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Obesity, metabolic syndrome, and asthma are all rapidly increasing globally. Substantial emerging evidence suggests that these
three conditions are epidemiologically and mechanistically linked. Since the link between obesity and asthma appears to extend
beyondmechanical pulmonary disadvantage, molecular understanding is necessary. Insulin resistance is a strong, independent risk
factor for asthma development, but it is unknown whether a direct effect of insulin on the lung is involved.This review summarizes
current knowledge regarding the effect of insulin on cellular components of the lung and highlights the molecular consequences
of insulin-related metabolic signaling cascades that could adversely affect lung structure and function. Examples include airway
smooth muscle proliferation and contractility and regulatory signaling networks that are associated with asthma. These aspects
of insulin signaling provide mechanistic insight into the clinical evidence for the links between obesity, metabolic syndrome, and
airway diseases, setting the stage for novel therapeutic avenues targeting these conditions.

1. Introduction

It is now well recognized that obesity and asthma are
epidemiologically linked [1–4]. Such a relationship is also
seen between asthma and other markers of the metabolic
syndrome such as insulin resistance and hypertension that
cannot be accounted for by increased body mass alone [4–
7].While both obesity and asthma are individually associated
with an increased state of inflammation [8], interestingly,
in obese asthmatics, there is a dissociation between cellular
inflammation and severity of symptoms, especially in women
[9, 10]. This discordance would suggest that while obesity-
related systemic inflammation can certainly be one mecha-
nism for increased asthma risk, there is a need to examine
mechanisms independent of cellular inflammation that may
play a role in asthma in the context of conditions such as
obesity and metabolic syndrome.

A number of cellular signaling and metabolism mecha-
nisms could contribute to increased asthma risk in patients

with obesity and/or metabolic syndrome. Considering the
fact that altered glucose metabolism occurs in both cases,
and hyperinsulinemia with reduced insulin sensitivity is
involved, an obvious potential factor affecting the lung is
insulin itself, particularly a direct effect on structural cells as
well as immune cells in the airway. In a large Danish cohort,
it was observed that insulin resistance (IR) was more strongly
related to asthma risk than any of the anthropometric
parameters [11]. While this study did not specifically examine
serum insulin, independent of blood glucose or diabetes,
it is recognized that insulin resistance (IR) and consequent
hyperinsulinemia are central molecular pathologies in the
genesis of the metabolic syndrome [12, 13]. Other markers of
metabolic syndrome such asC-reactive protein and correlates
such as hyperglycemia, diabetes, or hypertension have all
been associated with reduced lung function, asthma [14],
or even COPD [15], in large clinical studies. Yet the direct
impact of hyperinsulinemia and IR on lung function is poorly
understood. If insulin excess can directly alter lung cellular
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physiology, this would represent a fundamental common
molecular link between asthma and the cardiometabolic
syndrome [16].

This review focuses on the current stage of knowledge
regarding the direct effects of insulin in lung cells in the
context of airway remodeling and hyperresponsiveness. Here,
it is important to emphasize that in fact there is a significant
knowledge gap regarding insulin effects in the airway, and
we therefore draw upon what is known in other cell types
to generate hypotheses that could drive future research.
Certainly, our focus on insulin does not rule out several
other potential mechanisms such as dysfunctional arginine
metabolism and uncoupling of nitric-oxide synthase (NOS)
by increased asymmetric dimethyl arginine (ADMA) [17],
effects of adipokines, and direct mechanical effects of tho-
racoabdominal obesity on lung mechanics. These important
topics are reviewed in detail elsewhere in this issue.

2. Insulin and IR

Insulin is one of the central homeostatic hormones
with global effects that extend beyond glucose and lipid
metabolism. As a pleiotropic hormone [18], insulin effects
range from the well-known hypoglycemia to regulation of
cell growth and differentiation [19, 20]. Insulin regulates
a number of key metabolic biological processes such as
stimulation of glucose uptake, lipid synthesis, oxidation,
storage of fat, and cell proliferation [21–23]. Insulin-mediated
signaling varies significantly between cells and tissues
necessitating an understanding of its actions in the context
of the lung and in specific cell types within the lung. Insulin
resistance (IR), that is, reduced responsiveness to insulin
in liver, muscle, and adipose tissue, is closely associated
with various metabolic diseases such as obesity, metabolic
syndrome, nonalcoholic fatty liver disease [24], and type 2
diabetes mellitus [25]. Since IR in key metabolic tissues is
associated initially with compensatory hyperinsulinemia,
insulin-related effects that retain sensitivity in other tissues
are expected to be increased, even in the face of metabolic IR.
This is a partial reflection of distinct physiological processes
in multiple organs [26] and is important because IR is also
associated with other putatively nonmetabolic diseases
such as asthma [4, 27] and some cancers [28–32]. While
relative deficiency of insulin and hyperglycemia are well
studied in diabetes, the harmful effects of insulin excess are
poorly recognized except where they result in hypoglycemia.
Importantly, given the cell- and tissue-specific heterogeneity
in insulin signaling and the potential confounding role of
disease states per se, effects on other tissues may not be easily
extensible to the lung. Nonetheless, considerable insight
into potential mechanisms by which insulin influences lung
cellular components relevant to asthma may be gleaned from
such prior data.

3. Insulin and the Lung

Expression of insulin receptors in the lung has been verified
[33]; however, their role has only been partially characterized

using crude membrane of normal lung as well as plasma
membrane fractions of lung tissue. Importantly, interaction
of these receptors with insulin appears to be time and
temperature dependent, and furthermore rapid, saturable,
and highly reversible [34, 35]. The relevance of these findings
is that insulin has the potential to dynamically influence
lung structure and function at various life stages and thus
modulating asthma predisposition.

Insulin receptors are important during lung develop-
ment with lung epithelial cells abundantly expressing insulin
receptors during the pseudoglandular stage with receptor
levels decreasing during later stages of development [36].
Assuming that maternal insulin is the agonist, these data
fit well with prior evidence that maternal diabetes has
substantial growth effects on fetal lungs. Miakotina et al.
and others have shown that high insulin levels delay lung
development in fetuses of diabetic mothers by inhibiting
surfactant protein A (SP-A) [37]. Inhibition of SP-A and SP-B
genes’ expression leads to increased incidence of respiratory
distress syndrome (RDS) in infants of diabetic mothers [38].
In a large Canadian study, asthmatic children were more
likely to be of diabetic mothers than children without asthma
[39]. What is less clear, but is likely, is whether these diabetic
mothers hadhyperinsulinemia [40]. Furthermore, alternative
mechanisms may be at play, including hyperglycemia, and
altered cytokine/adipokine milieu.

While these clinical associations are clear, there is limited
experimental evidence supporting a direct role for insulin
per se in lung development. In cultured lung epithelial cells,
insulin reduces VEGF expression and transcriptional activity
ofHIF-2 onVEGF promoter in anmTOR-dependentmanner.
The importance of the Akt-mTOR pathway in lung epithe-
lium relates to the pathogenesis of infant RDS [41] which
predisposes towards asthma later in life. Animal models of
hyperinsulinemia are more complex with at least one report
of accelerated fetal lung maturation in pregnant rabbits by
a two-day intravenous (IV) infusion of insulin, but with
significant hypoglycemia [42]. Accordingly, it is difficult to
conclude whether insulin is promaturation when it comes
to lung development, and here it is important to consider
whether the timing of high versus low level of insulin receptor
expression and activation is a confounding factor.

Other than effects of insulin on developing lungs, recent
efforts towards developing inhaled insulin formulations for
diabetes management have provided interesting insights
into direct effects of insulin on the mature lung. Since
the pulmonary epithelium and the surfactant that lines
the alveoli (0.1-0.2 𝜇m thick) constitute physical barriers to
pulmonary absorption, local deposition and action of insulin
are to be expected. Locally high concentrations of protease
inhibitors and acidic formulations seem to protect the insulin
peptide from membrane-associated cells and intracellular
proteases [43–45] resulting in much of the inhaled insulin
being absorbed systemically in the alveolar region. However,
despite good systemic delivery, there also appears to be sub-
stantial local effect of inhaled insulin. For example, inhaled
insulin in diabetic patients is associated with a decrease in
forced expiratory volume in 1 second (FEV1) [46, 47], but the
mechanisms are not clear. Certainly, insulin can shift T cells
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towards a Th2-type response, known to be a key event in the
pathogenesis of asthma [48]. It has also been observed that
insulin, via activation of PI3K pathway, promotes mast cell
survival and degranulation, which facilitate bronchoconstric-
tion [49]. Nonspecific proinflammatory effects via activation
of pulmonary macrophages are also possible, and in some
studies it has been shown that inhaled insulin may deposit at
air-tissue interfaceswith characteristics of amyloid aggregates
[50]. The relevance of these findings may be in that inhaled
formulations of insulin that were once promising, approved
strategies for treatment of diabetes mellitus in US and Europe
[51, 52] have been withdrawn due to persistent reports of
respiratory problems, including cough. On the other hand,
it appears that insulin also has anti-inflammatory effect in
the context of severeTh1-type inflammation. Insulin has been
found to reduce levels of inflammatory cytokines, attenuate
acute lung injury and systemic inflammatory response, and
promote survival in rodents exposed to LPS [53].

Collectively, these limited data again suggest a dichoto-
mous role for insulin where increased levels of insulin in the
mature (adult) lung have found to be detrimental on the one
hand but protective on the other. What is important to deter-
mine is whether systemic hyperinsulinemia as occurring
in metabolic syndrome leads to pathophysiological changes
leading to asthma, or is protective, and the mechanisms by
which insulin acts on the airway.

4. Insulin and Airway Smooth Muscle

While asthma is usually defined as an inflammatory disease,
a cardinal feature is airway hyperresponsiveness (AHR):
excessive narrowing of airways in response to normal con-
strictive stimuli [54]. AHR is associated with increase in
airway smoothmuscle (ASM)mass, dysfunction of bronchial
epithelium, and alterations in extracellular matrix (ECM)
within the airway wall. Increased ASMmass is considered to
play a key role in the development of AHR [55] and activate
epithelial mesenchymal trophic unit (EMTU) that leads to
airway remodeling.

As a growth factor, the contribution of insulin to
increased ASM mass and/or contractility in the context of
asthma is obviously important.

Noveral and colleagues first showed that functional
insulin-like growth factor-1 (IGF-1) receptors are present
on rabbit ASM and that their stimulation is sufficient to
induce ASM proliferation [56, 57]. These studies have been
replicated in other animal model systems, and the pathway
was determined to be activation of the MAP kinase system
[58]. It is well known that insulin and IGF-1 can crossactivate
each other’s receptors (insulin receptor (InsR) and IGF1R)
and that there is also significant crosstalk downstream to
these receptors via the insulin receptor substrate proteins
(IRS; Figure 1). It has been subsequently shown that high
levels of insulin promote ASM contraction [59] and enhance
contractile responses tomethacholine andKCl [60, 61].These
effects have been reported to occur via Rho kinase- and PI3
kinase-dependent signaling pathways [62, 63]. Other reports
suggest that insulin increases ECM proteins such as laminin
(a2, b1, and g1 chain expression) [64] which are important

Insulin IGF1

IR IGF1R

IRS proteins

(PI3K)-AKT MAPK-ERK

Cell growth and proliferation

Figure 1: Insulin and IGF-1 can crossactivate each other’s receptors,
that is, insulin-IGF1R, IGF1-IR, which can lead to insulin-mediated
cell growth and proliferation.

in lung growth and differentiation of näıve mesenchymal
cells, leading to hypercontractile and hypoproliferative ASM
[65, 66]. Furthermore, limited studies suggest that aerosol
administration of insulin leads to ASM contraction but
indirectly via production of procontractile prostaglandins
that involve Rho kinase [67]. Overall, the data so far sug-
gests that, if anything, insulin effects on ASM are likely to
result in increased airway contractility, cell proliferation, and
fibrosis, all of which should lead to a thicker, stiffer, and
hypercontractile airway reflective of an asthma phenotype.
However, it is also important to recognize that much of the
work has been in vitro, with high levels of insulin, typically
applied for relatively short periods. Whether prolonged
hyperinsulinemia and/or activation of insulin receptors leads
to different cellular effects in the airway, and whether such
effects are reversible (in the context of therapy) remain to be
determined.

5. Insulin and PI3/Akt Signaling

PI3K/Akt signaling has a central role in the conserved
downstream pathway of insulin signaling [68, 69] and is
an important regulator of diverse array of cellular events,
including cell growth and cell survival in a number of cell
types [70]. Several studies have validated the functional
significance of the PI3K pathway in glucose homeostasis and
shown that PI3K inhibition leads to insulin resistance [71, 72].

It has been also shown that insulin is a potent activator of
PI3K in human bronchial epithelial cells and inhibits TLR3
mediated apoptosis [73]. It has been also shown that insulin,
via activation of PI3K pathway, promotes mast cell survival
and degranulation, which may leads to bronchoconstriction
[49].

This pathway is also thought to be important at least in
prenatal lung development in the context ofmaternal diabetes



4 Journal of Allergy

PI3K

AKT

P

P

Cell  proliferation 
switch ON

Hyperproliferative
 ASM

Smooth muscle cells 

Epithelial cells 

Epithelial cell 
stress

IR
IR

IRIR
IR

IR

Myofibroblast 
differentiation

Fibroblast cells

In
su

lin

IR

IR IR IR IR

IR

IR IR IR

IR

IRIR
IR

IR

IR

IRS 1/2 IRS 1/2 IRS 1/2 IRS 1/2

Figure 2: A schematic model of how insulin may be involved in regulation of asthma-like changes in lungs.

where fetal hyperinsulinemia in response to maternal hyper-
glycemia [74–77] results in PI3K/Akt1/mTOR activation and
induces RDS [78]. Also, as mentioned previously, high levels
of insulin through the PI 3-kinase signaling pathway may
also inhibit surfactant protein production expressed in the
lung epithelial cells and lung maturation [37, 79, 80], thus
predisposing the immature lung to airway diseases later in
life. While these data relate to the developing lung, the
relevance of the enhanced PI3/Akt signaling also lies in its
well-recognized role in adult asthma. For example, loss of
function mutations in the principal inhibitory phosphatases
SHIP, PTEN, and INPP4A, are associated with asthma [81],
and knockdown of INPP4A induces airway remodeling
and hyperresponsiveness. Activation of the PI3/Akt pathway
promotes survival of airway epithelial cells as well as ASM
and conversely can enhance proliferation [82], thus con-
tributing to airway remodeling. Whether insulin activation
of PI3K/Akt is involved in this regard is not currently known.
However, insulin has been shown to act via PI3/Akt to inhibit
epithelial apoptosis that normally occurs with viral exposure
and could thus promote airway remodeling in this context
(Figure 2).

6. Insulin, Wnt/𝛽-Catenin Signaling, and
Airway Remodeling

Some studies have also reported insulin regulation ofWnt/𝛽-
catenin pathway and stimulation of transcription of Lef/Tcf-
dependent genes via activation of PI3K/Akt andRas signaling

pathways which normally inhibit GSK3-𝛽 and activate the 𝛽-
catenin pathway in hepatocarcinogenesis [83]. Dysregulation
of Wnt/𝛽-catenin pathway influences many biological pro-
cesses, including cell fate decisions, stem cell proliferation
[84], and axis specification [85–88]. While relationships
between insulin and Wnt/𝛽-catenin have not been reported
in the lung per se, Wnt/𝛽-catenin pathways are increasingly
recognized as being important in regulation of lung cell
proliferation and differentiation [89]. 𝛽-catenin is required
for normal lung morphogenesis, and deletion of 𝛽-catenin
during critical periods of lung development leads to blocked
alveolar epithelial cell differentiation and disruption of alveo-
lar formation [87]. Furthermore, conditional activation of 𝛽-
catenin in respiratory epithelial cells leads to altered epithelial
cell differentiation by induction of alveolarmarker prosurfac-
tant protein C (SP-C) and causes goblet cell hyperplasia, air
space enlargement, and pulmonary tumors. Thus, 𝛽-catenin
signaling pathway has a critical role in the differentiation
of the respiratory epithelium in the postnatal lung [90].
Accordingly, even during lung development, insulin could
potentially promote morphogenesis via activation of the
Wnt/𝛽-catenin pathway, although it would be important to
determine whether the relative timings of insulin versus
Wnt/𝛽-catenin activation are detrimental or beneficial.

In the adult airway, activated 𝛽-catenin-/TCF-/LEF-
dependent gene transcription of VEGF [91], matrix pro-
teins such as fibronectin and versican, and proinflammatory
enzymes/mediators such as cyclooxygenase (COX)-2 [92]
and interleukin (IL-8) suggest the involvement of this path-
way in regulation of inflammation and airway remodeling.
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Here too, insulin-mediated activation of 𝛽-catenin signaling
could be involved in airway disease pathogenesis. While
there is currently no information in the context of asthma
per se, data from fibroproliferative lung diseases may be
suggestive where activation of 𝛽-catenin signaling is involved
[93]. Inhibition of GSK3𝛽 and stabilization of 𝛽-catenin is
governed by TGF-𝛽 signaling and leads to altered ECM
[94]. Of relevance, diabetes and metabolic syndrome have
been associated with increased risk of idiopathic pulmonary
fibrosis and COPD [95, 96]. Whether insulin per se plays a
role in these diseases is not known, but if so, modulation of
Wnt signaling pathway may be relevant.

Also, in other systems like the heart, Akt-mediated
GSK3𝛽 phosphorylation leads to increased 𝛽-catenin expres-
sion and causes cardiac smooth muscle hypertrophy [97],
whether this may be mirrored in the airway smooth muscle,
remains to be determined.

7. Conclusion

There is substantial data that mechanistically links insulin
and insulin like growth factor-1 to lung development and
function. It is conceivable but not proven that hyperinsuline-
mia may lead to development of lung disease, particularly
asthma. Experimental studies that directly address this pos-
sibility are much needed.
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