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Background and purpose: The aim of the study is to predict the subthalamic

nucleus (STN) deep brain stimulation (DBS) outcomes for Parkinson’s disease

(PD) patients using the radiomic features extracted from pre-operative

magnetic resonance images (MRI).

Methods: The study included 34 PD patients who underwent DBS

implantation in the STN. Five patients (15%) showed poor DBS motor

outcome. All together 9 amygdalar nuclei and 12 hippocampus subfields

were segmented using Freesurfer 7.0 pipeline from pre-operative MRI images.

Furthermore, PyRadiomics platform was used to extract 120 radiomic features

for each nuclei and subfield resulting in 5,040 features. Minimum Redundancy

Maximum Relevance (mRMR) feature selection method was employed to

reduce the number of features to 20, and 8 machine learning methods

(regularized binary logistic regression (LR), decision tree classifier (DT), linear

discriminant analysis (LDA), naive Bayes classifier (NB), kernel support vector

machine (SVM), deep feed-forward neural network (DNN), one-class support

vector machine (OC-SVM), feed-forward neural network-based autoencoder

for anomaly detection (DNN-A)) were applied to build the models for poor vs.

good and very good STN-DBS motor outcome prediction.

Results: The highest mean prediction accuracy was obtained using

regularized LR (96.65 ± 7.24%, AUC 0.98 ± 0.06) and DNN (87.25 ± 14.80%,

AUC 0.87 ± 0.18).
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Conclusion: The results show the potential power of the radiomic features

extracted from hippocampus and amygdala MRI in the prediction of STN-DBS

motor outcomes for PD patients.

KEYWORDS

Parkinson’s disease, deep brain stimulation, radiomic features, amygdala,
hippocampus, motor outcome prediction

Introduction

During the last 30 years, deep brain stimulation (DBS)
gained acceptance as a mainstream therapy for advanced
Parkinson’s disease (PD) control. PD patients with an idiopathic
disease course and responders to L-DOPA therapy are still
treated as best candidates for deep brain stimulation (Pollak,
2013). Nevertheless, the clinical effect of this invasive therapy
varies between PD patients, and better patient selection criteria
or objective markers are needed.

It is considered that proper DBS electrode position within
the subthalamic nucleus (STN) usually is a must for good
clinical outcomes (Wodarg et al., 2012). Nevertheless, other
factors play an essential role, and sometimes anatomically
(Wodarg et al., 2012) and physiologically (Koirala et al., 2020)
ideally implanted electrodes do not elicit satisfactory motor
improvement after neuromodulation. Such inhomogeneous
results between PD patients show challenges in proper patient
selection for the therapy and the need for more accurate
assessment tools.

Modern brain imaging techniques, detection of PD-
associated radiogenomic features, and biochemical analysis of
blood and cerebrospinal fluid empowers researchers for deeper
disease understanding and specific clinical outcomes predicting
markers discoveries (Hustad and Aasly, 2020). Resting-state
functional magnetic resonance and diffusion tensor imaging
for brain functional connectivity are explored as possible DBS
outcomes predicting properties (Wang et al., 2021). Rapid
development of open source and user-friendly radiomic tools
also enables researchers to analyze patients’ radiological data
from a different perspective.

For many decades degeneration of dopaminergic cells in
the substantia nigra (SN) has been recognized as the primary
locus for PD clinical symptoms (Damier et al., 1999; Colpan
and Slavin, 2010). The recent growth of radiomics studies for
different neurodegenerative brain disorders was also directed
to PD and mostly to cortical and subcortical structures (Wu
et al., 2019). Recently, it was also found that substantia nigra
susceptibility features from radiomics could predict global
motor and rigidity outcomes of STN-DBS in PD and suggested
a predictive machine learning model for STN-DBS patient
selection (Liu et al., 2021).

Alpha-synuclein is a presynaptic neuronal protein, and its
structural alterations play an important role in the pathogenesis
of neurodegenerative diseases, such as PD (Lücking and
Brice, 2000). A recent study proposed a new model of
PD pathogenesis with the alpha-synuclein origin site and
connectome model, which divides PD into two subtypes:
body-first subtype or brain-first subtype (Borghammer, 2021).
According to this model, in the body-first subtype, alpha-
synuclein pathology presumably originates in the enteric
or autonomic nervous system and it spreads to the CNS,
whereas the brain-first subtype alpha-synuclein pathology
presumably originates in the amygdala or nearby structures.
These different subtypes have different clinical onsets of PD.
In the body-first subtype, the disease starts symmetrically,
which is the opposite of the brain-first subtype. This model
raises a hypothesis about different DBS outcomes for each PD
subtype.

Significant advances have been achieved in the machine-
learning (ML) based radiomic approach in recent years,
aimed at improving the understanding of brain diseases and
determining the most effective treatment options. Combining
the extraction of radiomic features with ML methods can
provide new non-invasive biomarkers for improved patient
and disease characterization, and aid a better identification of
DBS candidates (Liu et al., 2021; Ren et al., 2021). In the
present study, we hypothesize that preoperative brain magnetic
resonance image (MRI) radiomic analysis of the amygdalar-
hippocampal region, one of the PD pathophysiological sites,
may help differentiate patients who benefit most from the
STN- DBS surgery. Radiomic features of amygdalar or nearby
structures may serve as potentially new prognostic imaging
biomarkers in planning PD patient treatment. The aim of our
study is to develop the ML-based radiomics models to predict
the STN-DBS motor outcome in PD patients.

Materials and methods

Study subjects

Adult patients diagnosed with PD were recruited in this
prospective observational cohort study from Departments of
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Neurosurgery and Neurology of the Lithuanian University
of Health Sciences Hospital, Kaunas, Lithuania. The study
enrollment took place between April 2019 and August 2021.

The study inclusion criteria covered established diagnosis
of L-DOPA responsive idiopathic PD, normal brain MRI scan
results, the Mini-Mental State Examination (MMSE) score
greater than 24 points, no active or untreated depression, no
comorbid psychiatric disorders. L-DOPA responsiveness was
assessed using the L-DOPA challenge test and was defined as
30% or greater improvement of the Unified Parkinson Disease
Rating Scale (UPDRS) motor (III) part scores between off
medication state and after administration of 1.5-fold higher
than usual L-DOPA dose. The study exclusion criteria were
atypical Parkinsonism, diagnosis of dementia or other current
or past psychiatric disorders, and clinical comorbidities that
precluded DBS implantation surgery. During the study period,
34 PD patients underwent the STN-DBS implantation surgery
at our department. Five patients (15%, 4 males and 1 female)
showed poor STN-DBS motor outcome, and the remaining
29 patients (85%, 12 males and 17 females) had good and
very good motor effect of STN-DBS. The median age of
the patients was 63 years (interquartile range 60-68 years)
in the first group, and 60 years (interquartile range 57-
62 years) in the second group. No significant differences of
demographic characteristics were observed between the two
groups (Table 1).

Eligible PD patients were identified during routine clinical
visits and invited to participate in the study. All PD patients
preoperatively were evaluated for possible DBS surgery by
a neurologist. According to CAPSIT-PD guidelines and a
joint agreement between neurologists, neuropsychologist, and
neurosurgeon patients were selected for DBS. All patients were
operated on under general anesthesia following the same DBS
electrode implantation protocol. Pre-implantation stereotactic
MRI scans were acquired for safe lead guidance and proper
targeting within STN. To maximize lead penetration within
the motor part of STN, the target was chosen 2 mm from
the medial border of STN at the maximal rubral diameter
as described by Bejjani (Bejjani et al., 2000). Stereotactic
postoperative MRI was used to confirm correct lead placement.
The Parkinson’s Disease Composite Scale (PDCS) scores
were calculated preoperatively and six months after DBS
implantation. PDCS score improvement for more than 30% was
considered a good or very good DBS outcome, and patients with
lesser improvement were assigned to the poor DBS outcome
group. The preoperative PDSC scores did not differ statistically
significantly between the groups of poor vs. good and very
good STN-DBS motor outcome (mean rank 15.40 vs. 17.86,
respectively; p = 0.262; PDSC median 18 vs. 22), but the first
group showed significantly higher postoperative PDSC scores
(mean rank 26.20 vs. 16.00, respectively; p = 0.034; PDSC
median 18 vs. 11) and higher doses of levodopa equivalent

daily dose (LEDD) (mean rank 31.40 vs. 15.10, respectively;
p<0.001; median 710 mg vs. 300 mg) (Table 1). The target for
the DBS implantation was selected on a case-by-case basis by
the neurosurgeon (AR).

After DBS electrode implantation, stereotactical MRI
was performed for each patient. If the electrode position
within STN deviated more than 1 mm from the primary
target, the electrode would be re-implanted. None of this
study patients needed reimplantation. Implanted electrode
displacement, i.e., deviation from radiological target, was
estimated for poor and good/very good outcome patients
groups. The difference in displacement between the groups
was not statistically significant (mean rank 15.40 vs. 17.86,
respectively; p = 0.603; median 0.2 mm vs. 0.3 mm)
(Table 1). These findings imply that clinical outcomes
were not associated with the electrode position within
STN.

Data processing

The workflow diagram of the MRI image pre-processing,
amygdala and hippocampus segmentation, radiomic feature
extraction and selection, machine learning method application
for post-operative prediction of STN-DBS motor outcome is
shown in Figure 1.

Image pre-processing and segmentation
Preoperative T1W and T2W images were employed in

FreeSurfer 7.0 module for automatic brain MRI morphometric
data extraction and segmentation of hippocampal and
amygdala subregions (Fischl, 2012; Sämann et al., 2022).
The Freesurfer amygdalar-hippocampal pipeline segmented
hippocampal-amygdala subregions simultaneously avoiding
overlapping and producing 12 hippocampal subdivisions
and 9 nuclei of the amygdala (Table 2). For each
hemisphere, 21 segment were extracted, 42 segments in
total (Figures 1A,B).

Radiomic feature extraction
The amygdalar-hippocampal FreeSurfer segmentation files

were used in radiomic analysis for each patient. The radiomic
feature extraction was performed by PyRadiomics, an open-
source platform (van Griethuysen et al., 2017). A Radiomics
extension for 3D Slicer was employed for the following radiomic
feature extraction: 26 shape features, 19 first-order features,
24 Gray Level Co-occurrence Matrix (GLCM) features, 16
Gray Level Run Length Matrix (GLRLM) features, 16 Gray
Level Size Zone Matrix (GLSZM) features, 14 Gray Level
Dependence Matrix (GLDM) features, and 5 Neighboring Gray
Tone Difference Matrix (NGTDM) features. The procedure
described provided 120 radiomic features for each of 21
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TABLE 1 Demographic data.

Poor
STN-DBS motor outcome

Good and very good
STN-DBS motor outcome

Significance p

Number of patients 5 29 -

Agea 63 (60-68) years 60 (57-62) years 0.262

Genderb Male: 4 (80%)
Female: 1 (20%)

Male: 12 (41%)
Female: 17 (59%)

0.164

PDCS preoperativec 18 (17-29) 22 (18-27) 0.609

PDCS postoperatived 18 (16-27) 11 (7-16) 0.034

LEDD preoperativee (mg) 710 (620-840) 720 (620-800) 0.981

LEDD postoperativef (mg) 710 (600-840) 300 (300-420) <0.001

Displacement of the DBS electrodeg , mm 0.2 (0.0-0.5) 0.3 (0.0-0.5) 0.603

Age, scores of the preoperative Parkinson’s Disease Composite Scale (PDCS) and postoperative PDCS, preoperative levodopa equivalent daily dose (LEED) and postoperative LEED (mg),
DBS electrode displacement (mm) are presented as median and interquartiles (1st and 3rd). aKruskal-Wallis H test χ2(1) = 1.256; bFisher’s exact test statistics 5.667; cKruskal-Wallis H
test χ2(1) = 0.262; dKruskal-Wallis H test χ2(1) = 4.491; eKruskal-Wallis H test χ2(1) = 0.001; fKruskal-Wallis H test χ2(1) = 11.662; gKruskal-Wallis H test χ2(1) = 0.271.
STN-DBS – subthalamic nucleus deep brain stimulation; PDCS - Parkinson’s Disease Composite Scale; LEDD - levodopa equivalent daily dose.

segments in both hemispheres, 5 040 features in total
(Figure 1C).

Radiomic feature selection
The mRMR method (Zhao et al., 2019) was used for

the extracted feature selection as it effectively reduces the
redundant features while keeping the relevant features for
the predictive ML models (Figures 1D,E). As the goal
is to differentiate the patients into two classes of poor
vs. good/very good STN-DBS motor outcome, the features
that have maximum relevance with respect to the class
prediction were determined using one-way ANOVA F-test.
Feature redundancy was determined by Pearson correlation.
The best subset of 20 features was formed by selecting the
relevant features while controlling for the redundancy within
the selected features. The number of features was chosen
taking into account a small sample size of the PD patients
(N = 34) and aiming to avoid overfitting. It is recommended
that the sample-to-feature ratio should be at least close or
higher than 2 (Raudys, 2001). Low sample-to-feature ratio
results in ML model fitting the noise in the data and poor
recognition accuracy when applied to unseen data (An et al.,
2021).

Machine learning methods for STN-DBS motor
outcome prediction

The selected informative features were applied to
build models for the STN-DBS motor outcome prediction
(Figures 1F,G). The following ML algorithms were applied:
(1) regularized binary logistic regression (LR) with sigmoid
function; the regularization term is equal to the sum of
squares of all the feature weights; (2) decision tree classifier
(DT); (3) linear discriminant analysis (LDA); (4) naive Bayes
classifier (NB); (5) kernel support vector machine (SVM)
with Gaussian radial basis function as a kernel function;
(6) deep feed-forward neural network (DNN); the network

had two hidden layers with 11 and 7 neurons with ReLU
transfer functions, respectively, and one neuron with sigmoid
activation function in the output layer; dropout technique
was applied to randomly set a 10% fraction of visible and
hidden neurons to zero during training to avoid overfitting,
error-back propagation training algorithm with adaptive
moment estimation was used; (7) one class support vector
machine (OC-SVM) with Gaussian radial basis function as a
kernel function; the negative output indicates the low density
of observations and results in the detection of anomaly, i.e.,
the observation that deviates from the majority of the data
significantly; poor STN-DBS outcome is regarded as anomaly;
(8) deep feed-forward neural network-based autoencoder
(DNN-A) for anomaly detection; the encoder consisted of
input layer and one hidden layer with 18 neurons and ReLU
transfer function, the latent layer had 4 neurons with ReLU
transfer function, the encoder was formed of one hidden
layer with 18 neurons and ReLU transfer function and output
layer with 20 neurons and linear transfer function; dropout
technique was applied to randomly set a 10% fraction of
visible and hidden neurons to zero; error-back propagation
training algorithm with adaptive moment estimation was used;
the anomaly was identified if the error of the reconstructed
20-dimensional feature vector was higher by one standard
deviation than the mean square error of the reconstructed
samples from the class of good and very good DBS motor
outcome.

The available data set (N = 34 patients) was split
into training and testing sets. The training set consisted
of 85% of all data set (4 cases from the class of poor
STN-DBS motor outcome and 24 cases from the class
of good/very good STN-DBS motor outcome), and the
remaining 15% of the data were used for testing (1 case
and 5 cases from each class, respectively). Prior to the
ML analysis training and testing sets were standardized
using a standard scaler. Training and testing data were
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FIGURE 1

Workflow diagram of the pre-operative prediction of subthalamic nucleus (STN) deep brain stimulation (DBS) for Parkinson’s disease (PD)
patients. (1) (A) Image data: pre-operative MRI image acquisition using the 1.5 T Siemens Avanto scanner. (2) Image segmentation and radiomic
feature extraction: (B) amygdala and hippocampus segmentation using FreeSurfer; obtained 21 segments for 2 hemispheres; (C) radiomic
feature extraction using 3D Slicer; extracted features n = 120 for every segment, n = 5 040 in total. (3) Feature selection using Minimum
Redundancy Maximum Relevance (mRMR) method: (D) selected relevant features (E) selected non-redundant features k = 20. (4) Predictive
machine learning models: (F) regularized binary logistic regression (LR), decision tree classifier (DT), linear discriminant analysis (LDA), naive
Bayes classifier (NB), kernel support vector machine (SVM), deep feed-forward neural network (DNN), one-class support vector machine
(OC-SVM), feed-forward neural network-based autoencoder for anomaly detection (DNN-A); (G) prediction of the STN-DBS motor outcome:
poor vs. good/very good outcome.

bootstrapped with 1,000 repetitions, drawing a sample
data repeatedly with replacement from the available data
set. To balance the unequal size of datasets, the class
weights were estimated and used in machine learning

algorithms. The accuracy, specificity, sensitivity, and area
of the receiver operating characteristic (ROC) curve (AUC)
of the ML models were estimated and averaged over 1,000
bootstrapped repetitions.
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TABLE 2 Labeling of FreeSurfer’s amygdalar-hippocampal segmentation output and nuclei with selected radiomic features used to predict
STN-DBS motor outcomes.

Nuclei/subfields

Amygdala Hippocampus

Nuclei Radiomic feature Subdivisions Radiomic feature

Basal nucleus GLRLM short run high gray level emphasis Parasubiculum First order range, GLSZM large low gray area
emphasis

Lateral nucleus GLCM auto correlation Presubiculum -

Accessory basal nucleus - Subiculum Shape maximum 2D diameter slice, GLCM IMC1

Anterior amygdaloid nucleus - CA1 GLSZM large area emphasis

Central nucleus GLCM auto correlation, GLDM small
dependence high gray level emphasis, GLSZM
zone entropy

CA3 GLDM large dependence low gray level emphasis,
GLDM small dependence low gray level emphasis,
GLSZM large area low gray level emphasis

Medial nucleus - CA4 GLSZM small area emphasis

Cortical nucleus - GC-ML-DG -

Paralaminar nucleus Shape maximum 3D diameter Molecular layer -

Corticoamygdaloid - HATA GLRLM gray level variance

Transition zone Fimbria GLCM MCC, NGTDM complexity

Hippocampal tail -

Hippocampal fissure Shape maximum 3D diameter, fissure shape minor
axis length

GLRLM - Gray Level Run Length Matrix; GLSZM - Gray Level Size Zone Matrix; GLCM - Gray Level Co-occurrence Matrix; GLDM - Gray Level Dependence Matrix; MCC - Maximum
Correlation Coefficient; NGTDM - Neighboring Gray Tone Difference Matrix; IMC1 - Informational Measure of Correlation 1; CA1-4 – Cornu Amonis; HATA - Hippocampal Amygdala
Transition Area.

Radiomic feature selection, data processing, and machine
learning method implementation were performed using sci-kit-
learn Python package and Keras Python framework (Pedregosa
et al., 2011).

Results

The segmentation of amygdala and hippocampus regions,
radiomic feature extraction and selection resulted in defining the
20 most informative features that represent the amygdala basal
nucleus, lateral nucleus, central nucleus, paralimar nucleus, and
the hippocampal parasubiculum, subiculum, CA1, CA3, CA4,
HATA, fimbria, hippocampal fissure.

The following 20 features were selected out of the
extracted 5 040 features using the mRMR method: amygdala:
lh_lateral_GLCM auto correlation, lh_basal nucleus_GLRLM
short run high gray level emphasis, lh_central nucleus_GLCM
auto correlation, lh_central nucleus_GLDM_small dependence
high gray level emphasis, lh_central nucleus GLSZM_zone
entropy, lh_paralaminar nucleus_shape maximum 3D
diameter; hipoccampus: lh_parasubiculum_first order
range, lh_ parasubiculum_GLSZM_large low gray area
emphasis, lh_subiculum_shape maximum 2D diameter slice,
lh_subiculum_GLCM_IMC1, lh_CA1_GLSZM_large area
emphasis, lh_CA3_GLMD large dependence low gray level
emphasis, lh_CA3_GLDM small dependence low gray level

emphasis, lh_CA3_GLSZM large area low gray level emphasis,
lh_CA4_GLSZM small area emphasis, Ih_HATA_GLRLM gray
level variance, Ih_fimbria_GLCM MCC, lh_fimbria_NGTDN
complexity, lh_hippocampal_fissure _shape maximum 3D
diameter, lh_ hippocampal_fissure_shape minor axis length.

The distributions of the 20 selected radiomic features in the
classes of poor vs. good/very good STN-DBS motor outcomes
are presented in box plots (Figure 2). The box plots clearly
display the deviation in the medians of the features in these
two groups. The differences in distributions are statistically
significant for all features (Kruskal Wallis H test p < 0.05)
and confirm the maximum relevance with respect to the motor
outcome prediction. Spearman‘s rho correlation coefficients
between the features vary from −0.48 to + 0.49 and show
moderate, weak or no association ensuring the minimum
redundancy (Figure 3).

The selected features were used to predict poor STN-
DBS motor outcome vs. good/very good effect, i.e., to identify
the complications in the post-operative STN-DBS motor
functioning. The accuracy, specificity, sensitivity and AUC of
the machine learning algorithms are presented in Table 3. The
ROC curves together with AUC of the models are shown in
Figure 4.

Low sensitivity and low AUC in identifying poor STN-
DBS outcome were obtained using DT classifier (accuracy
77.42 ± 12.47%, sensitivity 14.60 ± 35.33%, specificity
89.98 ± 14.15%, AUC 0.52 ± 0.18), NB classifier (accuracy
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FIGURE 2

Box plots of comparison between poor STN-DBS outcome and good/very good STN-DBS outcome for 20 selected radiomic features.
Distributions of features between two STN-DBS groups differ statistically significantly, Kruskal-Wallis H test χ2(1) and p value (in parentheses):
lh_parasubiculum_first order range: 4.402 (0.036), lh_ parasubiculum_GLSZM_large low gray area emphasis: 3.878 (0.049),
lh_subiculum_shape maximum 2D diameter slice: 3.980 (0.046), lh_subiculum_GLCM_IMC1: 4.682 (0.030), lh_CA1_GLSZM_large area
emphasis: 3.878 (0.049), lh_CA3_GLMD large dependence low gray level emphasis: 3.878 (0.049), lh_CA3_GLDM small dependence low gray
level emphasis: 4.271 (0.039), lh_CA3_GLSZM large area low gray level emphasis: 3.878 (0.049), lh_CA4_GLSZM small area emphasis: 3.878
(0.049), Ih_HATA_GLRLM gray level variance: 3.878 (0.049), Ih_fimbria_GLCM MCC: 3.878 (0.049), lh_fimbria_NGTDN complexity: 5.113 (0.024),
lh_hippocampal_fissure _shape maximum 3D diameter: 4.274 (0.039), lh_ hippocampal_fissure_shape minor axis length: 4.474 (0.034),
lh_lateral_GLCM auto correlation: 3.878 (0.049), lh_basal nucleus_GLRLM short run high gray level emphasis: 3.878 (0.049), lh_central
nucleus_GLCM auto correlation: 3.879 (0.049), lh_central nucleus_GLDM_small dependence high gray level emphasis: 3.878 (0.049), lh_central
nucleus GLSZM_zone entropy: 4.331 (0.037), lh_paralaminar nucleus_shape maximum 3D diameter: 5.005 (0.025). Notation lh at the feature
label indicates left hemisphere.
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FIGURE 3

Heatmap of Spearman‘s rho correlation coefficients of 20 selected radiomic features; ∗p < 0.05, ∗∗p < 0.001 show significant associations.

TABLE 3 Accuracy, sensitivity, specificity and AUC of the ML methods applied in post-operative STN-DBS motor outcome prediction using 20
selected features.

No. Machine learning method Accuracy % Sensitivity % Specificity % Area under ROC (AUC)

1. Regularized binary logistic regression (LR) 96.65 ± 7.24 99.30 ± 8.34 96.12 ± 8.59 0.98 ± 0.06

2. Decision tree classifier (DT) 77.42 ± 12.47 14.60 ± 35.33 89.98 ± 14.15 0.52 ± 0.18

3. Linear discriminant analysis (LDA) 77.90 ± 18.28 83.20 ± 37.41 76.84 ± 19.64 0.80 ± 0.22

4. Naive Bayes classifier (NB) 86.62 ± 7.27 21.90 ± 41.38 99.56 ± 3.07 0.61 ± 0.21

5. Support vector machine (SVM) 91.72 ± 9.04 60.40 ± 48.93 97.98 ± 6.03 0.79 ± 0.24

6. Deep feed-forward neural network (DNN) 87.25 ± 14.80 86.60 ± 34.08 87.38 ± 17.48 0.87 ± 0.18

7. One class support vector machine (OC-SVM) 63.33 ± 17.88 24.40 ± 42.97 71.12 ± 20.65 0.48 ± 0.23

8. Deep neural network autoencoder (DNN-A) 70.73 ± 10.68 73.36 ± 11.60 68.10 ± 22.91 0.71 ± 0.11

The bold values indicate the highest accuracy.

86.62 ± 7.27%, sensitivity 21.90 ± 41.38%, specificity
99.56 ± 3.07%, AUC 0.61 ± 0.21), OC-SVM (accuracy
63.33 ± 17.88%, sensitivity 24.40 ± 42.97%, specificity
71.12 ± 20.65%, AUC 0.48 ± 0.23). DT tree classifier is based
on the hierarchical sequence of decisions on the features and
is sensitive to small variations in the training set, especially
for such complex data in high dimensional feature space
as radiomics measures. NB classifier assumes that features
are independent and drawn from Gaussian distribution,
which is not the case in our study. OC-SVM identifies the
anomalies (poor STN-DBS outcome) as data outside the learned
decision boundary of normal cases (good/very good STN-DBS
outcome). OC-SVM can form complex boundaries in high
dimensional feature space and is less prone to overfitting
resulting in poor accuracy.

Moderately good performance was obtained by LDA
(accuracy 77.90 ± 18.28%, sensitivity 83.20 ± 37.41%,

specificity 76.84 ± 19.64%, AUC 0.80 ± 0.22), DNN-
A (accuracy 70.73 ± 10.68%, sensitivity 73.36 ± 11.60%,
specificity 68.10 ± 22.91%, AUC 0.71 ± 0.11), and SVM
(accuracy 91.72 ± 9.04%, sensitivity 60.40 ± 48.93%, specificity
97.98 ± 6.03%, AUC 0.79 ± 0.24). LDA fails to discriminate
non-linearly separable classes and gives very high variability of
sensitivity due to heterogeneity of data. DNN-A showed good
sensitivity, i.e., the reconstruction error of the presented poor
STN-DBS outcome data was high indicating that the sample was
an anomaly. However, due to a complex DNN-A architecture a
moderate proportion of good and very good STN-DBS samples
were also reconstructed with high errors, resulting in reduced
specificity. SVM searches for the linear optimal separating
hyperplane in the transformed feature space using so called
support vectors, i.e., points closest to the hyperplane from both
classes. In our study, this method suffers from an imbalanced
data set and favors a class with a large number of samples. As
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FIGURE 4

Receiver operating characteristics (ROC) curves for machine learning (ML) methods applied in post-operative STN-DBS motor outcome
prediction using 20 selected features: (A) regularized binary logistic regression (LR); (B) decision tree classifier (DT); (C) linear discriminant
analysis (LDA); (D) naive Bayes classifier (NB); (E) kernel support vector machine (SVM); (F) deep feed-forward neural network (DNN); (G)
one-class support vector machine (OC-SVM); (H) feed-forward neural network-based autoencoder for anomaly detection (DNN-A). Mean ROC
is shown in blue, and one standard deviation is represented by the gray area. Dotted red line indicates chance performance, and curves that
deviate more to the top left represent better predictions.

the class of good/very good STN-DBS outcomes is larger in this
study, SVM gives high specificity and a low sensitivity.

The highest overall prediction accuracy scores were achieved
by regularized binary LR (accuracy 96.65 ± 7.24%, sensitivity
99.30 ± 8.34%, specificity 96.12 ± 8.59%, AUC 0.98 ± 0.06)
and DNN (accuracy 87.25 ± 14.80%, sensitivity 86.60 ± 34.08%,
specificity 87.38 ± 17.48%, AUC 0.87 ± 0.18). Binary LR
required a few parameters to be estimated and was regularized
to avoid overfitting, therefore resulting in high sensitivity and
specificity with the low variance. Although DNN performance
has large variability in sensitivity due to the deep neural network
architecture and limited sample size, the achieved accuracy
is promising and shows the potential of DNN application in
identifying poor STN-DBS outcomes.

In ML imbalanced datasets lead to high majority baselines as
we have in our study (majority baseline = 85.29%). LR and DNN
exceed this threshold, show high sensitivity and specificity, and
therefore these methods can be considered suitable for solving
the defined problem.

The results indicate that the task of STN-DBS outcome
prediction is complex, and involves multiple steps as radiomic
feature extraction from the MRI images, feature selection, ML
model development and training, and accuracy evaluation. The
high dimensional feature space and limited sample size require

achieving a trade-off between ML method complexity and
its performance.

Discussion

The primary aim of this study was to investigate the
potential of radiomic features of amygdalar nuclei and
hippocampus subfields to predict the STN-DBS motor
outcomes for PD patients. The selected features used in
machine learning algorithms provide high prediction accuracy,
sensitivity, specificity and AUC.

To select the best candidates for DBS surgery the CAPSIT-
PD guidelines (Defer et al., 1999) were strictly followed. Despite
this, only 1.6% of PD subjects would be eligible for DBS
(Morgante et al., 2007). Moreover, the last decades of extensive
research added new neuropsychological (Pal et al., 2015),
radiological (Wang et al., 2021), and genetic (Artusi et al., 2019;
de Oliveira et al., 2019) markers to achieve the best clinical
outcomes. Furthermore, functional MRI data-driven studies
showed increased overall connectivity in the motor network
with strengthening thalamo-cortical connectivity in PD patients
after DBS implantation (Abboud et al., 2015), that drives
new discussions on preoperative functional brain connectome
importance for best candidates’ selection. Furthermore, it is
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known that DBS clinical outcomes are associated with volumes
of tissue activated and tracts stimulated (Lai et al., 2021).
Nevertheless, an abundance of suggested radiological tools and
hypotheses for the selection of best candidates for surgery drives
new data-driven markers.

The SN and STN structural changes are considered as main
factors for clinical deterioration in patients with advanced PD
(Damier et al., 1999; Colpan and Slavin, 2010). SN radiomic
features have been employed in ML algorithms to discriminate
between patients with PD and healthy subjects (Li et al., 2019;
Xiao et al., 2019; Xiao et al., 2021). The recent pilot study (Liu
et al., 2021) demonstrated that SN radiomic features combined
with the binary logistic regression analyses could predict motor
outcome of STN-DBS in PD with 82% accuracy (AUC = 0.85).

Usually, studies of DBS outcome prediction include analysis
of connectivity profiles (Horn et al., 2017; Lai et al., 2022),
functional magnetic resonance imaging fMRI data (Boutet et al.,
2021), local field potentials (Wang et al., 2018), EEG analysis
(Geraedts et al., 2021), clinical performance scores (Habets et al.,
2019).

Horn et al., 2017 showed that structural and functional
connectivity is associated with STN-DBS outcome in PD giving
medium correlation R = 0.51, p < 0.001. General linear
model predicted UPDRS-III improvements with 15.7 ± 14.2%
deviation from the actual value in single patients. The results
suggested that functional connectivity adds predictive value
above and beyond anatomical connectivity. The study by Lai
et al. (2022) indicates that functional connectivity patterns
predicted globus pallidus internal (GPi) DBS outcome with
the deviation of 13.1% ± 11.3% and correlation R = 0.58
(p = 0.006) from the actual improvements. Boutet et al. (2021)
investigated fMRI responses to DBS stimulation to predict
optimal stimulation settings for individual patients. LDA model
achieved 88% training accuracy in classifying optimal versus
non-optimal parameter settings. Bermudez et al. (2019) used
MRI data and convolutional neural network to classify a DBS
electrode coordinate as having a positive or negative response
to stimulation. This method achieved an AUC of 0.627 with a
sensitivity of 0.338 and specificity of 0.849.

Recent review shows that modern ML algorithms such
as DNN, convolutional neural networks, recurrent neural
networks, long-short term memory neural networks alongside
the conventional algorithms such as LR, LDA, SVM, are
increasingly being used to analyze imaging, local field potentials,
EEG, microelectrode recordings (MER) data in DBS research.
However, none of 73 studies employed radiomic features
(Peralta et al., 2021).

To our knowledge, our study is the first study to investigate
the radiomic features extracted from thalamic and amygdalar-
hippocampal nuclei as predictors of the STN-DBS motor effect.
Our results show that ML algorithms, merged with the selected
features, lead to 96.7% accuracy (AUC = 0.98) and indicate

the importance of amygdalar-hippocampal region in PD disease
treatment outcome prediction.

It is known, that the amygdala and hippocampus are
important structures for animal and human cognition and serve
as a crucial hub for cortical, subcortical, and limbic connections
throughout the brain (Churchyard and Lees, 1997; Izquierdo
et al., 1997; Adolphs, 2010). Until now pathological changes
in this region are usually considered as markers for possible
cognitive impairment in different neurological disorders. But
new PD models with possible two PD types according to alpha-
synuclein deposits in different body parts put the amygdala into
a new role in PD pathophysiology (Borghammer, 2021). Our
results elicit the importance of the amygdala and hippocampus
role in PD patient motor functioning after STN-DBS. This
region should be explored extensively using other tools to bring
strong evidence about possible reasons for founded radiomic
changes.

Radiomic is based on statistical-based modeling, which is
usually employed to extract many quantitative features from
MRI using data characterization algorithms and giving semantic
and agnostic features as outputs (Forghani, 2020). Misfolded
alpha-synuclein or Lewy body itself, on its crucial role in PD
pathophysiology, might be a candidate for possible radiomic
changes in amygdala and hippocampus in our study. Per
Borghammers’ suggested PD model supports this assumption
because brain origin PD type might be considered as a classical
idiopathic PD with good L_DOPA therapy response and which
is also suitable for DBS according to its clinical course and
features. Five patients from our study with poor clinical
outcomes, despite of similar clinical state, received DBS at the
later PD stage when alpha-synuclein in the amygdala decreased,
which led to poorer STN DBS results.

Evidence from human post-mortem studies suggests that
alpha-synuclein pathology could spread from the enteric
nervous system and propagate to the central nervous system
(CNS) through the vagal nerve (Braak et al., 2003). As Braak
proposed, alpha-synuclein spreading routes to SN through
hindbrain, basolateral amygdala, dorsal raphe nucleus. An
experimental animal study of transneuronal propagation of
pathologic alpha-synuclein (Kim et al., 2019) showed it deposits
in amygdala, which corresponds with Braak 1 stage hypothesis.
Our results also strongly suggested amygdala importance in
STN - DBS outcomes. We presume that radiomic changes in
amygdala show pathologic alpha-synuclein. Amygdala at this
stage of PD has a higher amount of alpha-synuclein than
SN. This observation drives the following hypothesis: the PD
patients are better candidates for STN-DBS if the disease stage
show alpha-synuclein deposits still at the level of amygdala. Five
patients of our study with poor clinical outcomes, despite of
similar clinical state, received DBS at the later PD stage when
alpha-synuclein in the amygdala decreased, which led to poorer
STN DBS results.
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The limitation of this work is the small number of
PD patients included in the study. The conclusions on the
prediction accuracy of the DBS effect for PD patients remain to
be fully validated using a larger dataset.

Conclusion

The obtained results show the potential of hippocampus
and amygdala radiomic features in the prediction of STN-
DBS motor outcomes for PD patients. The amygdala and
hippocampus radiomic changes should be explored on a
bigger scale for their importance in PD patient selection for
STN-DBS. Radiomic features at the level of amygdala might
show pathological deposits of alpha-synuclein. Nevertheless,
correlation of radiomic features with immunohistochemical PD
patient data is crucial for our hypothesis validation.
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