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Abstract We explore the impact of saturable distribution

over the central and the peripheral compartment in phar-

macokinetic models, whilst assuming that back flow into

the central compartiment is linear. Using simulations and

analytical methods we demonstrate characteristic tell-tale

differences in plasma concentration profiles of saturable

versus linear distribution models, which can serve as a

guide to their practical applicability. For two extreme

cases, relating to (i) the size of the peripheral compartment

with respect to the central compartment and (ii) the mag-

nitude of the back flow as related to direct elimination from

the central compartment, we derive explicit approxima-

tions which make it possible to give quantitative estimates

of parameters. In three appendices we give detailed

explanations of how these estimates are derived. They

demonstrate how singular perturbation methods can be

successfully employed to gain insight in the dynamics of

multi-compartment pharmacokinetic models. These

appendices are also intended to serve as an introductory

tutorial to these ideas.

Keywords Saturation � Distribution � Pharmacokinetics

Introduction

In practical applications, population pharmacokinetic

modellers are regularly confronted with data suggesting

nonlinear kinetics of the investigational compound. This

may include disproportionate increases in Cmax in single

ascending dose (SAD) data or disproportionate accumula-

tion in multiple ascending dose (MAD) data. Such non-

linearities may be difficult to account for using the standard

linear compartmental pharmacokinetic (PK) model, even

when nonlinear elimination is employed. Here we inves-

tigate a class of compartmental PK models which can be

characterized as saturable distribution models, which we

feel can provide an additional tool enabling pharmaco-

metric modelers to tackle observed nonlinearities in their

data.

Compartmental PK models usually combine a central or

plasma compartment, which represents the site at which

pharmacokinetic sampling takes place, with one or more

peripheral or tissue compartments. Such multi-compart-

mental models typically assume that drug enters the blood

stream in the central compartment, is distributed from there

via linear first order processes to the peripheral compart-

ments, and finally is eliminated again from the central

compartment via either a linear first order process or a

saturable Michaelis–Menten process (see e.g. Wagner et al.

[1] and more recently, Wu et al. [2], Brocks et al. [3] and

Scheerens et al. [4]). While linear distribution from central

to peripheral may often provide an adequate description of

the observed PK, very few processes in biology are truly

linear. Most, if not all biological processes are saturable

and may only appear linear because their maximum

capacity has not been approached in the observed data. It

follows that the standard multi-compartmental PK model

with linear distribution can be seen as a special case of a
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more general class of multi-compartmental PK models

with saturable distribution.

Snoeck et al. [5] first developed a population PK model

with saturable distribution to account for the nonlinear PK of

draflazine. This nonlinearity was found to be related to a

capacity-limited, high-affinity binding of draflazine to

nucleoside transporters located on erythrocytes and

endothelial tissue, and could not be accounted for by con-

ventional, linear distribution PK models. In the model

developed by Snoeck et al., draflazine was distributed from a

central compartment with linear elimination to three periph-

eral compartments, two of which were capacity-limited with

different capacities but similar affinity and were thought to

represent the specific binding of draflazine to its receptors on

erythrocytes and tissue, respectively. Thismodelwas found to

satisfactorily predict the nonlinear, dose-dependent PK of

draflazine and its disposition in whole blood and plasma.

In an unpublished study, the approach developed by

Snoeck et al. was used to model the PK of compound X,

which also showed a markedly nonlinear PK and was also

known to bind specifically to receptors on the erythrocytes.

Starting from a conventional three compartment PK

model, transformation of one of the two peripheral com-

partments to a low capacity, high affinity compartment

with saturable distribution resulted in a highly significant

improvement of the model fit. This compartment was

thought to represent specific binding to the receptors on the

erythrocytes, and addressed a nonlinear dose-dependent

increase of Cmax observable in single ascending dose

(SAD) studies. However, Fig. 1 shows that this 1-receptor

model still failed to address nonlinear dose-dependencies

in both accumulation and time to steady-state in multiple

ascending dose (MAD) studies. Transformation of the

second peripheral compartment to a very high capacity,

low affinity compartment with saturable distribution

addressed this problem and yielded a further, highly sig-

nificant improvement of the model fit. This 2-receptor

saturable distribution model was used to develop a suc-

cessful individual dose titration protocol, and was mathe-

matically analysed by Peletier et al. [6].

What kind of non-linearities in the observed PK can be

addressed by saturable distribution models, when and how

should we apply them? In the following we address such

questions by exploring the dynamics of a two-compartmental

model with a saturable, Michaelis–Menten type rate function

for the distribution of drug from the central to the peripheral

compartment. We do this for two opposing variants of sat-

urable distribution: first, we explore the dynamics of a model

with a low affinity, high capacity distribution process, and

then discuss the dynamics of a model with high affinity, low

capacity distribution. In order to assess the impact of satura-

tion, we analyse the dynamics of two classes of models: one

with linear and one with saturable distribution.

The objectives of this paper are

(i) To identify characteristic properties of the time

courses in the central compartment, and identify

differences between linear and saturable models

which may serve as handles to determine which

class of models should be used to fit a given set of

data.

(ii) To study the dynamics of the nonlinear model

incorporating saturation with a view to understand

the impact of the relative capacities and the rate

constants of the system and identify the charac-

teristic time-scales.

(iii) To identify the impact of saturable distribution in

practical applications, such as the exposure result-

ing from SAD and MAD regimens.

The mathematical analysis that is used to prove the results

in this paper is presented in three appendices. The first two

are devoted to the large capacity case, the linear model and

the saturable model, and the third appendix is devoted to

the small capacity case. The analysis relies strongly on

applications of singular perturbation theory (cf. [7, 8]). The

appendices are written so that they can be used as a tutorial

for applications of this method in pharmacokinetics and

pharmacodynamics.

Methods

In order to study the impact of saturation we compare the

dynamics of two distribution models, one with linear and

one with nonlinear distribution that involves saturation. In

Fig. 1 Individual plasma concentration versus time profiles for six

subjects receiving a once-daily oral 1500 mg over a period of

3 weeks. The cyan dots show the observed plasma concentrations, the

black curve shows the individual fit and the grey curve the population

fit of the 2-receptor model, while the magenta curves show the

individual fits of the 1-receptor model
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both models a test compound or drug is supplied to an

absorption space (1). The drug is then discharged into a

central compartment (2), distributed over a peripheral

compartment (3), as well as eliminated from the central

compartment.

Linear distribution model

This is the standard linear two-compartment distribution

model in which drug flows between the central compart-

ment (1) and the peripheral compartment by diffusion in

which the flux is proportional to the difference of the

concentrations in the two compartments.

The amount of drug in the absorption space is denoted

by A1 and the concentrations in the central and the

peripheral compartment are denoted by, respectively, C2

and C3. These quantities satisfy the following system of

differential equations:

dA1

dt
¼ q� kaA1

V2

dC2

dt
¼ kaA1 � Cl� C2 � CldðC2 � C3Þ

V3

dC3

dt
¼ CldðC2 � C3Þ

8
>>>>><

>>>>>:

ð1Þ

Here q denotes the infusion rate, ka a first order rate con-

stant, Cl the non-specific clearance, Cld the intercompart-

mental distribution and V2 and V3 the volumes of the

central- and the peripheral compartment.

In comparing this linear distributionmodel to the nonlinear

model involving saturation below, it is convenient to use the

amount of drug in the central compartment (A2 ¼ V2 � C2)

and in the peripheral compartment (A3 ¼ V3 � C3). Intro-

ducing these amounts into the system (1) then results in the

following system of differential equations:

dA1

dt
¼ q� kaA1

dA2

dt
¼ kaA1 � k20A2 � H � kpA2 þ kpA3

dA3

dt
¼ H � kpA2 � kpA3

8
>>>>><

>>>>>:

ð2Þ

where

k20 ¼
Cl

V2

; kp ¼
Cld

V3

and H ¼ V3

V2

and H is a dimensionless constant which can be viewed as a

measure of the ‘‘relative capacity’’ of the central and the

peripheral compartment.

Nonlinear or saturable distribution model

In this model the transfer from the central compartment to

the peripheral compartment is saturable, whilst that from

the peripheral back to the central compartment is linear.

Specifically we study the model

dA1

dt
¼ q� kaA1

dA2

dt
¼ kaA1 � k20A2 � Bmaxkp

A2

KM þ A2

þ kpA3

dA3

dt
¼ Bmaxkp

A2

KM þ A2

� kpA3

8
>>>>><

>>>>>:

ð3Þ

where q; ka; k20 and kp are as in the linear problem. Here

Bmax is referred to as the capacity of the peripheral com-

partment and KM the Michaelis–Menten constant. Both

Bmax and KM have the dimension of an amount. Thus,

saturation is modelled by a Michaelis–Menten term which

involves two new parameters, the capacity Bmax and KM .

This model has five parameters whereas the linear model

has four.

Remark For values of A2 which are small relative to KM ,

the Michaelis–Menten term in the nonlinear system may be

approximated by ðBmax=KMÞkpA2. Thus the relative

capacity H in the linear system may be compared to the

quotient Bmax=KM in the nonlinear system.

In the large capacity case, the infusion rate q is assumed

to be constant, and initially the system is assumed to be

empty, i.e., the amounts in the compartments are all

assumed to be zero:

A1ð0Þ ¼ 0; A2ð0Þ ¼ 0 and A3ð0Þ ¼ 0 ð4Þ

In the small capacity case, the infusion rate q is assumed to

be zero, and the initial conditions after an iv dose D are

given by

A1ð0Þ ¼ D; A2ð0Þ ¼ 0 and A3ð0Þ ¼ 0 ð5Þ

Steady state

For reference we give here the steady state values of A1;A2

and A3 when A1 is supplied to the absorption space at a

constant rate kf ðtÞ � q. Equating the temporal derivatives

in Eqs. (2) and (3) to zero we obtain the following

expressions for the steady state amounts Ai;ss (i ¼ 1; 2; 3):

A1;ss ¼
q

ka
; A2;ss ¼

q

k20
; A3;ss ¼ H � q

k20

A1;ss ¼
q

ka
; A2;ss ¼

q

k20
; A3;ss ¼ Bmax

q

qþ KM � k20

ð6Þ

Thus, we can write A3;ss in terms of A2;ss:

A3;ss ¼ H � A2;ss ðLinearÞ and

A3;ss ¼ Bmax

A2;ss

A2;ss þ KM

ðNonlinearÞ ð7Þ
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We conclude that in both models A1;ss and A2;ss are the

same and increase linearly with the infusion rate q. In the

linear model the amount A3;ss in the peripheral compart-

ment also increases linearly with q, but in the nonlinear

model it increases nonlinearly and converges to the

capacity Bmax as the infusion rate tends to infinity:

lim
q!1

A3;ss ¼ Bmax ð8Þ

We shall see however that whereas in the linear model the

time needed for A2ðtÞ to reach steady state is independent

of q, in the nonlinear model it varies with the infusion rate.

Evidently, in the absence of an infusion rate, i.e., when

q ¼ 0, the steady state is given by ðA1;A2;A3Þ ¼ ð0; 0; 0Þ.
We contrast the dynamics of models with large capacity

peripheral compartment, combined with slow transfer with

models with small capacity peripheral compartments

endowed with rapid transfer.

Large capacity and slow distribution

We assume,

A.1 The capacity of the peripheral compartment is large

compared to that of the central compartment.

A.2 The drug flows back from the peripheral compart-

ment into the central compartment at a much smaller rate

than it is eliminated from the central compartment.

Specifically, in terms of the rate constants we assume that:

ka � k20 � kp ð9Þ

Small capacity and rapid distribution

We assume,

A.3 The capacity of the peripheral compartment is small

compared to that of the central compartment.

A.4 Elimination from the central compartment is much

slower than the rate with which the drug flows back into the

central compartment.

ka � kp � k20 ð10Þ

Simulations

In order to acquire a qualitative understanding of the

structure of the dynamics of both models, given the relative

magnitudes of the rate constants ka, k20 and kp, and the

capacity of the peripheral compartment of the linear model

(H) and the nonlinear model (Bmax), we perform a series of

simulations. We do this separately for the large and the

small capacity peripheral compartment.

Large capacity and slow distribution

We select a series of different values of the infusion rate

q in order to demonstrate the differences between the linear

and the nonlinear model. These simulations will then be

done for the following parameter values:

Because of the large value of ka, the compound in the

absorption space very quickly reaches a quasi-steady state so

that we may put A1ðtÞ ¼ A1;ss ¼ q=ka for t[ 0. Thus, the

dynamics of the system is effectively determined by the inter-

action between the central and the peripheral compartment.

In Figs. 2 and 3 we show how in the linear and the

nonlinear model the amount of compound in the central

compartment (A2) evolves with time for the different

infusion rates. The simulations for the linear and the non-

linear system look similar. Both exhibit a clear two-phase

structure, which can be divided into:

�A brief initial phase in which A2 climbs to what appears

to be a plateau. We shall refer to this value of the amount of

compound as the Plateau value and denote it by A2.

Fig. 2 Linear model (2) graphs

of A2ðtÞ for increasing infusion

rates q ¼ 1, 2, 3, 4, 5 mg h�1

when ka ¼ 10, k20 ¼ 10�2, kp ¼
10�4 h�1 and H ¼ 100
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� A second, much longer phase in which the final pla-

teau value A2 of the first phase serves as a starting point of

a slow rise towards the final limit which, as expected, is the

steady-state value A2;ss.

However, Figs. 2 and 3 demonstrate that the impact of

the infusion rate q is very different. Here we focus on how

the infusion rate q affects the following characteristics of

the dynamics:

(1) The plateau value A2 after the first phase.

(2) The half-life of the convergence to the plateau value

A2 as well as the half-life of the convergence to the

final steady state value A2;ss.

As can be expected from a linear problem,we see in Fig. 2 and

Eq. (6) that A2 and A2;ss depend linearly on q and that the half

lives in the twophases are independentof the infusion rate.The

simulations in Fig. 3 demonstrate that for the nonlinear model

the influence of the infusion rate q is more complex. However,

the terminal stateA2;ss is the same as for the linear problem (cf.

(6)) and hence depends linearly on the infusion rate:

A2;ss ¼
q

k20
ð11Þ

Thus, in comparing the two models one needs to focus on

the complete temporal profile i.e., the concentration versus

time profile for all time. We make the following

observations:

• The plateau value, A2, increases with increasing q. For

the linear model A2 is seen to increase linearly with q

(cf. Fig. 2) whilst for the nonlinear model the depen-

dence on q appears to be super-linear, i.e., A2 appears

to grow faster than linearly with q (cf. Fig. 3).

• The half-life in the two phases. As the infusion rate

q increases, the half-life in the first phase appears to

increase whilst the half-life in the second phase appears

to decrease.

Small capacity and rapid distribution

In Fig. 4 we present a series of simulations for nonlinear,

saturable distribution model which exhibit the impact of an

iv bolus dose on the initial peak of A2ðtÞ. The doses and the

parameter values are given in Table 2 in Appendix 2:

Fig. 3 Nonlinear model (3)

graphs of A2 versus time for the

parameter values ka ¼ 10,

k20 ¼ 10�2, kp ¼ 10�4 h�1,

Bmax ¼ 3� 104 mg, KM ¼ 102

mg

Fig. 4 Nonlinear model (3)

graphs of A2 versus time for

D0 ¼ 10; 20; . . .; 70 for the

parameter values ka ¼ 5, k20 ¼
0:2 h�1, kp ¼ 1 h�1, Bmax ¼ 100

mg, KM ¼ 10 mg
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It is seen that in this case the disposition also has a two-

phase structure: soon after administration, A2ðtÞ jumps up

to a high Peak value A2;max quickly drops thereafter (left

figure) and then, in a second phase slowly returns to zero

(right figure). This Peak value is seen to increase rapidly

with D in a super-linear manner: when D increases from 10

to 20 mg then A2;max rises by about 4 mg and when D in-

creases from 60 to 70 the rise is about 7 mg, i.e., almost

double the low-dose increase.

Thus, as in the large capacity case, the graphs of A2

versus time exhibit a two-phase structure, albeit with a

completely different shape. A brief initial phase, say for

0\t\t0, in which A2ðtÞ exhibits a violent up- and down

swing which ends with A2 at an intermediate plateau value

A2, followed by a much longer elimination phase.

Results

Many of the observations made in the simulations can be

explained through mathematical analysis of the linear two-

compartment model (2) and the nonlinear model (3). Below

we present a series of results from such analysis. We discuss

the large capacity and the small capacity case in succession.

Large capacity and slow distribution

At first sight the simulations in Figs. 2 and 3 for the two

models are qualitatively similar: a rapid rise of A2 towards

an intermediate plateau A2, the plateau value, followed by

a slow rise towards the final steady state A2;ss given in

Eq. (6). In order to discriminate between the dynamics of

the linear and the nonlinear model it is therefore important

to obtain detailed and quantitative information about

characteristics of the dynamics over time. We focus here

on two such characteristic properties:

– The intermediate plateau value A2, and

– The half-life of the convergence as A2 tends to A2, and

as A2 tends to A2;ss

and the way these quantities depend on the infusion rate,

the capacity and the different rate constants.

For both models we present such quantitative estimates

of the plateau value and the half-life in the first and the

second phase. Their proofs are given in the mathematical

analysis presented in Appendices 1 and 2.

Plateau value

The existence of a plateau value is a result of the two-phase

structure of the dynamics of this system in which two

different time scales can be distinguished:1

Short : t1=2 ¼ Oð1=k20Þ k20 ! 1 and

Large : t1=2 ¼ Oð1=kpÞ kp ! 04
ð12Þ

In light of the basic assumption (9) there is a significant

difference between these two time scales. For the param-

eter values of Table 1 the half-life of the first phase is about

a factor 100 shorter than that of the second phase.

During the first phase, return flow from the peripheral

compartment is still negligible because kp is very small and

A3 is still building up. Therefore, during this phase the term

kpA3 modelling the back flow from the peripheral com-

partment into the central compartment may be omitted.

Removing this term from the equation for A2 in the systems

(2) and (3) yields a single differential equation involving

A2 only.

– Linear model: In the absence of back flow from the

peripheral compartment, the amount of compound in the

central compartment is governed by the equation

dA2

dt
¼ q� k20A2 � H � kpA2 ð13Þ

In this equation the input term kaA1 has been replaced by

the infusion rate q because, thanks to the large value of ka,

within a very short time we have kaA1ðtÞ � q.

The right hand side of Eq. (13) has a unique zero, the

plateau value A2, and it can be shown that

A2ðtÞ ! A2 ¼
q

k20 þ H � kp
as t ! 1 ð14Þ

Table 1 Parameters values for the linear and the nonlinear model, (2) and (3)

Model ka k20 kp H Bmax KM q

Linear 10 0.01 0.0001 100 – – 1, 2, 3, 4, 5

Nonlinear 10 0.01 0.0001 – 3� 104 100 1, 2, 3, 4, 5

h�1 h�1 h�1 – mg mg mg h�1

1 The big O-symbol compares the growth of a function, say f(x), as

x ! 0 or x ! 1 to that of a simple function, say g(x). Often

gðxÞ ¼ xp, where p may be positive or negative. Specifically: f ðxÞ ¼
OðgðxÞÞ as x ! 0 ð1Þ if there exist a constant M such that

jf ðxÞj 	MjgðxÞj for x small (large)

6 J Pharmacokinet Pharmacodyn (2017) 44:1–16
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Observe that

A2 ¼
q

k20 þ H � kp
\

q

k20
¼ A2;ss ð15Þ

i.e., the plateau value is smaller than the steady state value.

Thus, the plateau value can be seen as the starting value of

the second phase in which A2ðtÞ climbs further towards the

final value A2;ss.

Remark Because the system (2) is linear, the amounts

A1;A2 and A3 will depend linearly on the infusion rate q.

This is indeed seen in the expression for the plateau value.

Thus,

1

q
� A2 ¼

1

k20 þ H � kp
¼ Constant ð16Þ

– Nonlinear model: Without back-flow from the peripheral

compartment, the dynamics in the central compartment is

now governed by the equation

dA2

dt
¼ q� k20A2 � Bmaxkp

A2

KM þ A2

ð17Þ

and

A2ðtÞ ! A2 as t ! 1 ð18Þ

where A2 is the unique positive zero of the right hand side

of Eq. (17), or of the quadratic equation

A2
2 �

1

k20
q� k20 KM � kp Bmax

� �
A2 �

1

k20
KM � q ¼ 0

ð19Þ

Therefore

A2 ¼
1

2k20
q� k20 KM � kp Bmax

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q� k20 KM � kp Bmax

� �2þ4k20 KM � q

q

g
ð20Þ

In Fig. 5 we show how in the nonlinear model, the plateau

value A2 and the plateau value normalised with respect to

the infusion rate A2=q vary with q.

In contrast to the linear model, where this quotient is

constant, in the nonlinear problem the normalised plateau

is seen to be an increasing function of q, which connects

two asymptotes. Expanding the expression for A2=q in (19)

for small and large values of q, we find that

1

q
� A2ðqÞ !

‘� ¼def 1

k20 þ kp ðBmax=KMÞ
as q ! 0

‘þ ¼def 1

k20
as q ! 1

8
>><

>>:

ð21Þ

The limits ‘
 reflect the fact that

(1) For large values of A2, i.e., A2 � KM , the saturable

nonlinear term is small compared to the linear term

k20 � A2 (Bmax � 0) and the model approximates a

linear model with H ¼ 0.

(2) For small values of A2 (A2 � KM), the nonlinear

Michaelis–Menten term may be approximated by a

linear term: kpðBmax=KMÞ � A2 and the model

approximates a linear model with H ¼ ðBmax=KMÞ.
The limit obtained in (21) then corresponds with

what is seen for the linear model in (14).

(3) For any fixed q[ 0, the plateau value A2 decreases

as the capacity of the peripheral compartment Bmax

increases, and2

A2ðq;BmaxÞ�
KM

k20
� q

Bmax

as Bmax ! 1

ð22Þ

(4) The small infusion limit in Eq. (21) demonstrates the

sensitivity of the plateau value to changes in Bmax.

Conclusion

The simulations shown in Fig. 5, together with the analytical

estimates derived from the model equations provide valuable

Fig. 5 Variation of the plateau

value A2ðqÞ (left) and the

normalised plateau value

A2ðqÞ=q (right) for the nonlinear
model as they vary with q, when

the data are kp ¼ 10�4 h�1,

k20 ¼ 10�2 h�1, the capacity

takes the values: Bmax ¼ 104

(blue) 3� 104 (red) and 6� 104

(green) mg, and KM ¼ 100 mg

2 We write f ðxÞ� L� gðxÞ as x ! 1 when limx!1ff ðxÞ=gðxÞg ¼ L.
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diagnostic tools for identifying saturable elimination.

Increasing the infusion rate we observe (i) An increasing

plateau value which, when normalised by the infusion rate q,

is still increasing and is uniformly bounded above and below

by positive limits ‘
. (ii) Simple explicit expressions for ‘

which yield quantitative information about k20 and

kpBmax=KM . (iii) Additional estimates forBmax,KM and kp can

be obtained from the value of q at the transition from ‘� to ‘þ.

Terminal slope

In both models, the amount of compound A2ðtÞ in the central
compartment converges, in the first phase towards the pla-

teau valueA2 and then in the second phase towards the steady

state A2;ss. The rate of convergence towards these limits is

characterised by the half-life (t1=2) or the terminal slope kz.
We obtain accurate approximations for the terminal slope for

each of themodels,whichwe denote by kð1Þz for the first phase

and kð2Þz for the second phase, and discuss how kð1Þz and kð2Þz

vary with the infusion rate q and the capacity H or Bmax: –

Linear model in this model the terminal slope is independent

of the infusion rate. We obtain

kð1Þz ðHÞ ¼ k20 þ H � kp for the first phase

kð2Þz ðHÞ ¼ kp

1þ H
kp

k20

for the second phase

8
>><

>>:

ð23Þ

Thus, as the capacity H increases, the terminal slope

changes in opposite directions: in the first phase it increases

and in the second phase it decreases, i.e.,

kð1Þz ðHÞ % and kð2Þz ðHÞ & as H % ð24Þ

– Nonlinear model: We present the terminal slope in the

first phase and in the second phase in succession

For the first phase we establish that:

kð1Þz ðq;BmaxÞ ¼ k20 þ Bmax kp
KM

fKM þ A2ðq;BmaxÞg2
ð25Þ

where A2ðq;BmaxÞ is the plateau value. We deduce the

following properties:

(1) As we have seen in Fig. 5, the plateau value A2

increases when the infusion rate q increases. Hence,

it follows from (25) that kzðq;BmaxÞ is a decreasing

function of q.

(2) When q ! 1, then A2ðq;BmaxÞ ! 1 and hence, by

(25),

kð1Þz ðq;BmaxÞ ! k20 as q ! 1 ð26Þ

(3) When q ! 0, then A2ðq;BmaxÞ ! 0 and hence, by

(25),

kð1Þz ðq;BmaxÞ ! k20 þ
Bmax

KM

kp as q ! 0

ð27Þ

(4) The terminal slope in the first phase kð1Þz ðq;BmaxÞ
increases as Bmax increases. To see this note that

according to Fig. 5, the plateau value A2ðq;BmaxÞ
decreases when the capacity Bmax increases.

For the Second phase the terminal slope is well approxi-

mated by the formula

kð2Þz ðq;BmaxÞ ¼ kp 1þ Bmax kp
KM k20

ðqþ KM k20Þ2

 !�1

ð28Þ

The right hand side suggests the following properties:

(1) kð2Þz ðq;BmaxÞ is an increasing function of q and a

decreasing function of Bmax.

(2) By expanding the expression for kð2Þz ðq;BmaxÞ in (28)

for small and large values of q we obtain

kð2Þz ðq;BmaxÞ !

kp

1þ Bmax

KM

kp

k20

as q ! 0

kp as q ! 1

8
>><

>>:

ð29Þ

Note that as q ! 0, the terminal slope kð2Þz ðq;BmaxÞ of the
nonlinear model approaches that of the linear problem

given by (23) with H ¼ Bmax=KM .

Figure 6 illustrates and confirms the analytical properties

presented above. For the linear model they will be proved in

Appendix 1 and for the nonlinear model in Appendix 2.

Conclusion

The simulations displayed in Fig. 6, together with analyt-

ical expressions for the dependence on q of the terminal

slope in the first and the second phase are a rich source of

information for estimating the different parameters in the

models. For both phases, the terminal slope depends

monotonically—first down and then up—on q and tends to

finite non-zero limits as q ! 0 and q ! 1 which can be

computed explicitly.

Impact of slow leakage from the peripheral

compartment

In many practical situations, data are only available for the

first phase, and only predictions can be made about the

second phase [6]. Clearly, during the long second phase,

with its slow dynamics, the influence of leakage from the

peripheral compartment may well be relevant. In light of
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the large capacity of the peripheral compartment this may

result in significant losses.

In order to assess the impact of leakage, we modify the

nonlinear model and increase the first order loss term in the

equation for the peripheral compartment by a factor

ð1þ aÞ, where a[ 1. The equation for A3 in the nonlinear

system (3) then becomes

dA3

dt
¼ Bmaxkp

A2

KM þ A2

� ð1þ aÞ kp A3 ð30Þ

whilst the equation for A2, which does not involve a,
remains the same.

Because it is assumed that kp � k20, the two-phase

structure is not affected by moderate leakage. And because

during the first phase the elimination term in the equation

for A3 is small and may be neglected, the first phase will

hardly change when some leakage takes place from the

peripheral compartment.

On the other hand, during the second phase the impact

of leakage will be felt. For instance, leakage has an impact

on the steady state values of A2 and A3. They now become:

A2 ¼ A2;ssðaÞ and A3;ss ¼
1

1þ a
Bmax

A2;ssðaÞ
A2;ssðaÞ þ KM

ð31Þ

where A2;ssðaÞ is the root of the quadratic equation

A2
2 �

1

k20
q� k20 KM � kp �

a
1þ a

Bmax

� �

A2 �
1

k20
KM

� q ¼ 0

ð32Þ

Note that this equation is the same as Eq. (19) for the

plateau value A2, except for the factor a=ð1þ aÞ which

multiplies Bmax. An elementary computation shows that

A2;ssðaÞ �
q

k20
if a � 1

A2 if a � 1

8
<

:
ð33Þ

Thus, when there is little leakage ða � 1Þ, then A2;ssðaÞ is
close to the steady state value A2;ss given by (6) and when

leakage is substantial ða � 1Þ, the steady state value drops

down to the plateau value A2 given by (20).

In Fig. 7 we show how the temporal behaviour of A2

changes as the elimination from the peripheral compart-

ment increases beyond the original back-flow into the

central compartment. The rate of infusion is kept constant

(q ¼ 5) and the elimination is increased from the original

value (a ¼ 0) in four steps to a ¼ 0:5; 1; 2 and 4.

The simulations confirm the analysis: the two-phase

structure remains intact, and in the first phase (Fig. 7 left

panel) the the additional elimination does not show up in

Fig. 6 Terminal slopes:

kð1Þz ðq;BmaxÞ (left) in the first

phase and kð2Þz ðq;BmaxÞ (right)
in the second phase versus the

infusion rate q for the nonlinear

model for two values of the

capacity: Bmax ¼ 104 (red) and

Bmax ¼ 3� 104 mg (blue) and

the rate constants ka ¼ 10,

k20 ¼ 10�2, kp ¼ 10�4 h�1, and

KM ¼ 102 mg

Fig. 7 Nonlinear model with

leakage from the peripheral

compartment (3) & (30). Graphs

of A2 versus time for q ¼ 5 and

a ¼ 0; 0:5; 1; 2; 4 for the

parameter values ka ¼ 10 h�1,

k20 ¼ 0:01 h�1, kp ¼ 10�4 h�1,

Bmax ¼ 3� 104 mg, KM ¼ 102

mg
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the graphs. In the second phase (right panel) elimination

does have an impact, and shows a drop in final steady state,

starting from the original value (a ¼ 0) and approaching a

value close to the plateau value when a ¼ 4.

Evidently, the half-life in the second phase decreases as

elimination from the peripheral compartment increases.

Conclusion

Elimination is a long-term phenomenon, as is to be

expected since it takes place from the peripheral com-

partment which fills up slowly since kp is small.

Nonetheless, the impact on the central compartment can be

significant and, even for moderate elimination rates, can

obliterate most of the growth beyond the first phase.

Small capacity and rapid distribution

To fully appreciate the effect of a large capacity of the

peripheral compartment combined with a slow exchange

between the two compartments, we conclude with a brief

discussion of the dynamics of the nonlinear model for the

converse situation: small capacity of the peripheral com-

partment combined with a fast exchange between the two

compartments. Thus, we here assume that

ka � kp � k20 ð34Þ

Since in this case the peripheral compartment has small

capacity and direct elimination is relatively small, one

expects that an iv bolus administration will lead to a large

peak in concentration in the central compartment. In

practical situations the height of this peak can be critical.

Thus, to gain insight into this feature we focus here on

dynamics after an iv bolus dose.

As expected, soon after administration, A2ðtÞ jumps up

to a high peak value A2;max. This peak value is seen to

increase rapidly with D0 in a super-linear manner: when

D0 increases from 10 to 20 mg then A2;max rises by about 4

mg and when D0 increases from 60 to 70 the rise is about 7

mg, i.e., almost double the low-dose increase.

Thus, as in the large capacity case, the graphs of A2

versus time exhibit a two-phase structure, albeit with a

completely different shape. A brief initial phase, say for

0\t\t0, in which A2ðtÞ exhibits a violent up- and down

swing which ends with A2 at an intermediate plateau value

A2, followed by a much longer elimination phase.

In order to analyse the dynamics of this system for the

parameer values constrained by the conditions (34) and

obtain an estimate for A2;max it is necessary to transform the

system to dimensionless variables. This analysis, carried out

in Appendix 3, yields the following estimates for A2;max.

A2;maxðDÞ�
M�M=ðM�1Þ � D asD ! 0

D�M � KM ln
D

M � KM

� �

asD ! 1

8
<

:

M ¼ Bmax

KM

� kp

ka

ð35Þ

Because the initial phase is short and the elimination rate

k20 is small, the total amount of drug in both compartments

is conserved during this initial phase. i.e.,

A2 þ A3 ¼ D for 0	 t	 t0 ð36Þ

Because of the larger value of kp the two compartments are

quickly in quasi-steady state, so that after a brief initial

adjustment, we may put

A3 ¼ uðA2Þ ¼def Bmax

A2

KM þ A2

for t
 t0 ð37Þ

Because Eqs. (36) and (37) both hold at t0, we may use

Eq. (36) to eliminate A3 from Eq. (37) to obtain

A2 þ Bmax

A2

KM þ A2

¼ D ð38Þ

from which we can compute the value of A2, right after the

initial peak. For small and large dose D we find (cf.

Appendix 3),

A2ðDÞ�
D

1þ ðBmax=KMÞ
as D ! 0

D� Bmax as D ! 1

8
<

:
ð39Þ

which clearly demonstrates the super-linear behaviour of

A2ðDÞ. For the terminal slope of the first phase kð1Þz ðBmaxÞ
we find

kð1Þz ðBmaxÞ ¼
ka if

Bmax

KM

kp [ ka

Bmax

KM

kp if
Bmax

KM

kp\ka

8
>><

>>:

ð40Þ

In order to determine the long time behaviour of A2ðtÞ, we
add the equations for A2 and A3 from the system (3). This

yields the equation

d

dt
ðA2 þ A3Þ ¼ �k20 A2 ð41Þ

because q ¼ 0. We now use the expression for A3 given by

Eq. (37), which is valid in the second phase to eliminate A3

from Eq. (41) to obtain

d

dt
A2 þ uðA2Þf g ¼ �k20 A2 for t[ t0

Using the expression for uðA2Þ this equation can be written

as
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dA2

dt
¼� k20 A2

1þu0ðA2Þ
where u0ðA2;ssÞ ¼ Bmax

KM

ðKM þA2Þ2

ð42Þ

where u0ðA2Þ denotes the derivative of the function uðA2Þ.
The terminal slope kð2Þz of the graph of A2 as it approaches

its steady-state value A2;ss is given by

kð2Þz ðD;BmaxÞ ¼
k20

1þ u0ðA2;ssÞ
ð43Þ

Since u0ðA2Þ is a decreasing function of A2 it follows that

the terminal slope increases as A2;ss increases, i.e, as D

increases. In particular, since u0ðA2Þ ! Bmax=KM as

A2 ! 0, it follows that

kð2Þz ðD;BmaxÞ !
k20

1þ ðBmax=KMÞ
as D ! 0 ð44Þ

so that t1=2 ! f1þ ðBmax=KMÞg lnð2Þ=k20 � 38 h for the

parameter values used in Fig. 4. We see that this estimate is

confirmed in Fig. 4.

Conclusion

We find that for small capacity and rapid exchange

between central and peripheral compartment the dynamics

has a brief initial phase followed by a long terminal phase,

with an appropriately defined plateau value in between. As

in the previous case the terminal slopes yield sensitive

markers that can be used to identify the impact of satura-

tion on drug distribution. The plateau value informs about

the capacity Bmax and KM , whilst the terminals slope yields

estimates for Bmax, KM , and about ka when

ðBmax=KMÞ kp [ ka and about kp when ðBmax=KMÞ kp\ka.

Discussion

We have compared the dynamics of two types of models for

the distribution of a compound over a central and a

peripheral compartment. In one type the elimination of

compound from the central compartment into the peripheral

compartment is linear, and the other it is saturable and hence

nonlinear. In both models, the return flow from the periph-

eral compartment to the central compartment is linear.

We have focussed on two contrasting extreme cases:

(i) In one case, the capacity of the peripheral compartment

is large and the back-flow is slow, and (ii) In the other case

capacity and back-flow are respectively, small and fast.

These cases can be viewed as bench marks in parameter

space since they exhibit very different dynamics, each

being endowed with its own characteristic ligand versus

time graphs.

Both types of graphs exhibit a two-phase structure.

However, within these two phases each case has its own

characteristic behaviour: the large capacity peripheral

compartment retaining ligand for a long time, whilst in the

small capacity compartment the presence of ligand, though

large, is short-lived.

It is demonstrated that saturable distribution can lead to

disproportionately higher steady-state exposures.

Specifically:

• In the large capacity/slow distribution case, multiple

ascending doses (MAD) yield disproportionately higher

steady state exposures.

• In the small capacity/fast distribution case, SAD yield

disproportionately higher Cmax.

Thus saturable distribution models merit a careful analysis

in light of the impact saturation may have on exposure.

In analysing these models subject to the conditions (46–

49) listed in Methods, a mathematical framework has been

created which can be used to analyse comparable models,

which involve additional processes such as (i) leakage, or

(ii) binding of the ligand to proteins, lipids and receptors in

the central or the peripheral compartment, such as dis-

cussed in [9], or (iii) when the model involves additional

compartments. This analytical machinery makes it possible

to give quantitative estimates of the impact of these pro-

cesses on the drug distribution between compartments and

over time.

As an application of the methods developed in this

paper, we show that leakage from the peripheral com-

partment may have considerable impact over a period of

time. If this period extends beyond the period over which

measurements are available the need for accurate quanti-

tive predictions is evident.

Distribution over two compartments in which the

peripheral compartment has a limited capacity, has much in

common with tissue-binding. Here it is the tissue, viewed as

a separate compartment, which can become saturated when

maximal occupancy is reached. Thanks to this similarity in

structure many of the results established in this paper can

easily be transposed to the dynamics of tissue-binding.

The mathematical analysis is presented in a series of

appendices. They offer an introduction to the use of such

methods as (i) the use of dimensionless variables and

parameters and (ii) multi-scale analysis. Dimensionless

parameters are often a numerical measure of the relative

importance of different processes involved in the model,

such as direct elimination from the central compartment

and distributional transfer between the compartments.

Different time-scales are a common occurrence in phar-

macokinetics and pharmacodynamics, often due to large

differences in concentrations, in rate constants or in bind-

ing constants. They make it possible to simplify the often
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complex systems by means of singular perturbation theory

(cf. [7, 8]). The appendices demonstrate the practical use-

fulness of this theory for the study of complex pharma-

cokinetic and pharmacodynamic systems, and can serve as

an introductory tutorial.

In summary, we have demonstrated a number of inter-

esting dynamic properties of saturable distribution models

which can be of value in practical modelling applications.

In particular, we have shown that such models can account

for disproportional accumulation evident in MAD data as

well as disproportional increase in Cmax in SAD data. This

is achieved by relaxing the assumption of linear distribu-

tion in the standard model at the cost of only one extra

parameter per peripheral compartment. Saturable distribu-

tion models share many properties with models for tissue

and receptor binding, which provides another attractive

mechanistic underpinning for this class of models. For

these reasons, we feel that the saturable distribution model

deserves a more prominent place in the pharmacometri-

cian’s toolbox than it currently has. Here we try to promote

this by providing a guide to its dynamics and, hence,

applicability.
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Appendixes

Appendix 1: mathematical analysis of the linear
problem

In Appendices 1 and 2 we focus on the large capacity -

slow distribution case (cf. 46 and 47). Thus,

ka � k20 � kp ð45Þ

and initially Aið0Þ ¼ 0 for i ¼ 1; 2; 3.

In order to compare the ‘‘weight’’ of different terms in

the system (2) we introduce dimensionless variables. Thus,

we use the steady state values as reference value and put

x ¼ A1

A1;ss
; y ¼ A2

A2;ss
; z ¼ A3

A3;ss
ð46Þ

where A1;ss, A2;ss and A3;ss are given by (6). Introducing

these dimensionless variables we obtain the system

dx

dt
¼ kað1� xÞ

dy

dt
¼ k20ðx� yÞ � H � kpðy� zÞ

dz

dt
¼ kpðy� zÞ

8
>>>>><

>>>>>:

ð47Þ

This is a linear system, so that on any bounded time

interval the solution is bounded.

It remains to introduce a dimensionless time variable. For

this purpose we choose three different time scales, each

corresponding to one of the rate constants in the system (47).

A very short time scale

We choose k�1
a h as a reference time and define the

dimensionless time s0 ¼ ka t. Introducing this time variable

into (47) yields the system

dx

ds0
¼ 1� x

dy

ds0
¼ m ðx� yÞ � H � meðy� zÞ; m ¼ k20

ka
e ¼ kp

k20
dz

ds0
¼ meðy� zÞ

8
>>>>><

>>>>>:

ð48Þ

By assumption (9) the parameters m and e are small. For the

parameter values of Table 1 for the linear problem which

are used in Fig. 2, they are: e ¼ 10�3 and m ¼ 10�2.

It follows that given any finite time interval 0	 s0\T0,

then as m ! 0, the solution of the system (48) converges

uniformly to that of the Reduced system:

dx

ds0
¼ 1� x

dy

ds0
¼ 0

dz

ds0
¼ 0

8
>>>>><

>>>>>:

ð49Þ

Remembering that initially, ðx; y; zÞ ¼ ð0; 0; 0Þ, it follows
that for 0	 s0 	 T0, the solution of the original system (48)

is well approximated by

xðs0Þ ¼ 1� e�s0 ; yðs0Þ ¼ 0; and zðs0Þ ¼ 0

ð50Þ

Evidently, xðs0Þ ! 1 as s0 ! 1. The half-life s0;1=2 - i.e.,
the time it takes for xðs0Þ to reach half of its final value, is

equal to lnð2Þ. Thus, in the original time variable t, the

half-life is given by t1=2 ¼ lnð2Þ=ka ¼ 0:07 h, which

amounts to about 4 min.
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A short time scale

We choose 1=k20 h as a reference time and define the

dimensionless time s1 ¼ k20 t. Introducing this new time

variable into the system (47) and putting x ¼ 1, we obtain

the reduced system

dy

ds1
¼ ð1� yÞ � e� Hðy� zÞ

dz

ds1
¼ eðy� zÞ

8
><

>:
ð51Þ

Using phase-plane arguments (cf. [11]) it can be shown that

0\yðs1Þ\1 for all s1 [ 0. Therefore, 0\zðs1Þ\e for all
s1 [ 0 and hence, since e � 1, we may put zðs1Þ ¼ 0, and

approximate the first equation of (50) by

dy

ds1
¼ 1� ð1þ e� HÞ y ð52Þ

where we have retained the product e� H, because it may

not be small. The steady state value in this first phase is

y ¼ ð1þ e� HÞ�1
; it is the plateau value y. It follows that

yðs1Þ ! y ¼ 1

1þ e� H
as s1 ! 1 ð53Þ

and the half-life s1;1=2 in this initial phase are given by

s1;1=2 ¼
lnð2Þ

1þ e� H
: ð54Þ

In terms of the original variables we thus obtain

A2ðtÞ ! A2 ¼
q

k20
y ¼ q

k20 þ H � kp

& t1=2 ¼
s1;1=2
k20

¼ lnð2Þ
k20ð1þ e� HÞ

ð55Þ

When H ¼ 100 and k20 ¼ 0:01, then A2 ¼ 50� q mg

and t1=2 ¼ 34:7 h (cf. Fig. 2).

A large time scale

We choose k�1
p h as a reference time and define the

dimensionless time s2 ¼ kp t. Putting this time variable into

the system (48) and setting x ¼ 1 then yields the system

e
dy

ds2
¼ 1� y� e� H � ðy� zÞ

dz

ds2
¼ y� z

8
><

>:
ð56Þ

Again, by standard singular perturbation theory (cf.

[7, 8, 10]) it follows that after a very short time

1� y� e� H � ðy� zÞ ¼ 0 ¼) y ¼ 1þ e� H � z

1þ e� H

ð57Þ

Using this expression for y in the second equation of the

system (54), we obtain

dz

ds2
¼ 1� z

1þ e� H
ð58Þ

Remembering that zð0Þ ¼ 0, it follows that

zðs2Þ ¼ 1� e�c s2 ; where c ¼ 1

1þ eH

and the half-life s2;1=2 in the second phase is given by

s2;1=2 ¼ ð1þ e� HÞ lnð2Þ

¼) t1=2 ¼
1

kp
ð1þ e� HÞ lnð2Þ

ð59Þ

and the terminal slope kz is given by

kz ¼
kp

1þ e� H
ð60Þ

Comparing the expressions (55) and (59) for the half-life

in, respectively, the first and the second phase, we see that

as the capacity increases, the half-life decreases in the first

phase and increases in the second phase.

If H ¼ 100, then t1=2 ¼ 1:4� 104 h,which agrees with

the simulations in Fig. 2.

Appendix 2: mathematical analysis
of the nonlinear model

Here we define the dimensionless variables

x ¼ A1

A1;ss
; y ¼ A2

A2;ss
; z ¼ A3

Bmax
ð61Þ

in which for A1 and A2 we have chosen the same reference

values, whilst for A3 we have chosen the fixed capacity

Bmax which serves as a uniform bound for A3 (cf. (7)).

In addition we define the dimensionless constants

b ¼ Bmaxkp

q
and jM ¼ k20

q
KM ð62Þ

Substitution of these variables into the system (3) yields

dx

dt
¼ kað1� xÞ

dy

dt
¼ k20ðx� yÞ � bk20

y

jM þ y
� z

� �

dz

dt
¼ kp

y

jM þ y
� z

� �

8
>>>>>><

>>>>>>:

ð63Þ

As with the linear model, within a very short time xðtÞ � 1

so that we may put xðtÞ ¼ 1 and reduce the system (63) to
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dy

dt
¼ k20ð1� yÞ � bk20

y

jM þ y
� z

� �

dz

dt
¼ kp

y

jM þ y
� z

� �

8
>><

>>:

ð64Þ

A short time scale

As with the linear model we use the dimensionless time

s1 ¼ k20t. Introducing this variable into the system (63) and

setting x ¼ 1, we obtain the reduced system

dy

ds1
¼ 1� y� b

y

jM þ y
� z

� �

dz

ds1
¼ e

y

jM þ y
� z

� �

8
>><

>>:

ð65Þ

Since e � 1 it follows that for s1 ¼ Oð1Þ, we may put

zðs1Þ ¼ 0 and write the first equation in (65) as an equation

for y only:

dy

ds1
¼ f ðyÞ ¼def 1� y� b

y

jM þ y
ð66Þ

Since f(y) is strictly decreasing, f ð0Þ ¼ 1 and f ð1Þ\0, it

follows that f(y) has a unique zero y between 0 and 1.

Plainly, y is one of the two roots of the quadratic equation

y2 þ ðbþ jM � 1Þy� jM ¼ 0 ð67Þ

One of these roots is negative and the other is positive.

Plainly y is the positive one which is given by

y ¼ 1

2
ð1� b� jMÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� b� jMÞ2 þ 4jM

q� 	

ð68Þ

Because yð0Þ ¼ 0 and f ðyÞ[ 0 for 0	 y\y, it follows

from (66) that

yðs1Þ ! y as s1 ! 1 ð69Þ

In order to determine the rate of convergence towards y we

linearise equation (66) at y. Writing y ¼ yþ g, we can

write equation (66) as

dg
ds1

¼ f ðyþ gÞ ¼ f 0ðyÞ gþ qðgÞ

where g�1 qðgÞ as g ! 0

ð70Þ

in which

f 0ðyÞ ¼def df
dy







y¼y

¼ �1� b
jM

ðjM þ yÞ2
ð71Þ

Omitting the small rest term qðgÞ we conclude that the

terminal slope is approximately given by

1þ b
jM

ðjM þ yÞ2 ð72Þ

Returning to the original variables, this translates into (cf.

equation (25)):

kz ¼ k20 þ Bmax kp
KM

ðKM þ A2Þ2
ð73Þ

A graph of the terminal slope in the first phase, as it varies

with q and Bmax, is shown in Fig. 6.

Example When q ¼ 5 we obtain for the parameter values

given by Table 1, that y ¼ 0:558, and hence A2 ¼ 279 mg,

and

f 0ðA2Þ ¼ �0:0223 ¼) t1=2 ¼
lnð2Þ
jf 0ðA2Þj

¼ 31 h

ð74Þ

which is consistent with what we observe in the simulation

shown in Fig. 3 for q ¼ 5.

A large time scale

We now use the dimensionless time s2 ¼ kpt, which yields

the system

e
dy

ds2
¼ 1� y� b

y

jM þ y
� z

� �

dz

ds2
¼ y

jM þ y
� z

8
>><

>>:

ð75Þ

On the basis of singular perturbation theory (cf. [7, 8, 10]),

we may put

1� y� b
y

jM þ y
� z

� �

¼ 0 ð76Þ

which yields an expression for z in terms of y:

z ¼ uðyÞ ¼def y

jM þ y
þ 1

b
ðy� 1Þ ð77Þ

When we substitute this expression into the equation for z

in Eq. (74) we obtain a single equation for the variable y

only.

u0ðyÞ � dy

ds2
¼ 1

b
ð1� yÞ ð78Þ

or, when we divide by u0ðyÞ,
dy

ds2
¼ FðyÞ ¼def 1

b
� 1� y

u0ðyÞ ð79Þ

The terminal slope (in terms of s2) is now given by

kz ¼ jF0ð1Þj ¼ 1

b ju0ð1Þj ¼ 1þ bjM
ð1þ jMÞ2

 !�1

ð80Þ

In terms of the original time t this translates into
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kzðqÞ ¼ kp 1þ Bmax kp KM k20

ðqþ KM k20Þ2

 !�1

ð81Þ

We conclude from this expression that the terminal slope

increases as the infusion rate increases, and that its limiting

values values are given by

kzðqÞ ! kp as q ! 1 ð82Þ

and

kzðqÞ ! kp 1þ Bmax

KM

kp

k20

� ��1

as q ! 0 ð83Þ

A graph of the terminal slope in the second phase, as it

varies with q and Bmax, is shown in Fig. 4.

Appendix 3: mathematical analysis: small capacity
and rapid exchange

In Appendix 3 we focus on the small capacity - fast dis-

tribution case (cf. 47 and 48). Thus,

ka � kp � k20 ð84Þ

We introduce dimensionless variables using KM as a ref-

erence value for the amounts and 1=ka as a reference time.

Thus we put

x ¼ A1

KM

; y ¼ A2

KM

; z ¼ A3

KM

; s ¼ ka t: ð85Þ

In terms of these new variables the system (3) becomes for

q ¼ 0,

dx

ds
¼ �x

dy

ds
¼ x� ly� be

y

yþ 1
þ ez b ¼ Bmax

KM

; e ¼ kp

ka
; l ¼ k20

ka
dz

ds
¼ be

y

yþ 1
� ez

8
>>>>><

>>>>>:

ð86Þ

Note that for the parameter values of Table 2, used in

Fig. 4, we obtain b ¼ 10, e ¼ 0:2 and l ¼ 0:04.

In order to obtain a first estimate, we put l ¼ 0 and also

e ¼ 0, except when e is multiplied by b since the product

b e ¼ 2 is clearly not small. Solving the first equation we

obtain xðsÞ ¼ de�s with d ¼ D=KM . Substituting this

expression for xðsÞ into the second equation we obtain a

single equation for yðsÞ:
dy

ds
¼ de�s � be

y

yþ 1
ð87Þ

When y � 1 Eq. (87) may approximated by the equation

dy

ds
¼ de�s � bey ð88Þ

which can be solved explicitly. Since yð0Þ ¼ 0 we obtain

for the solution

yðsÞ ¼ d
be

ðe�s � e�besÞ ðbe 6¼ 1Þ ð89Þ

An elementary computation shows that

ymax ¼ d�
(
ðbeÞ�be=ðbe�1Þ

if be 6¼ 1

e�1 if be ¼ 1
ð90Þ

When y � 1 we scale Eq. (87) and write y ¼ dz. The

resulting equation may then be approximated by

dz

ds
¼ e�s � be� d�1: ð91Þ

Its solution which starts at the origin is given by

zðsÞ ¼ 1� e�s � be
d

s ð92Þ

Returning to y, we then deduce that

ymax ¼d 1� be
d

� �

� be ln
d
be

� �

¼ d� be ln
d
be

� �

� be

as d ! 1:

ð93Þ

In terms of the original variables, the expressions (93) and

(93) yield the limits given in Eq. (39).
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