biota datasets demonstrated recurrent associations between specific 
taxa in the gut microbiota and ethnicity [19]. Another large-scale Chi-
nese cohort study emphasized that geography has the largest explana-
tory power for the composition of the gut microbiota [14]. Otherwise, 
few population-level comparative studies are currently available [16,18, 
20]. Therefore, conducting a comparative analysis to investigate gut 
microbiota in different countries is of great value. 

The sequencing approach used in most of these studies involved 16 S 
ribosomal RNA (rRNA) gene sequencing. The major limitations of this 
method are as follows. First, taxon annotation is based on only a single 
region of the bacterial genome, which has limited resolution [21]. More 
importantly, 16 S rRNA sequencing does not provide information about 
the metabolic potential of communities [21,22]. An alternative 
approach to 16 S rRNA gene sequencing is shotgun metagenomic 
sequencing, which can be defined more accurately at the species level 
and provides detailed functional profiles. 

With the development of technology and decreases in sequencing 
costs, a growing number of metagenomic datasets around the world are 
available. Conducting a combined analysis by combining these datasets 
can offer comprehensive insights beyond those provided by individual 
studies. Comparative analysis of the composition and function of the 
human microbiota across countries with diverse lifestyles and 
geographic locations can offer profound insights and a comprehensive 
understanding of the gut microbiome in a healthy state. In this study, we 
performed a large-scale combined analysis of 14 publicly available 
shotgun metagenomics-based studies to explore population-level varia-
tions in the gut microbiome. Our study has several key objectives. First, 
we aimed to explore the overall characteristics of the gut microbiome in 
all individuals and to identify its distinctive features within six specific 
populations, while also investigating the relationship between diet and 
gut microbiota. Second, we sought to identify the core microbial fea-
tures specific to each population as well as those shared among all in-
dividuals. Furthermore, we aimed to consistently identify the different 
gut microbial species and pathways in Western and non-Western coun-
tries. Finally, considering China’s recent rapid industrialization and 
economic development, we compared the differences in gut microbiota 
between China and other Western countries, as well as between pop-
ulations in Asia and Africa. 

2. Materials and methods 

2.1. Data set and metadata collection 

We collected shotgun metagenomic sequence data of individuals 
from the curated Metagenomic Data (https://github.com/waldronlab 
/curatedMetagenomicData/, version 3.0.1, accessed on September 30, 
2021) repository [23]. CuratedMetagenomicData provides standard-
ized, curated human microbiome data for downstream analyses that 
include species relative abundance and MetaCyc pathway abundance for 
samples. The taxonomic abundances for each sample were calculated 
using MetaPhlAn3 [24], and HUMAnN3 [24] was used to analyze the 
MetaCyc pathway abundance. Briefly, MetaPhlAn3was run onprepro-
cessed readsusing default parametersto generatemicrobialcommunity 
profiles. HUMAnN3 is a pipeline that efficiently and accurately profiles 

both the presence/absence and abundance of microbial pathways in a 
community by utilizing MetaCyc pathway definitions. HUMAnN3 maps 
the preprocessed reads to the UniRef90 catalogue and reconstructs the 
metabolic pathway profile based on gene family outputs, which are 
annotated to MetaCyc reactions. 

Of the 20,282 samples from 86 available studies, we selected those 
that had samples with the following characteristics: (1) no antibiotic or 
probiotic use (antibiotics_current_use = no). (2) stool samples were 
collected from healthy adults (age category = adult; disease = healthy). 
Of note, referring to recently published literature [25], healthy in-
dividuals, regardless of whether they had been determined as healthy in 
the original studies, were considered to be part of the nonhealthy group 
if their reported BMI fell within the range of underweight (BMI <18.5), 
overweight (BMI ≥ 25 and < 30), or obese (BMI ≥ 30). Moreover, female 
participants who were pregnant or not reported as nonpregnant in the 
original study were excluded from our analysis. Only countries with at 
least 50 samples meeting the above criteria were considered. In total, 
2035 healthy adult metagenomic samples from 14 studies fulfilled our 
selection criteria. These samples, gathered using the returnSamples 
function, were subsequently utilized for further analyses. (Supplemen-
tary Fig. S1, Supplementary Table S1). These 14 metagenomic studies 
[17,26–38] encompassed six countries across four continents: America, 
Europe, Asia, and Africa. They included four studies from China (CHN) 
with 269 individuals, three from the United States (USA) with 151 in-
dividuals, including those from a study jointly conducted with the 
United Kingdom (GBR), three from India (IND) with 97 individuals, two 
from the Netherlands (NLD) with 904 individuals, and one from 
Madagascar (MDG) with 97 individuals. The joint USA-GBR study 
included 517 individuals from the GBR. 

The Food and Agriculture Organization Corporate Statistical (FAO-
STAT) database is a collection of online databases containing time-series 
records that cover international agricultural statistics for 210 countries 
[39]. Data were provided by national governments or extrapolated by 
the Food and Agriculture Organization of the United Nations. Dietary 
intake data (kg/capita/year) for 93 food categories were collected from 
the FAOSTAT database (https://www.fao.org/faostat/, accessed on 
November 18, 2021). The food categorizations used in our study were 
provided directly by the FAOSTAT database, and we did not perform any 
additional categorizations or adjustments. 

2.2. Microbiome data analysis 

All alpha and beta diversity analyses were conducted in the R envi-
ronment (http://www.r-project.org/) using phyloseq [40], microeco 
[41] and vegan packages [42], except for permutational multivariate 
analysis of variance (PERMANOVA) analysis using Primer7 with the 
PERMANOVA+ plugin. 

Alpha diversity was calculated using the Shannon diversity index. To 
compare samples with different sequences, all the samples were rarefied 
to the same number of reads. Bacteroidetes/Firmicutes (B/F) ratio was 
calculated using the ratio of the relative abundances of Bacteroidetes 
and Firmicutes. Beta diversity was assessed based on Bray-Curtis dis-
tances calculated from the relative abundances of microbial taxonomic 
and functional features. Principal coordinate analysis was performed 
using the Bray-Curtis dissimilarity matrix. To test the statistical signifi-
cance of differences in beta diversity, PERMANOVA was performed 
using type III sums of squares and 999 permutations of residuals under a 
reduced model. The random factor “study” and the fixed factors 
“country,” “age” and “sex” were specified for the PERMANOVA model. 
Intergroup differences in taxonomic and functional compositions of the 
gut microbiome were also assessed using PERMANOVA. 

With the exception of A. butyriciproducens [43], the Short-chain fatty 
acids (SCFA) capabilities of the species were evaluated based on the 
findings of Frolova et al. [44]. Frolova et al. utilized genomic signatures 
to reconstruct pathways and categorized genomes based on simplified 
binary phenotypes, indicating the ability ("1") or inability ("0") of a given 
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human gut microbiota (>800 known human gut microbiota species) to 
produce SCFAs. 

2.3. Statistical analysis 

All statistical analyses were performed using the R software (version 
4.1). The Mann-Whitney-Wilcoxon (MWW) test was used to compare 
intra-population variations in microbial functional composition and 
microbial taxa composition. The MaAsLin 2 package was used to 
perform linear mixed-effects models (analysis_method = "LM" in the 
MaAsLin2 function). To control for all potential confounding variables, 
we added two covariates to the model for population–microbiota asso-
ciation: age, and sex. To control for potential study effects resulting from 
different isolation methods, DNA extraction protocols, and sequencing 
platforms, the study accession was set as a random effect in MaAsLin2 
[27]. The formula of the linear mixed regression model was as follows: 
Feature abundance ~ country + age + sex + country:age + country:sex 
+ country:age:sex + (1|study), where feature abundance was the 
log-transformed relative abundance of species and MetaCyc pathways. 
MaAsLin2 adds a pseudo-count of half of the minimum species or Met-
aCyc pathway level detected before the log transformation of relative 
abundances. Statistical differences among population alpha diversity 
and B/F ratios were also tested using MaAsLin2 with linear mixed-effects 
models (analysis_method = "LM" in the MaAsLin2 function) to control 
for age, sex, and study effects. Multiple tests were controlled with FDR 
correction calculated by the Benjamini-Hochberg method. Adjusted P 
values < 0.1 were deemed significant in all differential abundance an-
alyses. Hierarchical clustering with Euclidean distance was used for the 
cluster analysis of the six countries based on the profiles of different food 
categories. 

3. Results 

3.1. Overall population-level gut microbiome characteristics 

First, we investigated the abundance distribution of the microbial 
taxa. The predominant bacterial genera in individuals from CHN, USA, 
and GBR were Bacteroides, whereas IND and MDG were dominated by 
Prevotella (Supplementary Fig. S2A, B). Intriguingly, the relative abun-
dance of Bacteroides in CHN did not differ significantly from that in the 
USA, GBR and NLD (MaAsLin, p > 0.05). Moreover, the included studies 
from NLD harbored Bifidobacterium as the most abundant genus and the 
genus Ruminococcus had the second largest mean abundance. Further-
more, Escherichia had the second-largest mean abundance in the MDG 
and exhibited a significantly higher abundance than that in other 
countries (MaAsLin2, p < 0.05, Supplementary Table S2). Addition-
ally，Euryarchaeota was the only detected phylum within the Archaea 
domain, with average relative abundance of 0.899 % (standard devia-
tion: 0.026) and a prevalence of 38.5 % (Supplementary Table S3). 
Euryarchaeota was dominated by Methanobrevibacter smithii (relative 
abundance: 0.851 %, standard deviation: 0.025) and identified in 754 
individuals across all 14 studies healthy adults (Supplementary 
Fig. S2C), whereas the abundance and prevalence of other species 
belonging to Euryarchaeota were very small. The relative abundance of 
Methanobrevibacter smithii highly varied across individuals, ranged from 
0 % to 35 %. Interestingly, we observed that Methanobrevibacter smithii 
was more prevalent in MDG than in other countries and the least com-
mon in CHN, and its prevalence was higher in western countries than 
Asian countries, with the exception of USA. 

As shown in Supplementary Fig. S2D, the ratio of Bacteroidetes to 
Firmicutes (B/F ratio) showed high inter-individual variation within the 
populations. After controlling for age, sex, and batch effect, the CHN 
population had a significantly higher B/F ratio than the other pop-
ulations (MaAsLin2 [45], p < 0.05), whereas the MDG and NLD pop-
ulations had the lowest B/F ratios. 

3.2. Microbial compositions shared among populations 

To evaluate the microbial species that are potentially critical to the 
gut ecosystem, we calculated the prevalence of bacterial taxa to explore 
the taxonomic compositions shared between individuals. We found that 
more than half of the species (432/835) appeared in only 1 % of the 
samples, and 649 out of 835 species were low prevalent species that 
presented in less than 10 % of the entire population (Supplementary 
Fig. S3, Supplementary Table S4). Additionally, by comparing the 
number of shared species under different species prevalent thresholds of 
50 % with 117 species, 60 % with 104 species, 70 % with 80 species, 80 
% with 56 species, and 90 % with 38 species across various countries 
(Supplementary Fig. S4), we found that the species prevalent in CHN 
showed a higher degree of similarity to those in the USA, GBR, and NLD. 

Next, we identified 13 species (Collinsella aerofaciens, Agathobaculum 
butyriciproducens, Faecalibacterium prausnitzii, Anaerostipes hadrus, Fusi-
catenibacter saccharivorans, Blautia wexlerae, Blautia obeum, Dorea long-
icatena, Dorea formicigenerans, Eubacterium hallii, Roseburia inulinivorans, 
Eubacterium rectale, Bacteroides uniformis) that were present in more than 
90 % of all investigated individuals, indicating that they may play 
critical roles in the gut microbiome ecosystem of healthy individuals. 
They accounted for 28.87 % of relative abundance. Only Faecalibacte-
rium prausnitzii appeared in more than 95 % of all individuals, and none 
was detectable in all individuals. Interestingly, most of the core species 
(12 of 13) were SCFA-producing bacteria, with the exception of Fusi-
catenibacter saccharivorans. 

Furthermore, we identified the core microbiota (shared by more than 
90 % of individuals) of each population at different taxonomic ranks 
(Supplementary Fig. S5 A-C). At the phylum level, the core species in all 
countries were Firmicutes, Bacteroidetes, Actinobacteria, and Proteobac-
teria, but their abundances varied among individuals (Supplementary 
Fig. S5A). At lower taxonomic levels, such as genus, IND had the lowest 
number of core genera (five genera), whereas GBR had the highest (25 
genera) and had highly similar core genera with NLD. There were 16 
core genera in China and 12 in the United States. Notably, CHN and USA 
shared 11 core genera (Supplementary Fig. S6A). Interestingly, Pre-
votella was not a core genus in IND; however, its average abundance was 
very high. At the species level, this situation was similar to that observed 
at the genus level (Supplementary Fig. S6B). The core species of CHN 
were more similar to those in the USA. 

We also identified core pathways (shared by more than 90 % of in-
dividuals) to investigate the functional compositions shared by most 
individuals. Overall, nearly half of the pathways (230/543) appeared in 
more than 90 % of individuals, irrespective of their country, whereas 
152 pathways were shared by less than 10 % of the entire population 
(Supplementary Fig. S7A, Supplementary Table S5). Consistent with the 
results of previous studies, these results suggest that different species of 
unrelated healthy individuals can activate similar functions by utilizing 
common pathways. 

3.3. Selected studies indicate microbial community structures in China 
show greater similarity to USA and GBR than to other countries 

National populations have been associated with gut microbiome 
alpha diversity in previous findings [46]. Therefore, we assessed the 
alpha diversity in six populations using the Shannon diversity index and 
performed multivariate association with linear model (MaAsLin) ana-
lyses to control for age, sex, and batch effects (treating batch effects as 
random effects) [45]. The results demonstrated that the CHN population 
was not significantly different from the other five populations, except for 
the NLD (MaAsLin, p < 0.05). Moreover, the Shannon diversity indices 
of Western countries, the USA, GBR, and NLD did not differ significantly 
(MaAsLin, p > 0.05, Supplementary Fig. S8A). 

Furthermore, we calculated Bray - Curtis distances based on the 
microbial species to compare the microbial community structures in the 
six study populations. We observed that the majority of intra-population 
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Bray-Curtis distances were greater than 0.5, indicating a significant 
variation in the gut microbiome among individuals within each popu-
lation. (Supplementary Fig. S8B). We further calculated intra- 
population variations based on their relative MetaCyc pathway abun-
dances (Supplementary Fig. S7B) and observed that the degree of intra- 
population variation in microbial functional composition was signifi-
cantly lower than the intra-population variations in microbial taxa 
composition. 

Next, we performed principal coordinate analysis (PCoA) based on 
the Bray-Curtis dissimilarity matrix for microbial species, which 
demonstrated that individuals from the same country tended to cluster 
together (Fig. 1A). A permutational multivariate analysis of variance 
(PERMANOVA) test confirmed a significant segregation between the 
distributions of these countries after accounting for sex, age, and study 
effects (p < 0.001, Supplementary Table S6). Using the square-root 
transformed estimated components of variation (sq. root ECV), our 
analysis determined that the study effect accounted for the largest 
proportion of the variation (square root ECV 13.8, p < 0.001, Supple-
mentary Fig. S9). This aligns with previous estimates of the impact of 
study effects on the taxonomic composition of the gut microbiome. 
Despite the significant contribution of the study effects, country of origin 
still played an important role in the variance between samples (square 
root ECV 6.7, p < 0.001). Beyond the country of origin, age and sex were 
also significant contributors to microbial variance, with square root ECV 
values of 5.1 (p < 0.001) for age, and 4.0 (p < 0.001) for sex. 

We also investigated the degree of compositional differences be-
tween CHN and other countries based on the pairwise PERMANOVA test 
of Bray-Curtis distances of microbial species and MetaCyc pathway 
abundance (Fig. 1B). The results showed significant differences in the 
community composition between CHN and other countries (all 
p < 0.05). Surprisingly, the largest average similarity values were 
observed among CHN, USA, and GBR. Among the pairs of countries, the 
CHN and MDG had the lowest average similarity values. 

3.4. Exploring the complex relationship between diet and abundances of 
Bacteroides/Prevotella 

It is well known that diet is an important factor influencing gut 
microbiomes [47–49]. A high abundance of Bacteroides has been asso-
ciated with Western diets and animal-based diets rich in animal proteins 
and saturated fats [50]. High levels of Prevotella are associated with 

non-Western diets, carbohydrate-based diets rich in fiber[50,51]. This 
trend was also observed in this study. Bacteroides were found to be more 
abundant in Western populations, whereas non-Western populations 
harbored a higher abundance of Prevotella. Although Prevotella was the 
core genus in CHN (Supplementary Fig. S2A) and its relative abundance 
was large, the relative abundance of Bacteroides in CHN was never-
theless comparable to USA and GBR and was significantly higher than 
NLD. To investigate the association between diet and the gut micro-
biome, we collected dietary intake data (kg/capita/year) for 93 food 
items from the FAOSTAT database. This approach was selected because 
of the limited availability of detailed dietary data. Although dietary data 
may not capture the diverse dietary patterns within a specific country, 
they can still provide insights into general trends. Cluster analysis of the 
six countries based on the profiles of different food categories showed 
that CHN had a close relationship with IND and MDG because of the high 
similarity in dietary components (Fig. 2A). This result suggests that the 
abundance of Bacteroides and Prevotella might not be solely attribut-
able to diet, indicating that factors other than diet may also influence the 
abundance of these microbial groups. This observation provides a 
perspective different from the traditional view in previous literature that 
the abundance of Bacteroides/Prevotella is often associated with diet. 
Interestingly, we observed that CHN was more similar to USA and GBR 
in terms of overall microbial composition, instead of IND and MDG, 
which have diets that are more similar to CHN. It is important to note 
that, while this cluster analysis effectively captured the distinct dietary 
characteristics of each country, there remains an inherent bias due to the 
use of general dietary trends and the potential discrepancy between 
reported dietary data and actual consumption. Despite this, the high 
similarity in the dietary components among CHN, IND, and MDG, 
particularly the high vegetable, rice, and wheat levels and relatively low 
animal product (such as poultry and bovine meat) levels and alcohol 
consumption, still provides meaningful insights into the diet-gut 
microbiota relationship in different population groups. 

3.5. Consistent differences in gut microbial characteristics were observed 
between Western and non-Western countries 

Given the strong differences in industrialization, economic devel-
opment, and lifestyles between Western and non-Western countries, we 
performed multivariate association with linear model analyses (MaAs-
Lin2) to test for significantly differentially abundant taxa at the species 

Fig. 1. Population-level diversity in healthy adult gut microbiomes among the six countries. A Principal coordinate analysis (PCoA) for Bray-Curtis distances. Each 
point represents an individual and each color represents a country. B Bubble plots showing the average similarity between CHN and others countries. The values 
displayed in each circle represent the average similarity values derived from the pairwise PERMANOVA based on Bray-Curtis distances of microbial species and 
MetaCyc pathway in Primer7. USA, United States; GBR, United Kingdom; IND, India; NLD, Netherlands; CHN, China; MDG, Madagascar. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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level and MetaCyc metabolic pathways between Western and non- 
Western countries. 

Two approaches were employed to merge the samples. The first in-
volves dividing the sample into two groups based on whether they 
belong to Western or non-Western countries. We then analyzed the 
overall differences in microbial species and pathways between the two 
groups. The second approach entails first determining the differences in 
microbial species and pathways among different countries and then 
identifying the consistent differences between Western and non-Western 
countries based on the variations among the countries. 

Using the first approach, disparities in the gut microbial species have 
been observed between Western and non-Western countries. Our anal-
ysis revealed 10 species (Supplementary Table S7), including Akker-
mansia muciniphila, Anaerostipes hadrus, Clostridium leptum, Clostridium 
sp. CAG 167, Barnesiella intestinihominis, and Streptococcus thermophilus, 
that were more abundant in Western countries than in non-Western 
countries. Notably, three of these species (Akkermansia muciniphila, 
Clostridium leptum, and Streptococcus thermophilus) are considered 
potentially beneficial. Conversely, eight species, including Escherichia 
coli, Prevotella copri, and Prevotella stercorea were less abundant in 
Western countries. We identified 69 MetaCyc pathways that showed 
significant differences in abundance between non-Western and Western 
countries (Supplementary Table S8). Specifically, 64 pathways were 
more abundant in non-Western countries than in Western countries. 
Among these 64 pathways, 11 were associated with amino acid 
biosynthesis and degradation, whereas 10 were associated with 
Cofactor, Carrier, and Vitamin Biosynthesis. 

Using the second approach (Supplementary Tables S9, 10), we 
observed 10 microbial features (including one species, Escherichia coli, 
and nine Metacyc pathways: superpathway of glycolysis, pyruvate de-
hydrogenase, TCA (Tricarboxylic Acid), and glyoxylate bypass; glyox-
ylate cycle; TCA cycle IV (2-oxoglutarate decarboxylase); superpathway 
of glyoxylate bypass and TCA; TCA cycle VII (acetate-producers); phytol 
degradation; TCA cycle VIII (helicobacter); and superpathway of 
glyoxylate cycle and fatty acid degradation) that consistently exhibited 
higher abundance in non-Western countries compared to Western 
countries. Interestingly, most of the consistently altered MetaCyc path-
ways were related to energy metabolism functions, such as the TCA 
cycle. 

3.6. Differentially abundant bacterial species and metabolic pathways 
between China and other countries 

Over the past decade, China’s economy has developed rapidly, 
resulting in an increasingly Westernized lifestyle. However, significant 
differences remain between China and Western countries in terms of 
eating habits. Therefore, it is valuable to compare the differences in the 
gut microbiota between China and other countries with different diets 
and levels of development. Fig. 3. 

After adjusting for covariates, we identified 97 species that exhibited 
significantly different abundances in China and other countries. (Fig. 4A 
and Supplementary Table S11). Most of these species belonged to the 
phyla Firmicutes, Bacteroidetes and Actinobacteria. The significantly 
differential distributions between CHN and NLD predominantly belong 
to the Actinobacteria, Bacilli, and Bacteroidia classes. The significantly 
differential distributions between the CHN and USA are mainly in the 
Bacteroidia and Clostridia classes, whereas the distributions in other 
countries are relatively evenly spread across all classes. Bacteroides 
finegoldii is the only species that shows significant differences when 
compared with all other countries. Apart from being notably less 
abundant than in the United States, it is significantly enriched compared 
to any other country. The disparity in the number of differential species 
between China and other countries was minimal. Notably, each country 
had a larger number of species significantly enriched than significantly 
depleted when compared to China (Fig. 4B). Furthermore, we conducted 
an assessment on species displaying significant abundance variations 
across three or more populations (Fig. 4C). We observed that some 
species belonging to Bacteroides, such as Bacteroides plebeius, Bacteroides 
stercoris and Bacteroides finegoldii, were more abundant in CHN, whereas 
Roseburia sp CAG 182, Bifidobacterium adolescentis and Slackia iso-
flavoniconvertens decreased in CHN relative to other countries. 

We then explored the functional alterations between the CHN and 
other countries. At the pathway level, we found 92 pathways which 
were differentially abundant. (Supplementary Table S12) Fourteen 
pathways exhibited significant changes in abundance in three or more 
populations (Fig. 5). Interestingly, we found that there are five pathways 
related to the TCA cycle. Moreover, we found that eight pathways 
involved in menaquinone (vitamin K2) biosynthesis were significantly 
enriched in CHN compared to those in NLD. A trend towards higher 
enrichment was also observed when compared to the USA and GBR, 
although this was not statistically significant. Vitamin K is a series of 

Fig. 2. Hierarchical clustering of the 6 countries based on average dietary intake data A Overall distribution of dietary intake in each country, only top 10 food 
categories are shown B The dendrogarm of the 6 countries based on the dietary intake data (kg/capita/yr) for 93 food items. USA, United States; GBR, United 
Kingdom; IND, India; NLD, Netherlands; CHN, China; MDG, Madagascar. 
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structurally related compounds that share a common naphthoquinone 
ring structure but differ in the length and saturation of an attached 
lipophilic side chain. Menaquinones (MKn) are a form of Vitamin K and 

play an important role in human health. MKn is obtained from two 
important sources, first from certain animal-based foods and fermented 
foods, and second through production by gut microbiota [52,53]. 

Fig. 3. The heat map illustrates pathways that demonstrate a greater abundance in non-Western countries than in Western countries. Each facet of the heat map 
represents the differential pathways between a specific non-Western country (CHN, IND, and MDG) and Western countries (USA, GBR, and NLD). The Coef values 
displayed in each cell represent the coefficient values derived from the MaAsLin2 analysis. USA, United States; GBR, United Kingdom; IND, India; NLD, Netherlands; 
CHN, China; MDG, Madagascar. 

Fig. 4. Differential species between China (CHN) and other countries A Phylogenetic tree showing the evolutionary relationships among 97 species found to be 
statistically significant between CHN and other countries. The color of each node is consistent with the color of the corresponding phylum node located in the lower 
right corner. The outer heatmap is marked for significant differential species compared to each country. The color scale represents the degree of difference, the lighter 
the color, the smaller the difference, and vice versa. The outermost boxplots show the relative abundance of species in CHN. B The number of significant differential 
species between CHN and other countries C heatmap showing species with significant abundance changes between CHN and other countries. Only species with 
significant changes in three or more populations are shown. Values in heatmap cells indicate the beta coefficient from multivariate linear association testing with 
MaAslin2. USA, United States; GBR, United Kingdom; IND, India; NLD, Netherlands; MDG, Madagascar. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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Chinese dietary habits are associated with a relatively low intake of 
MKn-rich foods, such as cheese, milk, and yogurt. Cheese, milk, and 
yogurt are staple foods commonly found in the NLD diet. It is plausible 
that this dietary pattern could affect the composition of the gut micro-
biota in the CHN and NLD groups, which might lead to alterations in the 
abundance of pathways involved in menaquinone synthesis. Therefore, 
the results should be interpreted with caution, and additional studies are 
required to validate this interpretation. 

4. Discussion 

In this study, we analyzed shotgun metagenomic data from 2035 
healthy individuals from six countries across four continents to explore 
population-level variations in gut microbiomes. The integration of 
shotgun metagenomic data allowed us to compare the overall taxonomic 
and functional composition of the gut microbiome across the six pop-
ulations. A comparative analysis revealed consistently different gut 
microbial species and pathways in Western and non-Western countries. 
Furthermore, we identified several remarkable microbial species and 
their pathway characteristics in China. 

In both taxonomic and functional composition of the gut micro-
biome, significant differences among the six populations based on Bray- 
Curtis dissimilarity measures were observed, indicating that the country 
specifies and influences the overall community structure of the gut 
microbiomes of healthy adults. Surprisingly, CHN was found to be more 
similar to USA and GBR in terms of overall microbial taxonomic and 
functional composition, as opposed to IND and MDG, which have diets 
that are more similar to those in China. Food plays a crucial role in 
shaping and maintaining the gut microbiota. Moreover, industrializa-
tion and economic development have had a profound impact on the 
composition of the gut microbiota. Given the rapid pace of industriali-
zation and economic growth witnessed in China over the past decade, it 
is possible that alterations in both diet and industrialization have 
collectively contributed to changes in the gut microbiota. However, we 
currently lack sufficient data to conduct more in-depth research on this 
phenomenon. It is necessary to gather more comprehensive data in the 
future to study this phenomenon. Moreover, our results revealed that the 

degree of intra-population variation in microbial functional composition 
was relatively low compared to that in microbial taxa composition, 
indicating that the functional profile is relatively stable despite the high 
variability in the gut microbiota of individuals. 

Despite striking differences across populations, the gut microbiomes 
of healthy adults share certain essential features. Therefore, we char-
acterized the core gut microbiota and pathways prevalent in unrelated 
individuals to explore the critical features of the gut ecosystem. Faeca-
libacterium prausnitzii was the only species that appeared in more than 95 
% of all individuals. F. prausnitzii, an important butyrate-producing 
bacterium found in the intestine, enhances gut barrier protection, ex-
hibits anti-inflammatory effects [54,55] and strain-level genomic di-
versity, and SCFA metabolism may differ among strain clusters [56]. We 
found 13 species shared by more than 90 % of the investigated in-
dividuals (core species). It is worth mentioning that the majority of core 
species were SCFA-producing. SCFA-producing bacteria with elevated 
fecal SCFA concentrations may promote energy intake from fibers, 
inhibit opportunistic pathogens, and protect hosts against inflammation 
and colonic diseases [57]. The high prevalence of SCFA-producing 
bacteria across heterogeneous populations indicates that these bacte-
ria are essential for the maintenance of host health. In terms of metabolic 
functions, we found nearly half of the pathways appeared in more than 
90 % of individuals, irrespective of their country, diet, and lifestyle, 
demonstrating that metabolic function is more conserved and that core 
functions are essential for the entire microbial community. Considering 
that the function of the microbial community was less varied, this sug-
gests that this function may be superior to taxonomy in defining a 
healthy gut microbiome. 

Significant differences in gut microbial characteristics were observed 
between Western and non-Western countries. We found that Prevotella 
stercorea was more abundant in non-Western countries than in Western 
countries. Interestingly, recent research has found steady development 
of a trophic network centered around Prevotella stercorea in the gut 
microbiota of non-Western countries [58]. This trophic network may be 
important for maintaining a healthy gut microbiome. Moreover, we 
identified 69 pathways that were more abundant in non-Western 
countries than in Western countries. Notably, the superpathway of 

Fig. 5. Significant abundance pathway changes in three or more populations compared to China (CHN). Metabolic pathways are colored based on the category of 
metabolic function. The coefficient values on the x-axis represent the Coef values obtained from the MaAsLin2 analysis. USA, United States; GBR, United Kingdom; 
IND, India; NLD, Netherlands; MDG, Madagascar. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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L-tryptophan biosynthesis was more abundant in non-Western coun-
tries, consistent with previous studies showing that tryptophan pro-
duced by gut microbiota acts as a peripheral signal that influences host 
diet selection. It is plausible that the relatively lower meat intake in 
these countries might be a factor in the increased tryptophan biosyn-
thesis. However, this assumption requires additional validation through 
metabolomic studies. Our findings provide some support for this hy-
pothesis, suggesting a way in which the human gut microbiota adapts to 
varying dietary compositions and intakes, as inferred from an analysis of 
a comprehensive cross-population dataset. 

The present study also highlights several remarkable microbial fea-
tures that are characteristic of China. For instance, we observed that 
some species belonging to Bacteroides, such as Bacteroides plebeius, 
Bacteroides stercoris and Bacteroides finegoldii, were more abundant in 
CHN than in other countries. Interestingly, a previous study showed that 
B. plebeius was more enriched in the gut microbiomes of individuals from 
Japan than in those from North America, and that B. plebeius was 
associated with seaweeds [59]. Seaweeds and sea tangles are the main 
maricultural products in China and are a common food in people’s daily 
meals. These findings suggest a potential role of dietary intake in 
influencing the composition of the gut microbiota. 

This study had several limitations. First, owing to the absence of 
physiological variables, we were only able to investigate the effects of 
some available factors, such as age and sex, on the gut microbiota. Data 
concerning factors such as alcohol consumption [60,61], Bristol Stool 
Scale (BSS) [18], urban/rural lifestyles, and detailed dietary patterns 
would have contributed to a more comprehensive analysis. This study 
was conducted at the species level. Future studies between microbes and 
populations should be conducted at the strain level, as strains are the 
basic functional units that communicate with hosts, and different strains 
in the same species may exert different functions [56]. Another note-
worthy aspect that requires further investigation is the abundance of 
bacteriocin biosynthetic gene clusters in the gut microbiome. Given 
their significant influence on community structure, composition, and 
diversity, the importance of bacteriocin biosynthetic gene clusters is 
undeniable. Therefore, further studies in this area are imperative for 
future research. Furthermore, the selecting criteria for healthy in-
dividuals to investigate the ’healthy microbiome,’ there is a potential 
limitation for the selection/collider bias, where associations may be 
influenced by the selection criteria rather than solely based on real 
biological factors, and the outcome obtained in our study should be 
carefully interpreted. A major limitation is that the dietary intake data 
from FAOSTAT used in this study may not accurately represent the food 
habits of the cohort taken from those countries. It is possible that some of 
the Chinese individuals in our study might have adopted a more US-like 
diet, and the potential influence of Westernization on the dietary habits 
of the Chinese individuals included in our sample could have contrib-
uted to the observed similarities in the gut microbiota between the 
Chinese and US individuals. Despite these limitations, our findings 
revealed a noteworthy pattern in the gut microbiota of healthy in-
dividuals from both populations, suggesting that factors other than diet 
may play a significant role in shaping the gut microbiota. Our study 
highlights the diet-gut microbiota relationship in healthy individuals 
but emphasizes the need for more precise dietary data in future research. 
Comprehensive studies with detailed dietary assessments and micro-
biota analyses will help clarify the factors influencing gut microbiota 
composition and improve the accuracy and generalizability of our 
findings. 

5. Conclusions 

Collectively, significant differences were observed among the six 
populations in both the taxonomic and functional compositions of the 
gut microbiome, suggesting that country-specific factors play a role in 
shaping the overall community structure of the gut microbiome in 
healthy adults. Notably, when compared to other countries, China 

exhibited a similar overall microbial taxonomic and functional compo-
sition as the United States and the United Kingdom. Furthermore, we 
found that most core species in all individuals were SCFA-producing 
bacteria. Furthermore, our findings suggest that diet may partially ac-
count for variations in the gut microbiome, including some microbes 
and pathways; however, it is important to note that diet might not be the 
sole explanatory factor. We discovered consistent differences in the gut 
microbial characteristics between Western and non-Western countries. 
The results of the current study will inspire further clinical translations 
that consider paying attention to differences in the microbiota back-
ground and confounding factors. 
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