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Abstract. Glycation is the non-enzymatic reaction between reactive dicarbonyls and amino groups, and gives rise to a
variety of different reaction products known as advanced glycation end products (AGEs). Accumulation of AGEs on proteins
is inevitable, and is associated with the aging process. Importantly, glycation is highly relevant in diabetic patients that
experience periods of hyperglycemia. AGEs also play an important role in neurodegenerative diseases including Alzheimer’s
(AD) and Parkinson’s disease (PD). Huntington’s disease (HD) is a hereditary neurodegenerative disease caused by an
expansion of a CAG repeat in the huntingtin gene. The resulting expanded polyglutamine stretch in the huntingtin (HTT)
protein induces its misfolding and aggregation, leading to neuronal dysfunction and death. HD patients exhibit chorea and
psychiatric disturbances, along with abnormalities in glucose and energy homeostasis. Interestingly, an increased prevalence
of diabetes mellitus has been reported in HD and in other CAG triplet repeat disorders. However, the mechanisms underlying
the connection between glycation and HD progression remain unclear. In this review, we explore the possible connection
between glycation and proteostasis imbalances in HD, and posit that it may contribute to disease progression, possibly by
accelerating protein aggregation and deposition. Finally, we review therapeutic interventions that might be able to alleviate
the negative impact of glycation in HD.
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INTRODUCTION

The progressive age-associated accumulation of
advanced glycation end products (AGEs) results
in structural and functional alterations in proteins,
possibly increasing the risk of impairments in
proteostasis and, thereby, increased risk for the devel-
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opment of age-associated disorders [1]. However,
whether AGEs are a cause or consequence of aging
and age-related diseases is still a matter of debate. The
controversy is strengthened by the growing number
of known AGE targets and their gradual accumulation
during life. The study of glycation has been impaired
due to limitations in models and in tools and sen-
sitive techniques to quantify and to detect AGEs in
biological samples.

The formation of AGEs is elevated in individuals
with altered carbohydrate metabolism [2]. Sporadic
or hereditary neurodegenerative diseases, such as
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Alzheimer’s disease (AD), Parkinson’s disease (PD),
or Friedreich’s ataxia (FRDA), are often associated
with impairments in carbohydrate metabolism, such
as those caused by diabetes mellitus [3]. In partic-
ular, increased prevalence of diabetes mellitus has
been reported in Huntington’s disease (HD) patients
and in patients affected by other CAG-triplet repeat
disorders [4–6]. The patients often display increased
carbohydrate intake [7], hyperinsulinemia and insulin
resistance [8, 9].However, the impact of AGE forma-
tion in disease progression remains largely unknown.

In this review, we explore the putative mechanis-
tic links between AGE formation and progression of
HD. Furthermore, we discuss several drugs known
for targeting different aspects of the glycation pro-
cess, and posit they may prove useful for mitigating
detrimental effects of AGEs in HD.

HUNTINGTON’S DISEASE: GENETICS
AND PATHOBIOLOGY

HD is a progressive neurodegenerative disor-
der normally manifesting during adulthood [10].
Psychiatric manifestations, such as personality and
behavioural changes, often precede the onset of motor
dysfunction by several years [11–13]. The motor
disturbances include chorea and dystonia, and are
followed by cognitive decline. Furthermore, degener-
ation of the striatum (caudate nucleus and putamen),
and a general shrinkage of the brain are observed
in post mortem studies [14]. Loss of cortical mass is
another early event in the pathology progression [15].
Patients recurrently show progressive weight loss and
muscle deterioration [16–18], features that are also
characteristic in several transgenic mouse models of
the disease [19–22].

The disease is caused by an abnormal expansion
of a CAG repeat sequence in exon 1 of the hunt-
ingtin gene (HTT) [23–25]. This is translated into
an elongated polyglutamine (polyQ) tract in the N-
terminal region of the huntingtin (HTT) protein [24,
26]. The CAG repeat length correlates with both age
of onset and severity of the disease. In non-affected
individuals, the CAG repeat length is between 9–35.
More than 35 repeats causes disease, although incom-
plete penetrance has been reported for CAG repeats
between 36–39. Tracts above 60 result in juvenile
onset HD [24]. Importantly, and in contrast to the vast
majority of AD and PD cases, genetic testing enables
the identification of individuals that will develop HD
decades prior to the onset of motor symptoms.

Long polyglutamine tracts lead to the accumu-
lation of intranuclear and cytoplasmic mutant HTT
aggregates [27–29], sequestration of glutamine-rich
proteins [28, 30], and cell damage in the striatum
and cerebral cortex [31–33]. However, hypothalamic
atrophy and cell death can also occur [34–37]. Since
the discovery of the HTT gene, strong efforts have
been undertaken to decipher the function of wild-
type HTT. The protein expressed in most tissues,
but its physiological function is still unclear. Intra-
cellularly, HTT is associated with various organelles
as Golgi complex, endoplasmic reticulum (ER) and
nucleus [38–41]. Previous studies suggest that HTT
interacts with clathrin-coated vesicles, endosomal
compartments and microtubules in the neurites and at
synapses [42]. Furthermore, wild-type HTT interacts
with several partners [24, 43] and it may be involved
in transcriptional regulation, and in mitochondrial
function [24, 25, 44, 45].

The molecular underpinnings of disease are also
still unclear, but it is likely that both a loss of protein
function and a toxic gain of function are involved [25,
46, 47]. The age of HD onset correlates inversely with
the CAG repeats length. However, repeat length only
accounts for approximately 50% of variation in age of
onset [48]. Both genetic modifiers and life-style play
a role in the observed variability of the initial clini-
cal symptoms, strengthening the need for identifying
additional modifiers of pathology [49–51].

Several studies showed a high prevalence of glu-
cose intolerance and diabetes mellitus in patients with
neurodegenerative disorders, such as AD, PD, FRDA,
and also in HD [3, 6, 52]. Peripheral abnormalities
in glucose metabolism might considerably affect the
quality of life of HD patients and the neurodegener-
ative process [53, 54], possibly due to hypothalamic
dysfunction and peripheral defects in glucose and
fat metabolism [16, 52, 54]. In addition, an altered
glucose metabolism might accelerate glycation reac-
tions, a relevant non-enzymatic process that interferes
with protein folding and proteostasis (Fig. 1).

DIABETES MELLITUS: A CULPRIT IN
NEURODEGENERATION

Increased levels of AGEs and reactive dicarbonyls
are a hallmark of diabetic patients. Due to the asso-
ciation between HD and diabetes, it is important
to understand the relevance of AGEs in the con-
text of HD [2, 55]. Diabetes mellitus is a metabolic
disorder characterized by elevated glucose levels
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Fig. 1. Glycation in Huntington’s disease. The metabolic disease diabetes mellitus results from either the inability of the pancreas to produce
sufficient insulin or from cell failure to respond to insulin. Abnormalities in glucose homeostasis and higher prevalence of diabetes mellitus,
have been reported in HD patients. During hyperglycemic conditions, glucose transporters increase intracerebral glucose levels, leading
increased glycation. AGEs (advanced glycation end products) can be produced intracellularly by multiple pathways: Methylglyoxal (MGO)-
generated AGEs are particularly relevant in neuronal cells. In HD, an abnormal elongation of CAG repeats in the huntingtin gene (HTT)
results in the production of mutant huntingtin protein with an extended polyglutamine tract (mHTT), causing its aggregation. The cytoplasmic
mHTT aggregates impair autophagic and proteasomal pathways. Additionally, glycation can further contribute to the aggregation of mHTT,
potentiating deficits in proteostasis pathways and, ultimately, leading to cell death.

in the blood (hyperglycemia). It is caused either
by the inability of the pancreas to produce enough
insulin (type I) or due to the body cells being
insensitive to circulating insulin (type II). Diabetes
mellitus also causes several complications in the
central nervous system (CNS): both hyperglycemia
and insulin-deficiency contribute to neuronal dys-
function. Increased sugar levels lead to a number
of metabolic changes including oxidative stress,
antioxidant depletion, neuro-inflammation, electro-
physiological deficits and hormonal responses [56].
Importantly, the levels of methylglyoxal (MGO),
a potent glycating agent, are elevated in diabetic

patients, most likely due to hyperglycemia [57]. Con-
sistently, higher AGE levels were detected in diabetic
patients and in animal models of diabetes [58, 59].

Glucose is the preferred energy source of the
brain and, since neurons can barely store glucose
intracellularly, a continuous glucose supply from the
blood is critical for normal brain function [60]. The
glucose transporters GLUT1 and GLUT3 that are
mainly expressed in blood-brain barrier and neurons,
respectively, are insulin-independent. Thus, although
the insulin dependent glucose transporter GLUT4 is
expressed in some brain areas, it is thought that most
glucose uptake in the brain is insulin-independent
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[60]. In line with this, several studies suggest that
the intracerebral glucose solely depends on plasma
glucose levels in murine models [61–63]. Diabetic
animal models have brain glucose levels that are
approximately 4-fold higher than those in plasma.
Even those diabetes patients that are stabilised on
proper medication frequently experience hypo- and
hyperglycemic episodes [64]. Magnetic resonance
spectroscopy in diabetic patients revealed that the
glucose levels in the brain’s interstitial fluid follow
those in the blood plasma, albeit in a dampened and
delayed manner [65]. Furthermore, diabetic and non-
diseased individuals display altered brain glucose
responses to changes in the blood plasma glucose
[65]. Whether the transport capacities of the blood-
brain barrier adapt to acute or chronic hyperglycemia
to prevent high glucose levels in the brain is still
debated [66]. In summary, chronic or temporary
hyper- and hypoglycemia in the central nervous sys-
tem are important feature in diabetes, and their impact
should be carefully analysed in the context of neu-
rodegenerative disorders.

THE MAILLARD REACTION: INITIATORS,
MECHANISM AND PROPAGATORS

Glycation, also referred to as non-enzymatic gly-
cosylation, is the non-enzymatic reaction of sugars
or other reducing carbohydrates with amino acids or
nucleotides. In contrast, enzymatic glycosylation is
a post translational modification (PTM) that involves
the active attachment of sugar molecules at defined
sites and, usually, takes place in the ER and Golgi.
Glycation reactions were first described in 1912 in
the context of food processing by Louis Camille
Maillard [67]. The reaction starts with the conden-
sation of a carbonyl group with the amino or thiol
group of amino acids, nucleic acids or amino lipids,
leading to the formation of early glycation products
including Schiff Base and Amadori products. Initia-
tors of the reactions include glucose, fructose and
other sugars, as well as reactive dicarbonyls – such
as glyoxal and MGO [68]. MGO is a byproduct of
glycolysis and, due to its strong glycation ability, is
often used to model glycation reactions [69]. In the
second step, intermediate compounds are rearranged
and break in one of various chemical pathways to
form AGEs [68, 70]. It is important to emphasize
that glycation is not a single reaction but, instead, a
complex network of related reactions that may begin
with different initiators and can result in diverse prod-

ucts [71]. Abundant AGEs include the MGO-derived
carboxyethyl lysine (CEL), MGO hydroimidazolone,
and glyoxal-derived carboxymethyl lysine (CML).
Altogether, AGEs are a heterogenous group of com-
pounds: they can occur bound to proteins or exist
in a free state. Many AGEs are intrinsically fluo-
rescent and cause cross links between proteins [70,
72, 73]. Furthermore, AGEs are stable compounds
that accumulate during aging [1]. Thus, it is not
surprising that cells developed mechanisms to detox-
ify reactive carbonyls. Glyoxalases are evolutionary
conserved enzymes that catabolize dicarbonyls to
non-toxic metabolites in glutathione-dependent reac-
tions [74]. Single nucleotide polymorphisms (SNPs)
in glyoxalases increase the incidence for the dia-
betic complications nephropathy and retinopathy
[75]. Furthermore, dicarbonyls can be catabolized
via nicotinamide adenine dinucleotide phosphate
(NAPDH)-dependent aldo-keto reductases [76].

A number of studies reported age-associated accu-
mulation of AGEs on crystallins, collagens and other
long-lived proteins [1, 2, 77–79]. Whether increased
AGE levels are a cause or a consequence the aging
process remains a matter of debate [80]. Interestingly,
higher levels of CML, a highly abundant AGE, in
adults older than 65, were found to be associated with
a higher risk of all-cause or cardiovascular disease
mortality [81]. In addition, studies in Drosophilla
melanogaster and Caenorhabditis elegans showed
that overexpression of glyoxalases increase lifespan,
suggesting that glycation reactions contribute to the
aging process [82–84].

The receptor for advanced glycation end products
(RAGE), is a major pro-inflammatory AGEs receptor
and is involved in several neurodegenerative diseases
[85, 86]. RAGE ligands in the CNS include CML,
beta-amyloid (A�), S100 calcium-binding protein B
(S100B) and High Mobility Group Box 1 [87–90].
Upon ligand binding, RAGE signals via the nuclear
factor kappa-light-chain-enhancer of activated B cells
(NF-kB), phosphatidylinositol-3 kinase (PI3K) and
mitogen-activated protein kinases (MAPKs) [91, 92].

In addition, AGEs are known to play a role in the
context of several neurodegenerative diseases includ-
ing AD, PD and diabetic complications [2, 93–95].
The mechanisms connecting AGE formation and
these disorders include inflammation, dopamine gly-
cation, and decreased degradation of the aggregated
and cross-linked proteins.

The loss of dopaminergic cells in the substantia
nigra of PD patients is a hallmark of the disease.
Interestingly, the catecholamine dopamine itself can
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undergo several chemical transformations that pro-
duce toxic molecules. MGO-mediated modification
of dopamine leads to the formation of 1-acetyl-
6, 7- dihydroxyl-1, 2, 3, 4-tetrahydroisoquinoline
(ADTIQ), a toxin that is also present in the
brains of PD patients [96]. Enzymatic oxidation
of dopamine by monoamine oxidase produces 3,4-
dihydrox-yphenylacetaldehyde (DOPAL), a highly
reactive molecule that leads to the oligomerization
of alpha-synuclein (aSyn), a central player in the
pathology of PD and other neurodegenerative disor-
ders known as synucleinopathies [97]. Furthermore,
glycation increases aSyn oligomerization in vitro and
glycated aSyn is present in postmortem tissue from
individuals with PD and Lewy body disease [84, 98,
99].

Interestingly, several studies suggested that dereg-
ulation of glucose metabolism, as in diabetes
mellitus, is associated with an increased risk for PD,
and with more severe PD features [93]. In AD, AGEs
promote aggregation and cross-linking of tau and
A�. These patients also show higher levels of AGEs
in amyloid plaques [100–103]. In addition, levels
of amyloid precursor protein (APP) are upregulated
through glycation, which ultimately also increases
A� levels [104]. In summary, intensified research
on glycation reaction is highlighting its impor-
tance in the pathology of several neurodegenerative
diseases.

GLYCATION AS A POTENTIAL PROMOTER
OF HD PATHOLOGY

In contrast to AD or PD, HD is dominantly
inherited. Thus, the question is not whether altered
carbohydrate metabolism and increased AGE forma-
tion increase the risk to develop HD. Instead, one
may hypothesize that factors that potentiate glyca-
tion, such as alterations in carbohydrate metabolism
and increased AGE formation, might modify the age
of onset and progression of HD (Fig. 1). Despite
many advances on the investigation of the roles of
AGEs in neurodegenerative diseases, the contribu-
tion of AGE formation to HD pathogenesis remain
elusive. However, although several studies suggest
that altered glucose metabolism may be an important
feature of HD, others found no correlation, and this
controversy dates back to the 1970 s.

Interestingly, epidemiologic studies reported an
increased incidence of diabetes in HD patients [5,
105]. A study on a Chinese family over five gener-

ations reported a drastically increased incidence of
diabetes mellitus among family members affected
by HD [106]. In addition, decreased insulin sen-
sitivity and increased insulin levels were found in
non-diabetic HD patients [107].

In a proteomic analysis of HD versus control
brains, three proteins involved in glycolysis were
found to be differentially expressed [108]. How-
ever, other studies found no altered carbohydrate
metabolism or increased diabetes mellitus incidence
among HD patients [109–115]. Therefore, additional
epidemiologic studies, preferably longitudinal, on
well-characterized cohorts are needed in order to fur-
ther establish a connection between HD and altered
glucose metabolism or diabetes mellitus.

Studies in animal models suggest that HD affects
the pancreatic function. The R6/2 mouse model of
HD, which expresses exon 1 of the HTT gene contain-
ing 150 CAG repeats, develops insulin-responsive
diabetes [116]. In addition, increased glucose plasma
levels have also been observed in different models
expressing HTT with shorter polyQ repeats (82Q
and 89Q) [117, 118]. HTT inclusions were found
in the Langerhans islets in R6/2 mice [19, 119].
The pathological mechanisms causing diabetes in
these mice include decreased beta-cell replication
and insulin secretion, and reduced insulin messenger
RNA (mRNA) and protein levels [7, 19]. In con-
trast, pancreatic tissue from HD patients revealed that
insulin mRNA and protein distribution and beta-cell
area are identical in control and diseased brains [120].

As mentioned above, RAGE is involved in a variety
of cellular processes including homeostasis, inflam-
mation, neurodegeneration, development and neurite
outgrowth. Interestingly, RAGE levels are elevated
both in brains of HD patients and in mouse mod-
els [121, 122]. RAGE is expressed in medium spiny
neurons and astrocytes in the caudate nucleus and
subependymal layer of HD brains [122]. RAGE co-
localizes with CML and S100B, mainly in astrocytes
and, interestingly, its levels increase with disease
severity [123].

DJ-1, the product of the Parkinson-associated
PARK7 gene, was shown to act as a deglycase on early
glycation products of cysteines, lysines and arginines
[124, 125]. Interestingly, DJ-1 levels are elevated in
the frontal cortex of HD brain tissue, R6/2 mice,
and in cell models, and overexpression of DJ-1 pro-
tects yeast and fly HD models against HTT-induced
pathology. In contrast, in other cell models, DJ-1
overexpression leads to increased HTT aggregation
and toxicity [126].
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Atrophy of skeletal muscle is observed in HD
patients and in the R6/2 mouse model [119, 127].
The mechanisms underlying muscle wasting in HD
are unknown but may be the consequence of inclusion
body formation in muscle cells of HD patients and
mouse models [119, 128, 129]. Furthermore, skeletal
muscle gene expression changes were observed both
in mouse models and human HD [130, 131]. Inter-
estingly, the muscle expression in HD shares some
features with those induced by diabetes or fasting
[130].

In a recent study from our group, we found a corre-
lation between glycation and pathogenesis in models
of HD. Using yeast and mammalian cell models,
we found that increasing glycation increases HTT
aggregation and toxicity, and impairs HTT clearance.
Furthermore, increasing glycation causes neurotoxi-
city and impairs lifespan and development in a fly
model of HD, confirming in vivo effects [132]. In
summary, even though additional research is needed
to ultimately demonstrate the contribution of AGE
formation towards HD age of onset and progression,
several lines of evidence point to a critical role of
glycation.

TARGETING GLYCATION AS A
THERAPEUTIC APPROACH IN HD

Although no disease-modifying therapies are
available for HD [25, 133], patients often receive
standard drug treatments to alleviate some of the
symptoms of the disease [134, 135].

The association between HD and glucose
metabolism alterations has been explored as a possi-
ble target for strategies using different hypoglycemic
agents [112, 136, 137]. Compounds such as exendin-
4, resveratrol, glibenclamide, rosiglitazone, insulin
and the fusion of the glucagon-like peptide 1 with a
non-glycosylated form of human transferrin (GLP-
1Tf) were previously tested in patients and ani-
mal models [136, 138–141]. The administration of
glibenclamide, exendin-4, GLP-1Tf and resveratrol
in animal models resulted in a decrease of the glu-
cose levels in the blood. Interestingly, mice respond
to glibenclamide (which induces insulin exocytosis)
but not to rosiglitazone (which induces sensitization
to insulin) [142]. This supports the hypothesis that
diabetes mellitus in the HD mouse model may be
caused by an impairment in insulin release rather than
by insulin insensitivity. Exendin-4 was the only treat-
ment able to increase the insulin sensitivity [20, 143,

144]. Furthermore, insulin and GLP-1Tf increase
plasma insulin levels, in contrast to exendin-4 [145].
Interestingly, both exendin-4 and GLP-1Tf improve
motor coordination and life span in HD animal mod-
els. Despite the improvement in diabetes mellitus
symptoms, chronic treatment with these hypogly-
caemic agents has no effect on either the course of
diabetes or the progression of HD in mice. More
recently, administration of metformin resulted in
reduced translation of mutant HTT protein and, there-
fore, decreased the protein load in vitro and in animal
models [146]. This drug is regularly used in patients
with diabetes mellitus, and was previously tested in
another study where it increased the lifespan of mice
[147]. However, the effects on glycation pathways or
AGEs were not analysed in this study, and remain to
be investigated.

Given the evidence implicating AGEs in dia-
betes, drugs capable of detoxifying the reactive
compounds might constitute an important approach
in the treatment of diabetes and also of age-
associated neurodegenerative disorders [148–151].
Aminoguanidine, also known as Pimagedine, inhibits
AGE formation in animal models [152–154], but was
discontinued from the clinical trial in humans due
to side effects [155]. The rationale behind this clin-
ical trial is a proof of concept that inhibiting AGE
formation may be important for attenuating the seri-
ous complications of diabetes mellitus [156]. In this
context, strategies aimed at lowering MGO levels are
an additional possibility [157–159]. D-penicillamine,
aminoguanidine and metformin trap dicarbonyl com-
pounds (e.g. glyoxal and MGO) to form substituted
triazines [160]. Another strategy to lower MGO lev-
els is to stimulate the anaerobic pentose phosphate
pathway of glycolysis [158, 161]. Tenilsetam, another
dicarbonyl compound, inhibits protein cross-linking
and cell death [100, 162, 163].

Oxidative stress and neuroinflammation are addi-
tional factors known to play an important role in the
progression of the neurodegenerative process. Inter-
estingly, AGE production is significantly augmented
under oxidative stress [148, 164, 165]. Therefore,
therapies combining the use of antioxidants and pro-
tein glycation inhibitors may be a more effective
approach in neurodegenerative diseases [166–168].

Several synthetic compounds inhibit AGE for-
mation [169]. However, these compounds were
withdrawn from the clinical trials because of their
low efficacy, unsatisfactory safety, and poor pharma-
cokinetics [170, 171]. Alternatively, natural products
have been proven to be safe for human consumption
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and many plant extracts have been tested for their
anti-glycation activity [172]. Furthermore, previous
studies hypothesise that enrichment of diet in natu-
ral anti-glycating agents, as polyphenols and other
natural antioxidants, may halt the aging process and
neurological problems [173].

Finally, as described above, RAGE is as an impor-
tant subject of research [174], and in vitro and in vivo
studies have demonstrated the potential of RAGE as
a therapeutic target in neurodegeneration [150, 151,
175–177]. Additional studies will be important to
confirm this.

In summary, future clinical trials aimed at lowering
AGE formation and the downstream effect of such
species will unveil whether the promising results in
animal models translate into clinical application.

CONCLUSIONS

Currently, there is a limited understanding of the
causal effects of both diet and AGEs on aging
and age-related diseases. More importantly, aspects
of AGE formation, accumulation and detoxifica-
tion in several neurodegenerative diseases remain
poorly understood. A relative low number of studies
explored the connection between diabetes mellitus
and HD, suggesting this is a field that deserves addi-
tional studies. We have recently shown that glycation
potentiates mutant HTT aggregation and toxicity in
cell and animal models, highlighting the importance
of this modification in HD pathology. Investigat-
ing common molecular mechanisms underlying these
pathways might reveal novel targets for the develop-
ment of disease-modifying therapies. Interestingly,
metformin, a drug commonly used for type II dia-
betes, recently showed positive effects in HD models.
The studies showed a reduction in mutant HTT levels
and a reversion of other pathological features charac-
teristic of HD. In conclusion, we hypothesize that the
development of therapeutic strategies targeting glyca-
tion may serve as an orthogonal approach to treat both
diabetic complications as well as neurodegenerative
diseases, such as HD.
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Gärtner U, et al. The carbonyl scavengers aminoguani-
dine and tenilsetam protect against the neurotoxic effects
of methylglyoxal. Neurotox Res. 2005;7:95-101.

[164] Videira PAQ, Castro-Caldas M. Linking glycation
and glycosylation with inflammation and mitochon-
drial dysfunction in Parkinson’s disease. Front Neurosci.
2018;12:381.

[165] Verdile G, Keane KN, Cruzat VF, Medic S, Sabale M,
Rowles J, et al. Inflammation and oxidative stress: The
molecular connectivity between insulin resistance, obe-
sity, and Alzheimer’s disease. Mediators Inflamm. 2015;
2015:105828.

[166] Bavkar LN, Patil RS, Rooge SB, Nalawade ML, Arvin-
dekar AU. Acceleration of protein glycation by oxidative
stress and comparative role of antioxidant and pro-
tein glycation inhibitor. Mol Cell Biochem. 2019. doi:
10.1007/s11010-019-03550-7

[167] Borriello M, Iannuzzi C, Sirangelo I. Pinocembrin
protects from AGE-induced cytotoxicity and inhibits non-
enzymatic glycation in human insulin. Cells. 2019;8:385.

[168] Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A,
D’Arcangelo D, et al. Beneficial role of phytochemicals
on oxidative stress and age-related diseases. Biomed Res
Int. 2019;2019:1-16.

[169] Reddy VP, Beyaz A. Inhibitors of the Maillard reaction
and AGE breakers as therapeutics for multiple diseases.
Drug Discov Today. 2006;11:646-54.

[170] Ueda H, Kuroiwa E, Tachibana Y, Kawanishi K, Ayala F,
Moriyasu M. Aldose reductase inhibitors from the leaves
of Myrciaria dubia (H. B. & K.) McVaugh. Phytomedicine.
2004;11:652-6.

[171] Manzanaro S, Salva J, de la Fuente JA. Phenolic marine
natural products as aldose reductase inhibitors. J Nat Prod.
2006;69:1485-7.

[172] Lee GY, Jang DS, Lee YM, Kim JM, Kim JS. Naph-
thopyrone glucosides from the seeds of Cassia tora with
inhibitory activity on advanced glycation end products
(AGEs) formation. Arch Pharm Res. 2006;29:587-90.

[173] Ahmad S, Farhan M. Impact of non-enzymatic glycation
in neurodegenerative diseases: Role of natural products in
prevention. Adv Neurobiol. 2016;12:125-51.

[174] Bongarzone S, Savickas V, Luzi F, Gee AD. Target-
ing the receptor for advanced glycation endproducts
(RAGE): A medicinal chemistry perspective. J Med Chem.
2017;60:7213-32.

[175] Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue
B, et al. A multimodal RAGE-specific inhibitor reduces
amyloid beta-mediated brain disorder in a mouse model
of Alzheimer disease. J Clin Invest. 2012;122:1377-92.

[176] Cary BP, Brooks AF, Fawaz MV, Drake LR, Desmond
TJ, Sherman P, et al. Synthesis and evaluation of
[(18)F]RAGER: A first generation small-molecule PET
radioligand targeting the receptor for advanced glycation
endproducts. ACS Chem Neurosci. 2016;7:391-8.

[177] Zhu CW, Sano M, Ferris SH, Whitehouse PJ, Patterson
MB, Galasko D, et al. Alzheimer’s Disease Cooperative
Study Prevention Instrument Project assessing resource
use and volunteer and paid work in healthy elders: A
longitudinal study. J Am Geriatr Soc. 2014;62:985-8.


