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Sustaining and maintaining the intricate process of spermatogenesis is liable upon
hormones and growth factors acting through endocrine and paracrine pathways. The
Sertoli cells (SCs) are the major somatic cells present in the seminiferous tubules and are
considered to be the main regulators of spermatogenesis. As each Sertoli cell supports a
specific number of germ cells, thus, the final number of Sertoli cells determines the
sperm production capacity. Similarly, sex hormones are also major regulators of
spermatogenesis and they can determine the proliferation of Sertoli cells. In the present
review, we have critically and comprehensively discussed the role of sex hormones and
some other factors that are involved in Sertoli cell proliferation, differentiation and
maturation. Furthermore, we have also presented a model of Sertoli cell development
based upon the recent advancement in the field of reproduction. Hence, our review article
provides a general overview regarding the sex hormonal pathways governing Sertoli cell
proliferation and development.
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BACKGROUND

Testes are destined to perform two important roles: to produce testosterone (steroidogenesis) and to
maintain germ cell development (1). These functions are supported by the testicular somatic cells,
Sertoli cells (SCs), which are located within the seminiferous tubules of testes (2, 3). Sertoli cells are
considered as the most complex type of cells in an organism on the bases of their three-dimensional
structure and their production of a microenvironment for germ cell development (3–5).
Dependence of germ cells to obtain nutritional contents from Sertoli cells is owing to the
presence of blood testes barrier (BTB) which physically portioned the seminiferous tubules into
basal and adluminal compartments (6). The BTB is constituted by tight junction, ectoplasmic
specialization (N-cadherin), desmosomes and gap junctions that are present in Sertoli cells (7–10).
The SC–SC junctional complex has been studied and is known to undertake an indispensable job in
testis directional morphogenesis (11, 12). Thus, Sertoli cells encompass all sorts of germ cells and
have a chief assistive role in spermatogenesis.

Furthermore, developing germ cells cannot metabolize macromolecules such as lipids,
carbohydrates and proteins, and most preferable energy source for germ cells is lactate molecule
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which is produced by Sertoli cells (13, 14). On the other hand,
Sertoli cells not only provide lactate to the developing germ cells
for energy production but they also supply other nutrients
including amino acids, vitamins and metal ions (14–16).
Another important task of Sertoli cells is to generate and
produce signaling molecules including growth factors and
inflammatory cytokines which are involved in a cascade of
events that are necessary for the spermatogenic process (17–
19). Thus, accurate establishment and proper functioning of
Sertoli cells is crucial for the developing germ cells to sustain the
process of spermatogenesis.
PROLIFERATION AND MATURATION OF
SERTOLI CELLS

The proper proliferation of Sertoli cells takes place during their
immature period and can be mediated by specific factors (20, 21).
The proliferative phase of Sertoli cells varies between species and
two periods of Sertoli cells proliferation (one during fetal or
neonatal period and other before pubertal period) are generally
observed in various species (4, 6). Furthermore, marked
variations exist between mature and immature Sertoli cells
especially in terms of morphological and biochemical aspects.
Generally, immature Sertoli cells reside on the basement and
possess cytoplasmic projections which fill up the space of
seminiferous cords (20, 22). In addition to immature Sertoli
cells, seminiferous tubules also contain peritubular and germ
stem cells which give solid appearance with the absence of lumen
(23). After puberty, the Sertoli cells start to elongate and BTB
begins to establish (8). Finally, Sertoli cells switch from their
immature stage to mature phase and their proliferative state is
stopped (6). At this stage, mature Sertoli cells represent radical
changes within their morphology and functions. Further changes
occurred in the nucleus and nucleoli become large in size along
with the completion of tight junction which makes the fluid filled
lumen space. The whole process of Sertoli cell proliferation and
maturation is regulated under strict control and any impairment
in the process of Sertoli cell development or proliferation can
causes pathological events which may lead to the reduction of
sperm count and semen quality (6, 20, 24–26).

Sertoli cells can serve as the organizing center for testis
differentiation and signalings from Sertoli cells also regulate
the differentiation events of testicular cord formation and testis
organogenesis (5, 27). The Sertoli cells also provide a means of
canalizing gonadal fate to coordinate testis development (5).
Interestingly, Sertoli cell fate, once specified, is not permanent
but instead needs to be constantly reinforced (3, 5).

Testicular development and spermatogenesis are influenced by
various hormones which are generally mediated by the
hypothalamus–pituitary–gonad (HPG) axis (14, 27) (Figure 1).
HPG axis establishes a connection between brain and testes (28,
29). The gonadotropin leuitinizing hormone (LH) and follicle
stimulating hormone (FSH) are secreted by adenohypophysis
which are considered to be the important regulators of testicular
function (30). It has been demonstrated that FSH mainly controls
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the proliferation of Sertoli cells while LH regulates testosterone
production (14, 27, 31). Thus, the pre-pubertal decrease of LH and
subsequent FSH secretion tends to cause a disturbance in the
pulsatile release of gonadotropin-releasing hormone (GnRH). This
hypothalamic-releasing agent provides the main push to the
gonadotropin-secreting cells of the anterior pituitary gland (32).
What is more, the HPG axis also works in association with local
endocrine system to mechanistically regulate the complete process
of Sertoli cell maturation and testis development (30). Paracrine
system intercedes with various types of cells including germ cells,
peritubular myoid cells and Leydig cells. Thus, proper hormone
levels and their regulation are necessary for these complex
processes which further ensure the accurate and smooth
development of Sertoli cells to support spermatogenic process.

Sex Hormones in Sertoli Cell Development
and Proliferation
The complex process of reproduction is generally regulated by
various factors including autocrine, paracrine, juxtracrine and
endocrine environment within the gonads (33). Though these
processes are well inter-connected, the major function is
performed by sex hormones such as leuitinizing hormone,
follicle stimulating hormone and prolactin that orchestrate and
coordinate sexual development, sexuality and reproduction (34–36).
Sex hormones are also playing key roles in development and
maturation of Sertoli cells by modulating either Sertoli cell
metabolism or influencing growth signaling pathways (14, 27, 31,
35–38). These hormones also create adequate ionic environment in
Sertoli cells which is required for germ cell development. In this
review, we have discussed the role of reproductive hormones in
association with Sertoli cell development, proliferation and
maturation (Figure 2).

Follicle Stimulating Hormone (FSH)
FSH plays a crucial role in fertility as it influences the proliferation
of Sertoli cells during perinatal life and also stimulates the
production of Sertoli cell derived factors that are required for
the development of germ cells and testes (39). FSH, LH, thyroid-
stimulating hormone (TSH) and chorionic gonadotropin (hCG),
belong to pituitary glycoprotein hormone family and these
hormones are known to perform important function during
Sertoli cell development, thus, directly or indirectly influencing
male reproductive health. These hormones are usually existed in
the form of a heterodimer which consists of a a-subunit that has
the ability to associate with b-subunit (40).

The mechanism of action in which FSH binds and stimulates
membrane receptor belonging to the G protein-coupled receptor
(GPCR) superfamily (41). It was noted that FSH receptor (FSHR)
presents tissue specificity as it is majorly expressed in granulosa
cells (female) and Sertoli cells (male) (42). Furthermore, FSHR has
the capability to subordinate with other type of G proteins
including Gai to initiate signaling cascade events that modulate
Sertoli cell function. Impaired secretion of FSH due to
homozygous mutation in the gene encoding b-subunit leads to
bilateral small and soft testicles, androgen deficiency, elevated level
of LH in serum, low level of testosterone, as well as azoospermia in
July 2021 | Volume 12 | Article 648141
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FIGURE 1 | Flow chart description the control of hypothalamus–pituitary–testis axis on Sertoli cell proliferation. The hypothalamic GnRH modulates the biosynthesis
and secretion of pituitary hormones i.e., LH and FSH. LH induces secretion of testosterone in Leydig cells and is involved in the late Sertoli cell proliferation period,
followed by negative feedback reducing GnRH and LH production. FSH primarily stimulates the seminiferous tubules to form steroid hormones such as inhibin and
further sustain the process of spermatogenesis. Steroid hormones i.e., testosterone and inhibin exert negative feedback effects on GnRH.
FIGURE 2 | Flow chart diagram representing the factors/pathways involved in Sertoli cell development and proliferation. This figure summarized the role of sex
hormones, hormones other than sex hormones and non-hormonal pathways that have been implicated in Sertoli cell development.
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human (43, 44). Furthermore, homozygous FSHR mutations lead
to male infertility in few cases, while the A189V FSHRmutation in
males is linked with subfertility but not azoospermia (45).
Interestingly, Fshr knockout mice still had sperm production
albeit sperm reduction was observed (46–48).

It is a well-known fact that FSH is the factor necessary for Sertoli
cell mitogen which stimulates the expression of various Sertoli cell
markers such as c-Myc, CyclinA2, Cyclin D1, and proliferating cell
nuclear antigen (PCNA) (39, 49). Moreover, it has been described
that FSH level and FSHR expression become stable after puberty,
however, a change has been observed in signaling pathways
triggered by FSH during transition of Sertoli cells from
proliferation to differentiation stage (50). Consistently, some
pathways such as FSH-mediated ERK activation and calcium
uptake are exclusively activated in immature Sertoli cells during
proliferative phase. The opposite action of FSH in immature and
mature Sertoli cells is related to the cAMPkinetics (51). Itwas found
that cAMP level was low in immature rat Sertoli cells. On the other
hand, higher basal concentration of cAMPwas observed in 20 days
old Sertoli cells along with almost 4-fold increased activity of
phosphodiesterase and completely abolished in older rat Sertoli
cells (52–55). Hence, it is assumed that diverse function of Sertoli
cells in response to FSH might be responsible for robust onset of
germcell differentiationduringprepubertal testicularmaturation in
rats.What ismore,Gas andRic8b, which activate adenylate cyclase
for supplementing cAMP production and gene transcription, can
also cause constrained FSH action during infancy in primates (56).
Thus, the FSH action on Sertoli cell development andmaturation is
complicatedand it is still difficult to investigate the completearrayof
signaling events in vivo.

In fact, it is hard to differentiate the overlap signaling pathways
in vivo that are triggered during Sertoli cell proliferation and
maturation. Most of the studies are conducted in vitro and these
studies have demonstrated some of the major signaling pathways
that are stimulated by FSH. In this regard, a study described that
FSH binds with its receptor (FSHR) to form Ga protein, which is
further dissociated into two heteromeric molecules, Ga-subunit
and Gb/g unit. This dissociation further stimulates a cascade
signaling mechanism by activating mitogen-activated protein
kinase (MAPK), or phosphoinositide 3-kinase (PI3K)/protein
kinase B (PKB) and adenylate cyclase/cyclic adenosine
monophosphate (cAMP)/protein kinase A (PKA) which cause a
change of Sertoli cell membrane potential and calcium influx.
During this process, each subunit of FSH heterodimer protein is
destined to perform specific function such as Ga subunit is
responsible for the activation of adenylate cyclase which further
initiates the formation of cAMP and phosphorylation of PKA (57,
58). Furthermore, PKA activates structural proteins, transcription
factors and enzymes which trigger diverse biological processes
with varying effects on Sertoli cells (37). More specifically, FSH has
biphasic effects on membrane potential of immature rat Sertoli
cells, which are manifested by membrane hyperpolarization (59).

FSH was also found to stimulate cAMP/PKA which
intercedes various protein phosphorylation to trigger calcium
channels and their regulators. But the complete scenario of FSH
stimulation of cAMP/PKA and subsequent voltage gated calcium
Frontiers in Endocrinology | www.frontiersin.org 4
channels (VDCC) modulation is still not clear. Previous reports
described that PKA system phosphorylates a1-subunit of the
VDCC resulting in calcium potentiation (60, 61). However, up
till now, no research has been conducted to investigate this
mechanism in Sertoli cells. The addition of PKA and adenylate
cyclase inhibitors [MDL, (Bu)2cAMP and staurosporine] in
cultured Sertoli cells can partially impede FSH mediated
calcium uptake, indicating involvement of other mechanisms
in calcium influx during Sertoli cell proliferation (62). Further
evidence showed that Sertoli cell proliferation is not only depend
upon AC/cAMP/PKA pathway, some alternative mechanisms
also exist, such as FSH-mediated dissociation of the Gai-GGb/g
heterodimer which causes calcium influx through L-type VDCC
and [14C]-MeAIB transport system (63, 64). Moreover, FSH has
the ability to transport small amino acids through activation of
system A (which is basically designed for the transport of neutral
amino acids with small side chains such as alanine, serine and
glutamine). System A activation by FSH can provide nitrogen
from alanine and other amino acids for biosynthesis of proteins
and nucleotides which are essential for cellular growth (65, 66).
Similarly, alanine is converted into pyruvate and is used as
energy substrate by Sertoli cells. The presence of this
alternative mechanism of Sertoli cell proliferation has been
validated by inhibition of [14C]-MeAIB transport system (67).
FSH activates PI3K downstream target, PKB, which further
stimulates enhanced uptake of glucose, calcium and small
amino acids in cultured Sertoli cells (68). The active PI3K/AKT
signaling pathway is required to stimulate the actions of FSH,
whereas an active ERK/MAPK pathway can inhibit the expression
of aromatase (such as Cyp19a1) (69). Altogether, these pathways
are essential for proliferation and differentiation of immature
Sertoli cells that pave the way for successful spermatogenesis
(70). Taking consideration of all these studies, a comprehensive
diagram explaining the role of FSH and other factors in Sertoli cell
proliferation can be proposed (27) (Figure 3).

Androgens
Cessation of proliferative phase of Sertoli cells is mediated by
changes in gene expression and establishment of BTB and finally
Sertoli cells become able to sustain developing germ cells. Thus, it is
imperative to investigate the factors thatare involved in transitionof
Sertoli cells from proliferation to maturation phase. In this regard,
some studies have demonstrated that androgens and their
derivative products are key mediators for Sertoli cell proliferative
phase cessation in diverse species (73, 74). In fact, androgens play
important functions that reach far beyond the reproductiveprocess,
for example 5a-dihydrotestosterone (DHT) regulates glucose
consumption and lactate production in cultured rat Sertoli cells
(35, 75). Similarly, it is also reported that long time treatment of
DHT in cultured human Sertoli cells can cause decrease expression
of lactate dehydrogenase A and monocarboxylate transporter 4
(MCT4) levels (76).

The function of androgens is intensively investigated in terms
of fertility and spermatogenesis while its role in Sertoli cell
maturation and development generally remains elusive, instead
of knowing that high amounts of androgens is produced by
July 2021 | Volume 12 | Article 648141
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Leydig cells in the form of testosterone. The dynamic level of
testosterone is observed during different developmental stages of
organism such as its concentration increases at the end of fetal
life, and starts to decrease from birth until puberty, and then
increases again (77, 78). Testosterone performs its function
through classical and non-classical mechanism. Non-genomic
signaling of testosterone can activate gene transcription through
CREB mediated pathway (79, 80). Furthermore, zinc transporter
ZIP9 subfamily protein that is localized on the plasma membrane
also has ability to mediate testosterone level (81).

Testosterone can also function in a non-classical pathway
through the androgen receptor to rapidly activate kinases. For
example, by increasing testosterone levels, the MAP kinase
cascade is rapidly activated in Sertoli cells. An inhibitor of non-
classical testosterone signalingblockedmeiosis inpubertalmice and
caused germcell loss in adultmouse testes, while a classical pathway
inhibitor caused the premature release of immature germ cells.
Thus, classical and nonclassical testosterone signaling have
overlapping and distinct functions that are required for the
spermatogenesis and male fertility. Furthermore, some findings
suggested that the non-classical testosterone signaling can act via
Src andERKkinases to facilitate the adhesion of germcells to Sertoli
cells (82, 83). On the other hand, the non-classical signaling of
Frontiers in Endocrinology | www.frontiersin.org 5
androgens alter the cellular process within seconds tominutes (84).
This system can increase calcium influx by activation of
phospholipase C which causes hydrolysis of phosphatidylinositol
4,5-biphosphate (PIP2) (85). The absence of PIP2 decreases
negative charges on membranes and causes closing of K+ ATP
channels and opening of theVDCC,which results in calcium influx
(86). Similarly, the calcium influx stirred by testosterone may be
involved in several other biological processes such as cytoskeleton
rearrangement, gene transcription and cell proliferation (27, 42).
Thus, it is believed that non-classical action of androgens is more
closely related to Sertoli cell maturation and spermatogenesis.

Studies that in vivo treatment of testosterone caused reduced
incorporation of [H3] thymidine by Sertoli cells in some species
suggesting that testosterone can inhibit the proliferation of Sertoli
cells (35, 87). FurtherworkbyBuzzard andcolleaguesdisplayed that
the addition of testosterone in cultured Sertoli cells leads to strong
inhibition of proliferation as well as increased expression of cell
cycle inhibitor markers such as p27Kip1 and p21Cip1, while it also
induces the enhanced expression of GATA-1 which is a marker for
Sertoli cell differentiation (88). By crossing hypogonadal (hpg)mice
that lack gonadotrophins and intratesticular androgen with mice
lacking ubiquitous AR (ARKO) or specifically in Sertoli cells
(SCARKO), O’Shaughnessy et al. found that dihydrotestosterone
FIGURE 3 | FSH and testosterone signaling pathways in Sertoli cell proliferation. Initially FSH binding to the FSH receptor causes receptor coupled G proteins to activate
adenylate cyclase (AC) and increase intracellular cAMP levels. Multiple factors can be activated by cAMP in Sertoli cells including PKA that can phosphorylate a number of
proteins and also regulate the expression and activity of numerous transcription factors including CREB. FSH also causes Ca2+ influx into Sertoli cells that is mediated by
cAMP and perhaps PKA modification of surface Ca2+ channels. Depolarization of the cell is also involved in Ca2+ influx. Elevated Ca2+ levels can activate calmodulin and
CaM kinases that have multiple potential downstream effects including the phosphorylation of CREB. During puberty, FSH activates the MAP kinase cascade and ERK
kinase in Sertoli cells most likely via cAMP interactions with guanine nucleotide exchange factors (GEFs) and activation of Ras-like G proteins. ERK is capable of activating
transcription factors including SRF, c-jun and CREB. FSH and cAMP likely act through GEFs to activate PI3-K and then phosphoinositide dependent protein kinase
(PDK1) and PKB in Sertoli cells. FSH also mediates the induction of PLA2 and the subsequent release of arachadonic acid (71, 72).
July 2021 | Volume 12 | Article 648141
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has no effect on germ cell numbers in hpgSCARKO and hpgARKO
mice, while testosterone increased germ cell numbers in
hpgSCARKO and hpgARKO mice, and this was associated with
stimulation of FSH release (89). Thus, androgen stimulation of
spermatogenesis requiresdirect androgenactionon the Sertoli cells.
However, some studies on mouse model demonstrated
controversial results related to androgens involvement in Sertoli
cell proliferation. For example,Tfmmutantmice lacking functional
androgen receptor andARknockoutmice displayed reduced Sertoli
cell number (90–92). But the observed phenotypes of Tfm and AR
knockout mice could not be attributed entirely to the androgen
effect onSertoli cells since androgens are also known tobeproduced
by peritubular cells. Nevertheless, specific deletion of AR in mouse
did not show any aberration in Sertoli cell number as well as the
expression of Sertoli cell maturation markers (90). These results
demonstrated that androgens may affect Sertoli cell proliferation
through an indirect way because peritubular cells secrete Activin A
which also influences Sertoli cell physiology (93–95). Furthermore,
SCAR KOmice showedminor changes which further suggests that
the effect of androgen on number of Sertoli cells is not regulated by
the direct action. Subsequently, TgSCAR (transgenic mouse with
gain of function) mice showed reduced Sertoli cell proliferation
which further lead to decreased testis size (96). Altogether, it can be
deduced that AR expression in Sertoli cells is wisely orchestrated to
avoid early maturation of Sertoli cells.

The synergistic actions of testosterone and FSH via testicular
Sertoli cells regulate male fertility (53). FSH acts through receptors
(FSHR) on the Sertoli cell to stimulate spermatogenesis while
androgens promote testis growth through receptors (AR) on the
Sertoli cells, Leydig cells and peritubular myoid cells. By
examining the effects on testis development of ablating FSHRs
(FSHRKO mice) and/or ARs ubiquitously (ARKO mice) or
specifically on the Sertoli cells (SCARKO mice), results showed
that development of most testicular parameters is more dependent
on FSH action than androgen action mediated through the Sertoli
cells prior to puberty. Post-pubertally, germ cell numbers and
spermatogenesis are dependent on FSH and androgen action
through the Sertoli cells (91). Furthermore, through the analysis
of mice lacking both FSH receptors and androgen receptors in
Sertoli cells (FSHRKO-SCARKO), Abel et al. found that FSH and
androgen act through redundant, additive, and synergistic
regulation in spermatogenesis and Sertoli cell activity (97).
Additionally, in pubertal primate (Macaca mulatta) Sertoli cells,
prolonged stimulation of testosterone significantly elevated the
expression of genes involved in FSH signaling pathway such as
FSHR, GNAS and RIC8B, and this was associated with a rise in
cAMP production. Testosterone also augmented FSH induced
expression of genes like SCF, GDNF, ABP and Transferrin. Such a
coordinated network of hormonal signaling in Sertoli cells may
facilitate the timely onset of the first spermatogenic wave in
pubertal primates and is responsible for normal spermatogenesis
(53). On the other hand, it has been reported that insufficient FSH
and androgen are associated with azoospermia in infantile primate
testes (98). Thus, it is assumed that infant primate Sertoli cells may
have insufficient number of AR and the binding ability of
testosterone to ARmight be compromised during primate infancy.
Frontiers in Endocrinology | www.frontiersin.org 6
Luteinizing Hormone
Luteinizing hormone (LH) belongs to the family of
glycoproteins, with a subunit and hormone-specific b subunit.
LH and FSH both were isolated as molecules in 1942 and these
two gonadotrophins are involved in synthesis of estradiol and
ultimately form the androgens. LH accelerates testosterone
production in Leydig cells, thus, helping in spermatogenesis by
directly impacting on Sertoli cells. Knockout mice for LH
receptor (Lhr) have no testosterone production with disrupted
spermatogenesis. This LH-dependent testosterone absence leads
to azoospermia, however, in some cases absence of LH signaling
does not disrupt the pathway fully and results in oligozoospermia
with low testosterone production (99). But knockout mice for
luteinizing hormone/choriogonadotropin receptor (Lhcgr) had
elevated levels of Wnt5a (wingless-type MMTV integration site
family member 5A) in Sertoli cells that favors cell proliferation. It
was also noted that absence of LH caused alternations in genes
associated with Sertoli cell development and proliferation
(100, 101).

Three genetically modified mouse model were generated to
study the effect of LH on Sertoli cell development by completely
or partially reducing its activity. Two distinct strategies were used
to generate these mutant models; one with LH-deficient hpg-
(hypogonadal) mice to selectively study either pituitary-
independent transgenic-(tg) FSH or ligand-independent
activated tg FSH receptor (FSHR) expression, and second
model used LH receptor (Lhr)-deficient mice in which their
gonads were isolated to examine endogenous mouse FSH effects
on gonad development. Analysis of these models showed subtle
differences in gem cell maturation between tg-hpg and Lhr-null
mouse models, indicating that the FSH cannot fully restore
Sertoli cell number in absence of LH activity (102). Thus, the
synergistic effect of both LH and FSH is important for proper
proliferation and development of Sertoli cells.

Estrogens
Estrogens are steroid pleiotropic hormones, present in ovary and
testis. These hormones act by cytosolic estrogen receptors (ERs).
Alpha (a) and beta (b) receptors are found in animals while in
fishes, ERg has been discovered as the third type receptor. ERa
and ERb are located in the cell membrane; either as homodimers
(ERa-ERa or ERb-ERb) or as heterodimers (ERa-ERb). These
hormones play their roles in production, regulation as well as
maintenance of concentration of testicular liquid (36).

A study conducted by Royer et al. indicated that estradiol
initiates the proliferation of Sertoli cells by activating classical
estrogen receptors and G protein-coupled estrogen receptor
which further induce a cascade of signaling events through
CREB activation (103). It is important to mention that
estrogen expression in testis is dynamic and varies from
postnatal to adult life. Its concentration increases from 20 days
of post-partum and continues to increase till 30 days old while
aromatase transcripts has not been detected in adult rat Sertoli
cells. However, in adult rats, aromatase expression is noted in
Leydig, pachytene spermatocytes and round spermatids (104). It
is suggested that Sertoli cells may produce estrogen in immature
July 2021 | Volume 12 | Article 648141
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animals while the source of estrogens in adult animals comes
from Leydig or germ cells (105). Hence, complete understanding
of physiological effects of estrogens is necessary to investigate its
actual function in postnatal testis development.

Studies found that ERa knockout mice or rats are infertile
while ERb knockout mice or rats have no such abnormalities,
which indicates that ERa subunit is essential for fertility and
reproduction. This function is evident in 15 days old rat Sertoli
cells in which ERa promotes cell proliferation by acting on NF-
kB (nuclear factor-kB) in P13K and ERK1/2 (extracellular signal-
regulated kinase 1/2) manner and ultimately increasing the levels
of Cyclin D1. On the other hand, ERb promotes cell cycle arrest
by interacting with 17b-estradiol (E2) (106).

Progesterone
Progesterone is a major cholesterol-derivative steroid and is
specifically involved in reproduction. The receptors of this
hormone are localized in the nucleus and cytoplasm of
spermatogenic cells, Sertoli cells and occasionally in the Leydig
cells. Structurally, two isoform receptors of this hormone exist;
namely PR-A and PR-B and these intracellular proteins belongs
to nuclear receptor superfamily of transcription factor (107).
High level of progesterone has inhibitory role in spermatogenesis
by limiting the production of Leydig cells and Sertoli cells at
developmental stage (108). The effect of progesterone was
examined by generating progesterone receptor (PR) knockout
mice. PR knockout mice displayed large testis size, increased total
sperm contents and increased number of Sertoli cells. On the
other hand, synthetic progestins such as levonorgestrel (LNG) in
combination with testosterone caused suppression of
spermatogenesis and increased germ cell apoptosis (108).

Prolactin
Prolactin is a type of polypeptide hormone that is involved in wide
range of biological functions including lactation, osmoregulation,
immune articulation and reproduction (109). Prolactin receptors
(PLR) are present onSertoli cells andprolactin through its receptors
mediates proliferation of Sertoli cells (110). Various reports reveled
its biological function in reproduction and elevated level of
prolactin leads to hypogonadism and male infertility (111). It is
highly recognized that prolactin regulates testicular function by two
ways either altering pituitary function by inducing LH and FSH
production or Leydig cells through modulation of testosterone
hormone (1). Furthermore, targetted mutation of prolactin
receptor in model organism displayed mild phenotype indicating
that prolactin has partial effects onmale reproductive health (112).
OTHER REGULATORY FACTORS
INVOLVED IN SERTOLI CELL
DEVELOPMENT AND PROLIFERATION

Besides the mentioned hormones, many other factors such as
growth factors, cytokines, xenobiotic and pharmacological agents,
have been identified and are involved in Sertoli cell development
process. Opioids, such as a-melanocyte-stimulating hormone
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(aMSH), b-endorphin and proopiomelanocortin (POMC),
mainly produced in Leydig cells, exert direct paracrine actions on
Sertoli cell proliferation (113–115). The in vitro exposure of fetal
human testis to ibuprofen does not modify the number of Sertoli
cells but decreases AMH and SOX9 expression, suggesting a role in
Sertoli cell maturation (116).

Insulin Receptor Signaling Family
The insulin receptor tyrosine kinase family consists of insulin
receptor (IR), IGF-1R and insulin related receptor (Irr). These
receptors are present in all types of cells in eutherian mammals
(117). Mice lacking IR and IGF-1R die within four days after
birth due to ketoacidosis and respiratory failure, respectively
(118). A lot of studies had investigated the function of these
hormones and new insights regarding their involvement in
reproductive system (29, 50, 117, 119–121). Recently, a study
investigated the in vivo function of IR and IGF-1R in which both
factors work in a synergistic way to regulate the Sertoli cell
number and testis size. Furthermore, the study also described
that both receptors and their downstream molecules are critical
for the development of male gonads and sexual differentiation
(122). Similarly, the insulin-related peptide hormone relaxin
(Rlx) has also been recognized to perform an essential role in
reproduction and it precipitates in the regulation of the cyclic
adenosine monophosphate and nitric oxide pathways that are
implicated in Sertoli cell proliferation (123).

It has been recognized that insulin is involved in energy
metabolism and also regulates cell proliferation and
differentiation. Generally, the insulin function is interceded by
IR through phosphorylation that further activates classical
signaling mechanism involving adaptor protein such as insulin
receptor substrate-1 (IRS-1) (28). Different studies have reported
the function of insulin in testicular development, in modulating
testicular cell function (38, 124, 125), or even influencing HPG
axis function (28, 29). Furthermore, the compromised function
of insulin is the leading cause of Diabetes Mellitus (DM) which is
usually accompanied by aberrant testosterone levels (126). Thus,
it can be deduced that insulin could regulate testosterone
secretion in human and animal models. A study demonstrated
that insulin directly influences Sertoli cell metabolism by
affecting amino acid accumulation, glucose transport and
lactate production either through the modification of glucose
transporter expression or altering important glycolytic enzyme
activity (121). Further studies indicated that cultured Sertoli cells
can cause reduced lactate production and altered caspase-
dependent apoptotic signaling (75, 127). Similarly, it has also
been reported that insulin activate calcium-dependent
membrane depolarization in immature Sertoli cells, which is
mostly induced through IGF-1R activation (120). Altogether,
these findings clearly indicate the importance of insulin function
in regulating Sertoli cell metabolism which is further manifested
by Sertoli cell proliferation.

Cytokines
Various studies reported that inflammatory cytokines are not
only produced by macrophages in response to inflammatory
signals but these cytokines are also secreted from Sertoli cells and
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appear to take part in the regulation of Sertoli cell proliferation
(1, 19). For example, interleukin-1, 6 (IL-1 and IL-6) and tumor
necrosis factor a (TNF-a) are produced by Sertoli cells and in
vitro studies demonstrated that all of these cytokines are involved
in Sertoli cell metabolism by activating the production of
transferrin. Furthermore, it was also noted that only IL-1,
neither IL-6 nor TNF-a, enhanced lactate production and
secretion during Sertoli cell proliferation (1). Notably, IL-1
activity in Sertoli cells can be specifically neutralized by IL-1a
antiserum, implying that IL-1a is the major isoform of IL-1 in
Sertoli cells (17). But the underlying pathophysiological
mechanism is still not completely understood due to the lack
of in vivo studies. Interestingly, animal model studies with
disrupted interleukin or tumor necrosis factors displayed no
obvious alterations in testicular development. Thus, the actual
function of these cytokines in relevance to Sertoli cell
development is still obscure and needs more investigations.

Thyroid Hormones
It has been described that thyroid hormones regulate lactate
production, glucose transporter type 1 mRNA levels, aromatase
activity, Sertoli cell proliferation and other processes of Sertoli cells
in various mammalian species (128–130). The involvement of
thyroid hormones in establishing the Sertoli cell population have
been extensively investigated and results indicated that thyroid
hormones can affect Sertoli cell proliferation through direct or
indirectways.Generally, indirectwayof thyroidhormoneonSertoli
cells is mediated by triiodothyronine (T3) that inhibits FSH
production and leads to reduced Sertoli cell proliferation (128).
Some studiesdemonstrated thatT3 treatmentcan reduceSertoli cell
proliferation activity, as well as Sertoli cell proliferation period and
Sertoli cell number (88, 128, 131). Similarly, it has been described
that T3 also stimulates the maturation of Sertoli cells in vitro
implying that T3 can terminates Sertoli cell proliferation and
favors the terminal maturation of Sertoli cells (132). Thyroid
hormones can halt Sertoli cell proliferation by accelerating the
accumulationof cell cycle inhibitors p27Kip1andp21Cip1 (88, 133,
134). To be noted, thyroid hormone, retinoic acid, and testosterone
share similar suppressive effects on the rate of Sertoli cell division
without any apparent additive effects (88). Another study displayed
that Connexins 43 (Cx43) could be an intermediate target of T3 in
the inhibition of Sertoli cell proliferation (135).Thus, a balance level
of thyroid hormones during early life of development is essential for
the terminal differentiation of Sertoli cells.

WNT and BMP Signaling Pathways
The vertebrate WNT (Wingless-related integration site) family
consists of 19 secreted cysteine-rich glycoproteins (136). Though
WNT signaling exerts an antagonistic effect on testis-determining
pathways in sex determination during the embryonic stage, it
promotes sperm maturation in adult epididymis (137). During
the development of seminiferous tubules, Wnt/b-catenin can play
an important role in the differentiation of Sertoli cells. However,
these findings appear to be inconsistent about the influence ofWnt/
b-catenin signaling. For example, several studieshave shown thatb-
catenin deletion does not induce aberration in Sertoli cells, but b-
catenin stabilization results in immaturity, inadequate
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differentiation and irregular cellular interaction in Sertoli cells, as
well as reduced proliferation and increased apoptosis of germ cells
(138–141). Similarfindings have also beenobservedwhen theWnt/
b-catenin pathway is activated in APC (adenomatous polyposis
coli-conditional) knockout mice (142). Therefore, the suppression
Wnt/b-catenin pathway is required to sustain normal maturation
and proliferation of Sertoli cells (143).

Bone morphogenetic proteins (BMPs) and transforming
growth factor-beta superfamily (TGF-b) also have pivotal roles
in reproductive biology. Their roles have been established by
various in vivo and in vitro studies. BMP2, BMP4, BMP8a and
BMP8b are involved in specification of primordial germ cell
(PGC), acceleration of spermatogonial proliferation as well as are
responsible for adult spermatogenesis in vivo (144).

A study found thatBmp4wasexpressed inpostnatal days 4 and7
isolated Sertoli cells implying that Bmp4 perform important role in
earlypostnatal testis development. In testes,multipleBMPgenes are
expressed and BMP7 and BMP8 a/b transcripts were specifically
found in germ cells at various stages of differentiation (145, 146),
thus indicating that these molecules may mediate paracrine
interactions which are secreted by Sertoli cells. Furthermore, mice
lacking BMP8b had smaller testes, similar type of phenotype was
also observed in BMP8a null mice (147, 148). A recent study
explored the role of Sclerostin domain containing 1 protein
(Sostdc1) in modulating the Sertoli cell gene expression and its
possible outcomes on mouse spermatogenesis. Interestingly,
Pradhan et al. found that Sostdc1 is a negative regulator of
spermatogenesis, and found that down regulation of Sostdc1
during puberty is necessary for quantitatively and qualitatively
normal spermatogenesis (149). Thus, it is argued that Sostdc1 is a
dual BMP/Wnt regulator and plays indirect role in mouse
spermatogenesis by influencing Sertoli cells.

Activin and Inhibin
Activins are dimeric glycoproteins, consisting of b subunits and
members of TGF-b superfamily. Activins mediate FSH
production by a cascade of interacting proteins event (150).
Their ability to bind with type II receptor causes phosphorylation
of type I receptor, starting a series of phosphorylation of SMAD
proteins (SMAD2, SMAD3, SMAD4) which ultimately triggers
the transcription of FSHb encoding gene (150, 151). On the other
hand, inhibins and follistatin are considered as antagonists of
activins (152). They are also glycoproteins but structurally
different from activins. Inhibins compete at binding sites for
activins which ultimately affects its activation. Thus, activins,
inhibins and follistatin collectively form a complex autocrine
network that plays a vital role in fertility. The interruptions of
these can cause lower testis size, progressive sterility, delayed
fertility as well as other fertility-related issues due to defective
Sertoli cell development and proliferation (153, 154).

Retinoic Acid
Retinoic acid (biologically active component of vitamin A) is a
major factor that control the complex process of spermatogenesis
and is also important driven force of Sertoli cell development
(155). RA induce the initiation of spermatogonia differentiation
in the mammals and its activity is generally governed by FSH
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(156). The functional role of RA was verified by generating
vitamin A-deficient (VAD) mice that were infertile due to
spermatogonia differentiation arrest at the Aaligned stage and
treating them with RA results in the complete recovery of
spermatogenesis (157).
SUMMARY

Sex hormonal regulation of Sertoli cell proliferation,
differentiation and maturation is an intricate process which
requires synergistic effects of these hormones along with the
regulatory factors including IGF-1R, insulin, thyroid hormones
and cytokines. All these hormones and factors have been
implicated in various stages of Sertoli cell development and
their balanced action of mechanism is mandatory for ensuring
accurate Sertoli cell number, establishment of BTB and
maintaining spermatogenesis. Although, recent in vivo studies
explained the involvement of FSH, androgen, estrogen and IGF-
1R to be essential for Sertoli cell development, still the complete
scenario of this complex process is unresolved. Thus, it is
suggested that there are some additional factors needs to be
elucidated in future. Similarly, in vivo description of some factors
such as TGF-a family members, TGF-b, TNF-a, and IL-1 may
shed light on complex process of Sertoli cell proliferation and
Frontiers in Endocrinology | www.frontiersin.org 9
testis development. Subsequently, the detailed mechanism of
action of these hormones might give us insights into a better
comprehension of hormonal regulation in Sertoli cell
proliferation, as well as provide possible therapeutic molecules
for human infertility.
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