
https://doi.org/10.1177/1176934317723884

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 13: 1–11
© The Author(s) 2017
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1176934317723884

Introduction
The analysis of genome variability using next-generation
sequencing (NGS) data has been successfully performed in
many species, mainly in model species where large read depth
was usually achieved and the reference sequence for that spe-
cies was available.1–6

However, the study of nonmodel organisms becomes a chal-
lenge when the reference sequence is not available and exists
the reference of a related species. Moreover, research projects
trying to engage population genomics analysis of nonmodel
species with limited budgets are forced to choose between few
individuals at relative high read depth or, alternatively, to more
individuals but moderate to low read depth.

Popular NGS pipelines for calling single-nucleotide poly-
morphisms (SNPs) are not always adequate for population
genomics analyses and should be used with caution. Previous
publications7–11 show that important errors are introduced dur-
ing the estimation of the levels and the patterns of variability
under common experimental designs,12 moderate or low read
depth and/or nonreference species.

Bioinformatic tools for the analysis of variants from NGS
data have been mainly designed for detecting SNPs but not for

the analysis of variability. Accurate estimation of the levels of
variability has fundamental importance for the detection of
selective events and for understanding the history of the popu-
lations. Most popular SNP callers6,13 are mainly focused on the
high recovery detection of SNPs while keeping lower false dis-
covery rates. Li6 developed a statistical framework for SNP
calling, which accurately assigns the frequency spectrum of the
alleles using a likelihood ratio test. Although this algorithm is
effectively efficient for large sample data sets and even for low
read depths, the frequency of the variants deviates from the
expected value for small data sets, especially when divergent
reference sequences are used.10 Furthermore, the number of
missing positions (positions without information about the
nucleotide are present there) in regions with no variants has
not been specifically taken into account in most variability
analyses. In summary, estimates of variability can be very far
from the real one because the inaccurate frequency of the vari-
ants and the unclear information about the effective positions
to be considered for the analysis.

In this work, we present a new version of the software GH
caller. GH caller reads pileup and mpileup format files and outputs

Optimized Next-Generation Sequencing
Genotype-Haplotype Calling for Genome
Variability Analysis

Javier Navarro1, Bruno Nevado2, Porfidio Hernández1,
Gonzalo Vera3 and Sebastián E Ramos-Onsins3

1Computer Architecture and Operating Systems Department, Universitat Autònoma de Barcelona,
Barcelona, Spain. 2Department of Plant Sciences, University of Oxford, Oxford, UK. 3Centre for
Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain.

ABSTRACT: The accurate estimation of nucleotide variability using next-generation sequencing data is challenged by the high number of sequencing
errors produced by new sequencing technologies, especially for nonmodel species, where reference sequences may not be available and the read
depth may be low due to limited budgets. The most popular single-nucleotide polymorphism (SNP) callers are designed to obtain a high SNP recovery
and low false discovery rate but are not designed to account appropriately the frequency of the variants. Instead, algorithms designed to account
for the frequency of SNPs give precise results for estimating the levels and the patterns of variability. These algorithms are focused on the unbiased
estimation of the variability and not on the high recovery of SNPs. Here, we implemented a fast and optimized parallel algorithm that includes the
method developed by Roesti et al and Lynch, which estimates the genotype of each individual at each site, considering the possibility to call both
bases from the genotype, a single one or none. This algorithm does not consider the reference and therefore is independent of biases related to the
reference nucleotide specified. The pipeline starts from a BAM file converted to pileup or mpileup format and the software outputs a FASTA file. The new
program not only reduces the running times but also, given the improved use of resources, it allows its usage with smaller computers and large parallel
computers, expanding its benefits to a wider range of researchers. The output file can be analyzed using software for population genetics analysis, such
as the R library PopGenome, the software VariScan, and the program mstatspop for analysis considering positions with missing data.

Keywords: Population genomics, SNP caller, next-generation sequencing, parallelization, HPC, MPI

RECEIVED: November 29, 2016. ACCEPTED: May 23, 2017.

Peer review: Five peer reviewers contributed to the peer review report. Reviewers’
reports totaled 1162 words, excluding any confidential comments to the academic editor.

Type: Original Research

Funding: The author(s) disclosed receipt of the following financial support for the
research, authorship, and/or publication of this article: This work has been supported by
Ministerio de Ciencia y Tecnología (Spain) under project number TIN2014-53234-C2-1-R
and Ministerio de Economía y Competitividad (grant AGL2016-78709-R). The authors
confirm that the funder had no influence over the study design, content of the article, or

selection of this journal. The authors also acknowledge the support of the Spanish Ministry
of Economy and Competitivity for the Center of Excellence Severo Ochoa 2016-2019
(SEV-2015-0533) grant awarded to the Center for Research in Agricultural Genomics and
by the CERCA Programme/Generalitat de Catalunya.

Declaration of conflicting interests: The author(s) declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this article.

CORRESPONDING AUTHOR: Sebastián E Ramos-Onsins, Centre for Research in
Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB,
Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain. Email: sebastian.ramos@
cragenomica.es

723884 EVB0010.1177/1176934317723884Evolutionary BioinformaticsNavarro et al
research-article2017

https://uk.sagepub.com/en-gb/journals-permissions
mailto:sebastian.ramos@cragenomica.es
mailto:sebastian.ramos@cragenomica.es

2	 Evolutionary Bioinformatics ﻿

a FASTA format file ready to be analyzed by different software
tools for the study of population genomics, such as PopGenome,14
VariScan,15 and mstatspo.10 It implements the Roesti et al16 and
Lynch17 algorithm to accurately account the number of effective
positions and the frequency of the variants, making this tool
highly suitable for population genomics studies, especially at low
read depths where it outperforms alternative SNP callers such as
SAMtools or GATK (see the work by Nevado et al10). This new
version of GH caller has been mainly developed to obtain results
in a reasonable time, which in the field of NGS analysis is critical.
In this sense, GH caller has been optimized for faster processing
in 2 ways: (1) modifying the code algorithm and (2) using several
high-performance computing (HPC) strategies.

Methods
Features of GH caller

GH caller is a tool for genome variability analysis that reads NGS
mapped reads from diploid individual(s) in a pileup or mpileup
file, performs SNP calling as developed by Roesti et al,16 and
outputs the results in a multi-FASTA file. For each individual
and site, 2 bases are represented, including missing values (N) if
any, as they contain the diploid information available for each
homologous position. GH caller counts the number of chromo-
somes that are effectively read per site making the frequency
estimation unbiased in relation to the sample, which is useful for
calculating neutrality tests and nucleotide variation.10

Input and output data.  GH caller reads mpileup or pileup for-
mats obtained from BAM standard NGS files using SAM-
tools.18 The first 3 columns represent the chromosome or
scaffold name, the position number, and the reference sequence,
respectively. The rest of columns are grouped in sets of 3 ele-
ments, representing the data of a diploid individual with the
number of reads, the bases seen, and the base quality. The
pileup format contains information for a single individual,
whereas mpileup can contain data from multiple individuals.
The name of each individual can be included using the flag
–names to help the identification of the sequences. Also, the
optional out-group sequence can be appended in the same
FASTA file using the flags (–outgroup; see Supplementary
Table 1 for more options). Note that each pileup file and each
FASTA reference file must contain a single chromosome. Also,
mpileup data should be filtered for mapping quality, to avoid
reads with very low mapping quality introducing errors.

The output of GH caller is a multi-FASTA format file with
2 sequences per individual and a length equal to the same
length as the input scaffold/chromosome. Each 2 consecutive
sequences represent the unphased genotype of each individual.

Algorithm

Frequency caller algorithm for diploid samples.  GH caller imple-
ments the Roesti algorithm,16 which is based on the algorithms

proposed by Lynch17 and Hohenlohe et al.19 In this implemen-
tation, a preliminary filtering is convenient for erasing the pos-
sible noise produced by very-low-quality sequencing data but
also for regions where the numbers of reads were dispropor-
tionally high or too low to be used for the variability estima-
tion. In Supplementary Table 1, the filtering options available
are described. The American Standard Code for Information
Interchange (ASCII) code for each used sequencing platform
(flag –platform) can also be included to calculate the qual-
ity of the sequences appropriately.

The Roesti algorithm implemented in GH caller calculates
the genotype of each site and individual with a multinomial
(see equations (1) to (3) below), assuming a fixed raw sequence
error (flag –error). The 2 most likely genotypes are com-
pared with a likelihood ratio test (LRT) against a χ2 distribu-
tion (flag –chivalue) as indicated in the algorithm proposed
by Hohenlohe et al. In the case LRT is not significant or the
number of reads is below a threshold (eg, flag –minreads = 6),
GH caller calculates the likelihood of a single nucleotide (so
defines 1 of the 2 nucleotides to estimate as N). Likelihood
ratio test is performed for the 2 most likely of the 4 remaining
possibilities (A/N, C/N, T/N, and G/N). If significant, it keeps
the one with the highest probability; otherwise, it assigns N/N.
In a more formal notation, the detailed algorithm explained
above is described as follows.

Define nr as the number of reads that pass the base quality
threshold per site and per individual. Define minreads as the
minimum number of reads to attempt a genotype call.

•• If nr ≥minreads do (A), otherwise do (B).
•• (A)—Define all 10 possible genotypes for 4 different

nucleotides, ie, AA, AC, CC, AG, CG, GG, AT, CT, GT,
and TT. As indicated in equations (1a) and (1b) by
Hohenlohe et al,19 for a given nucleotide, namely,
1,2,3 4, or and a number of reads for each nucleotide
nr1 , nr 2 , nr3 , and nr 4 , define ε as a given raw sequence
error rate, then the likelihood to have a heterozygous
genotype (1, 2) is as follows:

L

n
n n n n

r

r r r r

nr nr

(,)

!
! ! ! !

. .

1 2

0 5
4

0 5
4 41 2 3 4

1 2

=

−








 −











ε ε ε



















nr nr3 4

4
ε 	 (1)

and the likelihood to be homozygous is as follows:

	
L

n
n n n n

r

r r r r

nr nr

(,)

!
! ! ! !

1 1

1
3
4 4 41 2 3 4

1 2

=

−





























ε ε ε












nr nr3 4

4
ε 	 (2)

Calculate all 10 combinations and choose the 2 genotypes
with the highest likelihood, namely, Lg1 and Lg 2 .

If LRT L Lg g p= − >2 2 1
2log(/) χ , keep the highest likeli-

hood genotype ()Lg1 , where χ p
2 is the threshold χ2 value, given

by the user for a 1-degree-of-freedom test. Otherwise, do step B.

Navarro et al	 3

1.	 (B)—Call only one of the nucleotides of the genotype,
leaving the remaining a missing site (N). The likelihood
is as follows:

	
L N

n
n n n n

r

r r r r

nr nr

(,)

!
! ! ! !

1

1
3
4 4 41 2 3 4

1 2
= −






























ε ε ε












nr nr3 4

4
ε 	 (3)

Calculate all 4 combinations (ie, N and each of the 4 nucleo-
tides) and choose the 2 haplotypes with the highest likelihood,
namely, Lh1 and Lh2 .

If LRT L Lh h p= − >2 2 1
2log(/) χ , keep the highest likeli-

hood haplotype (Lh1 , ie, (1, N)), where χ p
2 is the threshold χ2

value given by the user for a 1-degree-of-freedom test.
Otherwise, keep the missing genotype (N, N).

Parallel algorithm.  The parallel implementation is based on a
previous serial version of GH caller.10 The new approach takes
advantage of the inherent data parallelism existing in the algo-
rithm, where all the steps can be applied for each position.
Thanks to this property, we can split input data in groups of n
positions and distribute them among the available processing
units, where all computations will be performed concurrently.
The main phases of the parallel program are as follows:

1.	 All the involved processes initialize the parallel
environment.

2.	 The main process (master) indexes the input file, gener-
ates a list of chunks of data to be assigned, and maps the
corresponding piece of input data to the other processes
(workers).

3.	 The parallel computations start asynchronously on each
worker. Locally, each process reads and parses a subset of
data, applies the base calling algorithm to these data, and
finally writes its partial results to the final FASTA output
file.

4.	 If it was selected as a command line option, a synchroni-
zation point (barrier) is used to allow the master process
to append a reference/out-group sequence to the FASTA
output file.

Phases 1 and 3 are independent and only need a synchroni-
zation signal to begin, hence are performed in parallel, whereas
phases 2 and 4 are serial and must be performed in order in a
single master process. This sequence of steps is shown in Figure
1 as a flowchart of the parallel algorithm.

Our application uses the standard Message Passing Interface
(MPI)20 and distributes the data among the available processes
by mapping subsets of data with a default size of 100 MB
(hereinafter “chunks”), giving 1 chunk to each worker process
at a time. All computational tasks involving these data subsets
can be performed simultaneously and individually on each
worker process. Each chunk does not need to be replicated in

the local memory of other processes, and memory used is
released when data are written to disk: this allows GH caller to
process data sets without any size limits and use all the aggre-
gated memory available of all the allocated processors, at the
same time.

Accuracy of results and usage of computational
resources

We had the following goals in our experiments: (1) accuracy
of results and (2) usage of computational resources. First, we

Figure 1.  Flowchart of the master/worker algorithm, a parallel

implementation of the Roesti algorithm.

4	 Evolutionary Bioinformatics ﻿

contrasted the serial and the parallel versions to validate all
the changes introduced to the initial algorithm and thus to be
sure both applications produce exactly the same results.
Second, to analyze the computer performance of this new
improved algorithm, we considered NGS data in several sce-
narios with a single population. The NGS sequences from the
western lowland gorilla Gorilla gorilla21 were used for this
purpose. As in the study by Nevado et al,10 already mapped
files to gorilla genomes constructed in this previous work
were subsampled using picard-tools DownsampleSam.22 To
obtain all BAM files used in this work as input data, we kept
the total sequencing costs fixed but sampling a varying num-
ber of individuals (diploid) with different read depth levels.
As a result, each individual has a BAM file with a read depth
level in a range of 2 to 20 while keeping total sequencing costs
fixed at 40× (see Table 1 for more details of the different vari-
ables and the ranges considered). We estimated population
genome-wide statistics from this data set to compare the
overall accuracy of our application versus the new comparable
algorithm provided by SAMtools.6,23 In addition, we have
compared the results of GH caller and SAMtools in a set of
real data sequences24. Here, we have analyzed 6 different lines
(VED, IRK, SC, CAL, TRI, and CV) of Cucumis melo and 1
out-group (cucumber, ie, Cucumis sativus). From these lines,
we have decided to use the chromosome 1 data set, as is large
enough to perform a comparative analysis. We have used 2
different pipelines, both starting from individual pileup files
for each variety. First, we used the SAMtools pipeline (as is
detailed in the original manuscript of Sanseverino et al24) to
obtain all estimated SNPs. Following the original manuscript,
the SNP file containing all the information was converted
into a single multi-FASTA file. Second, we used GH caller to
estimate the number and the frequency of the SNPs from
pileup files. GH caller outputs FASTA files that were were
concatenated into a single one. After that, the 2 multi-FASTA
files (1 from SNP calling with SAMtools and 1 from SNP
calling of GH caller) were analyzed using mstatspop (available
from NumGenomics Web site, http://bioinformatics.cragen-
omica.es/numgenomics/people/sebas/software/software.
html) to obtain the levels and patterns of variability. Finally,

we have quantified the benefits from parallelization and
optimization done in this application, and we have evaluated
the overall effectiveness of the application, particularly,
assessing how it can scale across different computing
platforms.

SAMtools pipeline.  We used the well-known package SAM-
tools to compare results against our GH caller pipeline. In our
pipeline, each individual’s data are analyzed separately. We
used version 1.2.0 that includes an algorithm to properly
handle multiallelic SNPs.6,23 Figure 2A shows the main steps
of the pipeline.

We started with the SAMtools’ command, SAMtools
mpileup (step 1), computing genotype likelihoods (-g), read-
ing a maximum of 1000 reads per-position (-d 1000), and
using both minimum base quality threshold and minimum
mapping quality of 20, and disabling the probabilistic realign-
ment for the computation of base alignment quality (BAQ),
which helps to reduce false SNPs’ discoveries caused by mis-
alignments. We instruct the program to generate an uncom-
pressed output (-u), choosing a list of tags as output format
(-t): number of high-quality bases (DP), per-sample Phred-
scaled strand bias P value (SP), number of high-quality nonref-
erence bases (SP), and number of high-quality ref-forward,
ref-reverse, alt-forward, and alt-reverse bases (DP4). All other
options were kept with their default values.

For analysis with SAMtools, we used the BCFtools call
command (step 2a) with the new multiallelic and rare-variant
calling algorithm (-m) (http://samtools.github.io/bcftools/
call-m.pdf) and aggregating to the output also gVCF blocks
of homozygous reference calls, where the minimum depth
(-g) should be set to half the depth in each scenario. Variant
calls were filtered with bcftools f ilter command of SAMtools
package (step 2b), with the following options (-saFilter
-g3 -G10) and a exclude expression (-e) which marks as
low-quality SNPs those with quality below 10 (%QUAL < 10)
or 15 if less than 2 reads support alternative base (AC < 2 &&
%QUAL < 15), and those with a minimum depth below
threshold, which should be half the average depth for each
scenario (FMT/DP < “$MINDEP”).

Table 1.  Different variables and ranges considered in this study.

Variable Cases Data Notes

Experimental design 2 individuals, 20× read depth 2I20X Total sequencing cost are fixed at 40×

5 individuals, 8× read depth 5I8X  

10 individuals, 4× read depth 10I4X  

20 individuals, 2× read depth 20I2X  

Bioinformatic tool SAMtools This genotype calling approach uses a new algorithm that can properly
handle multiallelic SNPs

GH caller Genotype-haplotype calling approach using our parallel version of GH
caller

http://bioinformatics.cragenomica.es/numgenomics/people/sebas/software/software.html
http://bioinformatics.cragenomica.es/numgenomics/people/sebas/software/software.html
http://bioinformatics.cragenomica.es/numgenomics/people/sebas/software/software.html
http://samtools.github.io/bcftools/call-m.pdf
http://samtools.github.io/bcftools/call-m.pdf

Navarro et al	 5

The new filtered VCF format file was transformed to
FASTA format using vcf2fasta (available from GitHub, https://
github.com/brunonevado/vcf2fas). Finally, FASTA output files
were analyzed with mstatspop.

GH caller pipeline.  Figure 2B shows the main steps of this pipe-
line. We started the pipeline with a SAMtools’ mpileup com-
mand (step 1), using a minimum base quality threshold and a
minimum mapping quality, both with a value of 20 and disabling
the probabilistic realignment for the computation of BAQ.
Other tool settings are kept with their default values. To start
applying a genotype-haplotype per base calling, we run GH caller
(step 2) with a set of options similar to the previous work: we
used a threshold of 6 reads for genotype calls (–minreads = 6)
and we only considered bases with a base quality above 20
(–baseq = 20). Moreover, for each position and individual, we
discarded sites having above double and below half the average
read depth. That is, for data with an average read depth of 20×
we would discard positions above 40 and below 10 reads
(–maxdep = 40, –mindep = 10). We set the raw sequencing
error used to calculate the genotype/haplotype likelihoods to
0.01 (–error = 0.01) (see the algorithm above and the defi-
nition of the error parameter in the equations). Finally, as

parameter to apply the LRT, we set the χ2 distribution to its
default value (see options in Supplementary Table 1).

Estimating population genetics statistics.  The different statistics
of variability allow us to detect differences in the patterns of
expected variability considering different aspects of the site fre-
quency spectrum, ie, low, intermediate, or high SNP frequen-
cies, and detect possible biases. The variability estimators of
Watterson (θw),25 Tajima26 (π), Achaz27 (θA), Fay and Wu28
(θH), and Fu and Li29 (θFL), were calculated over windows of
100 kB for the entire chromosome. Also, the neutrality tests of
Tajima30 (TD), Fu and Li29 (D FLD), and Fay and Wu28 (H)
were considered. Population statistics were calculated using the
mstatspop tool from NumGenomics Web site in both pipelines
(Figure 2, step 3).

Computing performance.  We used a hetereogeneous cluster,
which consists of 2 groups of nodes with different hardware
configurations. As first hardware configuration (scenario A),
we chose 1 server with 1 processor Intel Xeon E31240 with
frequency 3.30 GHz providing 4 cores with 2 threads per core,
32 GB of RAM and running the operating system Scientific
Linux 6.3. In this scenario, our application was evaluated using

Figure 2.  SNP calling and filtering pipelines used in our experiments. (A) In case of SAMtools’ pipeline, all steps are repeated for each individual. One

extra step is needed to convert VCF output obtained in step 3 to a FASTA format input file required by mstatspop. (B) In case of GH caller, the output file

obtained in step 2 is already produced in the required format.

https://github.com/brunonevado/vcf2fas
https://github.com/brunonevado/vcf2fas

6	 Evolutionary Bioinformatics ﻿

a local file system (XFS) using 1 internal SATA hard drive of
3 TB. This scenario is equivalent in terms of computational
power to current workstation computers. The second configu-
ration (scenario B) is composed by 6 servers or nodes. Each
node has 2 processors Intel Xeon X5660 processors with fre-
quency 2.8 GHz providing 6 cores per processor with 2 threads
per core, 96 GB of RAM, and running the same Linux distri-
bution than scenario A. All these 6 nodes were connected via
network links of 10 GB Ethernet. In this scenario, our applica-
tion was evaluated using the distributed file system Lustre ver-
sion 2.5.3, configured with 1 Metadata Server and 2 object
storage servers, which were connected to the same network
switch. This scenario represents typical shared clusters found in
many research centers. In both scenarios, we used mpicxx for
Open MPI version 1.8.8, and gcc 4.9.1 to compile all the
source codes, with -03 optimization enabled.

The performance of GH caller is evaluated using the execu-
tion time ()T as a metric measured in seconds. In our case,
execution time ()T is the maximum amount of time the appli-
cation could take to execute on a specific hardware platform.
T1 is essentially the execution time of the original GH caller
application (serial) using only 1 core as computational resources,
N is the number of cores, and TN is the running time of the
parallel algorithm using N cores.

First, we compared the execution time elapsed with our new
parallel version ()TN using both scenarios (A and B) while
keeping the same workload and increasing the number of
resources (N). Next, we ran the serial version of GH caller with
all data sets, so we obtained T1 as a baseline time T to com-
pare gains obtained at different times TN . We performed each
experiment 10 times for each pileup input file and measured
the time of program execution. Average execution time is cal-
culated taking these 10 replicates.

Memory usage.  The memory usage of GH caller is evaluated
using the maximum resident set size (RSS memory) for each
process during program execution. Resident set size is used to
show how much of the memory allocated for a process is cur-
rently in main memory, including both stack and heap mem-
ory. It does not include neither swap nor memory used by
shared libraries as long as the pages from those libraries were
currently in memory. We obtained all these values using the
accounting tool sacct provided by SLURM (Simple Linux
Utility for Resource Management),31 the software used in the
cluster to manage all the jobs submitted by the users. The
sacct command displays accounting data for all jobs and
job steps in the SLURM job accounting database in a variety
of forms for analysis.

To identify the impact in memory usage caused using sub-
sets of data with a restricted size, we evaluated our application
choosing the default chunk size of 100 MB and compared our
results with the serial version of GH caller to find whether
there are any gains obtained with respect to the original. In this
case, we used only scenario A to run our experiment due to the

fact that the differences between hardware in both scenarios
should have no impact in memory usage. We launched the
same experiments 5 times for each pileup input file and
obtained the maximum RSS memory for each process meas-
ured by the SLURM accounting system during program exe-
cution. An average RSS memory size is calculated by taking all
execution replicates.

Results
Accuracy of optimized GH caller versus updated
SAMtools SNP caller

In the same direction to what was described by Nevado et al10
for a previous SAMtools version, there is a strong dependency
of SAMtools SNP caller to the average read depth when the
level of variability and frequency-dependent neutrality tests
are estimated, and it is much less dependant in the case of GH
caller (Figures 3 and 4 and Supplementary Figures 4 and 5).
As it can be observed, there are no changes in the results of
the parallel version with respect to the accuracy of the original
GH caller. In case of the second real data analysis (Figures 3
and 4), it is observed that the SAMtools SNP caller has much
stronger correlation between levels of variability, and the vari-
ance in the read depth per window is compared, suggesting
that the differences in the levels of variability and the patterns
of variability between GH caller and SAMtools are conse-
quence of artefactual patterns not well considered using the
SAMtools SNP caller.

Usage of computational resources

The main objective of the experiments described here is to
demonstrate the utility of the new application for the analysis
of variability by improving the usage of computational
resources. To obtain all input files used to benchmark our
application, we converted all alignment BAM files to mpileup
format with different read depth levels and number of indi-
viduals required.

Computing performance.  Table 2 shows the real time elapsed
running GH caller in scenarios A and B. It can be clearly
observed that the total execution time decreases by including
more computational resources in both scenarios.

Supplementary Figure 1 shows the results from the
experiments performed in scenario A (workstation). In this
experiment, we scaled up to the total number of cores avail-
able in this server (4 cores) performing an SNP calling pro-
cess over all data sets (2I20X, 5I8X, 10I4X, and 20I2X).
This results in an elapsed time reduced from 35 minutes
26 seconds (2 cores) to 12 minutes 53 seconds (4 cores),
which is a 2.5× decrease using the same input data (20I2X).
However, potential gains are being limited due the lack of
processing units.

The second set of experiments has been performed in sce-
nario B (cluster). In this case, we scaled up to a maximum of 64

Navarro et al	 7

cores (6 nodes). Supplementary Figure 2 shows how execution
time can be reduced up to 20× (20I2X) by adding more com-
putational resources. We can observe how efficiency decreases
when scaling up computational resources, the reason of which
will be discussed in the next section.

Finally, Figure 5 compares execution time of GH caller
using the original version with 1 core versus the parallel version
using up to 64 cores over all data sets. Looking at the figure, we
can conclude that regardless of input data, execution time can

be reduced using the parallel version of GH caller together
with all the available resources.

In conclusion, we can see that there is a significant reduc-
tion at the total execution time used by this new version of GH
caller in both scenarios, especially with data sets with highest
number of individuals.

Memory usage.  Table 3 shows the results of executing both GH
caller serial (1 core) and parallel (64 cores) with input data of

Figure 3.  The levels of variability for different statistics of variability (Theta Watterson, Theta Fu&Li, and Theta Fay&Wu) are estimated per windows of

100 MB across the chromosome 1 using SAMtools (blue) and GH caller (red).

Figure 4.  Correlation of the levels of variability and the variance in the number of read depths per individual. The levels of variability for different statistics

of variability (Theta Watterson, Theta Fu&Li, and Theta Fay&Wu from left to right) are estimated per windows of 100 MB across the chromosome 1 using

SAMtools (upper plots in blue) and GH caller (bottom plots in red). A significant value indicates that the estimated variability is dependent on the read depth.

8	 Evolutionary Bioinformatics ﻿

different sizes. As we can observe in the first column, previous
serial version of GH caller increases memory consumption
accordingly to the size of input data: this version uses a maxi-
mum RSS memory size of 0.64 GB with an input data of 14 GB
(case 2I20X) but more than 5 GB with an input of 20 GB
(20I2X). As it is expected, it increases memory usage in 10×

because the number of sequences analyzed is 10 times more
when using data set 2I20X than data set 20I2X (see Table 1).
This happens because this version stores all results in memory
before writing data to disk. For the case of the parallel version,
these values are the maximum value achieved by core. A chunk
size of 100 MB is used as default when applying the mapping

Table 2.  Execution time running GH caller in scenarios A (workstation) and B (cluster).

Data Size, GB Scenario A, No. of
cores

Scenario B, No. of cores

2 4 2 4 8 16 32 64

2I20X 14 7 m 44 s 3 m 00 s 7 m 16 s 2 m 34 s 1 m 15 s 54 s 49 s 46 s

5I8X 16 12 m 40 s 4 m 38 s 12 m 24 s 4 m 20 s 2 m 04 s 1 m 32 s 1 m 03 s 58 s

10I4X 18 21 m 32 s 7 m 43 s 21 m 44 s 7 m 27 s 3 m 46 s 2 m 23 s 1 m 32 s 1 m 20 s

20I2X 20 35 m 26 s 12 m 53 s 38 m 29 s 13 m 08 s 6 m 29 s 3 m 50 s 2 m 21 s 1 m 52 s

Figure 5.  Comparison of execution times using the original version with 1 core versus the parallel version using all the available cores in both scenarios

A and B. We run an SNP calling process over all data sets (2I20X, 5I8X, 10I4X, and 20I2X). In all cases, execution time can be reduced using this parallel

version of GH caller, especially using all resources from scenario B (cluster).

Navarro et al	 9

process to distribute the data among all the available MPI
worker processes. We adopted this size as a default because the
preliminary results (Supplementary Figure 3) shown an average
main memory usage of approximately 3 GB that can easily fit in
commonly used infrastructures in these days. Moreover, our
application allows to choose a custom chunk size using a com-
mand line option (-s chunk size). As it can be observed, we
broke the previous relation between input data size and memory
usage present in serial version. As a consequence, GH caller now
allows to limit memory usage using different “chunk” sizes,
regardless of the size of input data.

Maximum memory usage (RSS) per process in benchmark
execution using scenario B: cluster. Comparison has been done
between serial version of GH caller (1 core) and our parallel
version using 64 cores with a default chunk size of 100 MB.

Because the chunk size employed has a direct impact with
the memory used by our application, running this parameter
could be useful if our hardware has a different relation between
number of processor units and RAM memory, allowing GH
caller to take advantage of all computational resources in plat-
forms with different bounds in this ratio (eg, commodity hard-
ware with a total of 8 GB of main memory and 8 cores has
maximum of 1 GB of memory per processor unit). This feature
additionally allows GH caller to use the whole memory avail-
able to the bunch of allocated processors, at the same time.

Discussion
We demonstrated the utility of the GH caller application by
analyzing 2 different aspects: execution time and effective
memory usage. We emphasize here that our purpose was not to
present a discussion of the effects in genetic estimates of exper-
imental designs using different bioinformatics approaches, as
this has been done by Nevado et al,10 but ensure that the accu-
racy of results still remains at the same level that previous ver-
sion already presented while improving execution times and
memory requirements.

We have shown that our parallel implementation can pro-
vide a performance advantage on workstations with a limited
number of cores and a local file system, but particularly when we
can add more computational resources using a data-intensive
computing system (cluster). Even though execution time can
be considerably reduced by adding more computational

resources, we observed a limited efficiency when we scale up
the number of processes. We suspect that our input data set is
still too small with respect to the number of resources
employed. In fact, this can be seen taking as an example the
execution time used by the larger data set (20I2X): in this
example, total elapsed time was 1 minute and 52 seconds;
therefore, the average time employed for every process using
64 processes was just 1.75 seconds ()112 / 64 . Consequently,
gains obtained parallelizing the algorithm are masked by wait-
ing times and other overheads introduced by the MPI imple-
mentation. Furthermore, another reason for reduced scalability
is the fact that our implementation is not optimized for paral-
lel I/O and cannot take advantage of collective operations,
thus leading to poor performance when there are many MPI
processes writing to the same output file.32 Future implemen-
tation could explore the possibility of applying different tech-
niques already employed by specialized input/output libraries
in HPC such as Parallel netCDF33 and HDF534: collective
input/output operations, data reordering to improve write per-
formance, asynchronous read/write, buffering, and/or lazy
write methods. However, for this release, we preferred to focus
our efforts in providing solutions where users having access to
a workstation or cluster could benefit.

In terms of performance, it must be emphasized that the
whole elapsed time of the variant analysis pipeline using GH
caller has been reduced as a result of the work done at the
internal “base-calling” step. Consequently, the time employed
at the first step—running SAMtools mpileup command—
becomes more relevant. We propose 2 different approaches to
reduce this time: first option could be using a new method to
generate the mpileup file. This step can be done by dividing
input data into regions of interest and performing this reduc-
tion process in parallel. Based on this idea, other applications
tried to speed up this step using different strategies,35 so via-
bility and gains of this solution should be explored. Second
approach is to extend the functionality of current application
and provide new methods to read BAM files directly in a more
efficient way than SAMtools mpileup command does, taking
advantage of data parallelism property already cited.

In respect to the accuracy of the estimation of the new opti-
mized GH caller and their comparison with SAMtools SNP
caller, the new optimized GH caller is identical, in terms of

Table 3.  Maximum memory usage per process using scenario B, cluster.

Data Size, GB Serial version (1 core) Parallel version (64 cores)

Max. RSS, MB Max. RSS, MB

2I20X 14 640.78 2548.54

5I8X 16 1450.15 2522.96

10I4X 18 2763.65 2839.49

20I2X 20 5276.84 3009.27

Abbreviation: RSS, resident set size.

10	 Evolutionary Bioinformatics ﻿

output results, to the previous serial version of GH caller. The
levels of variability are weakly affected by the read depth at the
studied ranges.10 The strong differences in the levels of varia-
bility between GH caller and SAMtools SNP caller are caused
by the different objectives to what they were designed.
Although SAMtools SNP caller is designed and optimized to
detect true SNPs in a sample, GH caller is designed to estimate
accurately the level of variability, ie, does not matter if many
SNPs are lost if the variability and the frequency of the variants
are accurately estimated. Moreover, it is worth to mention that
GH caller is designed for resequencing data of diploid individu-
als, and that while it can be used for other experiments, some
specific biases need to be taken into account, eg, allele-specific
expression in RNA-Seq data could affect the variability esti-
mates obtained from RNA.

In conclusion, we have presented a first parallel version of
GH caller that can significantly reduce total execution time and
CPU time, but maintaining the quality of results. We have pro-
posed a parallelization strategy that guarantees a good speedup
with a limited number of processors and can be executed in
either a cluster or a workstation environment. Moreover, this
new version of GH caller is not limited by input or output data
size, and the memory available of all resources can potentially
be used. With our contribution, GH Caller allows taking the
full advantage of computational resources available both in
clusters and workstations.

Download and Usage
The latest stable software files, both the initial (sequential)
and the new (parallel) versions, including sample files
and documentation, are available from https://github.com/
CRAGENOMICA/pGHcaller. There you also will find how
to compile and run the code as well as some example data sets.

Author Contributions
SER-O, BN, and JN conceived and designed the experiments.
JN analyzed the data. SER-O and JN wrote the first draft of the
manuscript. SER-O, GV, and PH contributed to the writing of
the manuscript. SER-O, BN, PH, GV, and JN agreed with the
manuscript results and conclusions and made critical revisions
and approved the final version. SER-O, PH, GV, and JN jointly
developed the structure and arguments for the article. All the
authors reviewed and approved the final manuscript.

Disclosures and Ethics
As a requirement of publication, author(s) have provided to the
publisher signed confirmation of compliance with legal and
ethical obligations including but not limited to the following:
authorship and contributorship, conflicts of interest, privacy
and confidentiality, and (where applicable) protection of human
and animal research subjects. The authors have read and con-
firmed their agreement with the ICMJE authorship and con-
flict of interest criteria. The authors have also confirmed that
this article is unique and not under consideration or published

in any other publication, and that they have permission from
rights holders to reproduce any copyrighted material. Any dis-
closures are made in this section. The external blind peer
reviewers report no conflicts of interest.

References
	 1.	 Boyko AR, Quignon P, Li L, et al. A simple genetic architecture underlies mor-

phological variation in dogs. PLoS Biol. 2010;8:e1000451.
	 2.	 Guo S, Zhang J, Sun H, et al. The draft genome of watermelon (Citrullus lanatus)

and resequencing of 20 diverse accessions. Nat Genet. 2013;45:51–58.
	 3.	 Carneiro M, Rubin C-J, Di Palma F, et al. Rabbit genome analysis reveals a poly-

genic basis for phenotypic change during domestication. Science.
2014;345:1074–1079.

	 4.	 Wang M, Yu Y, Haberer G, et al. The genome sequence of African rice (Oryza
glaberrima) and evidence for independent domestication. Nat Genet.
2014;46:982–988.

	 5.	 Ai H, Fang X, Yang B, et al. Adaptation and possible ancient interspecies intro-
gression in pigs identified by whole-genome sequencing. Nat Genet.
2015;47:217–225.

	 6.	 Li H. A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data.
Bioinformatics. 2011;27:2987–2993.

	 7.	 Crawford JE, Lazzaro BP. Assessing the accuracy and power of population ge-
netic inference from low-pass next-generation sequencing data. Front Genet.
2012;3:66.

	 8.	 Fumagalli M. Assessing the effect of sequencing depth and sample size in popu-
lation genetics inferences. PLoS ONE. 2013;8:e79667.

	 9.	 Cheng AY, Teo YY, Ong RT. Assessing single nucleotide variant detection and
genotype calling on whole-genome sequenced individuals. Bioinformatics.
2014;30:1707–1713.

	10.	 Nevado B, Ramos-Onsins SE, Perez-Enciso M. Resequencing studies of non-
model organisms using closely related reference genomes: optimal experimental
designs and bioinformatics approaches for population genomics. Mol Ecol.
2014;23:1764–1779.

	11.	 Maruki T, Lynch M. Genotype-frequency estimation from high-throughput se-
quencing data. Genetics. 2015;201:473–486.

	12.	 Nielsen R, Williamson S, Kim Y, Clark AG, Hubisz MJ, Bustamante C.
Genomic scans for selective sweeps using SNP data. Genome Res.
2005;15:1566–1575.

	13.	 McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a
MapReduce framework for analyzing next-generation DNA sequencing data.
Genome Res. 2010;20:1297–1303.

	14.	 Pfeifer B, Wittelsbürger U, Ramos-Onsins SE, Lercher MJ. PopGenome: an ef-
ficient Swiss army knife for population genomic analyses in R. Mol Biol Evol.
2014;31:1929–1936.

	15.	 Vilella AJ, Blanco-Garcia A, Hutter S, Rozas J. VariScan: analysis of evolution-
ary patterns from large-scale DNA sequence polymorphism data. Bioinformatics.
2005;21:2791–2793.

	16.	 Roesti M, Hendry AP, Salzburger W, Berner D. Genome divergence during
evolutionary diversification as revealed in replicate lake-stream stickleback pop-
ulation pairs. Mol Ecol. 2012;21:2852–2862.

	17.	 Lynch M. Estimation of nucleotide diversity, disequilibrium coefficients, and
mutation rates from high-coverage genome-sequencing projects. Mol Biol Evol.
2008;25:2409–2419.

	18.	 Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and
SAMtools. Bioinformatics. 2009;25:2078–2079.

	19.	 Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA.
Population genomics of parallel adaptation in threespine stickleback using se-
quenced RAD tags. PLoS Genet. 2010;6:e1000862.

	20.	 Message P Forum. MPI: a message-passing interface standard. Technical report,
The University of Tennessee, Knoxville, TN, April, 1994.

	21.	 Prado-Martinez J, Sudmant PH, Kidd JM, et al. Great ape genetic diversity and
population history. Nature. 2013;499:471–475.

	22.	 Niemenmaa M, Kallio A, Schumacher A, Klemelä P, Korpelainen E, Heljanko
K. Hadoop-BAM: directly manipulating next generation sequencing data in the
cloud. Bioinformatics. 2012;28:876–877.

	23.	 Li H. Improving SNP discovery by base alignment quality. Bioinformatics.
2011;27:1157–1158.

	24.	 Sanseverino W, Hénaff E, Vives C, et al. Transposon insertions, structural vari-
ations, and SNPs contribute to the evolution of the melon genome. Mol Biol Evol.
2015;32:2760–2774.

	25.	 Watterson GA. On the number of segregating sites in genetical models without
recombination. Theor Popul Biol. 1975;7:256–276.

https://github.com/CRAGENOMICA/pGHcaller
https://github.com/CRAGENOMICA/pGHcaller

Navarro et al	 11

	26.	 Tajima F. Evolutionary relationship of DNA sequences in finite populations.
Genetics. 1983;105:437–460.

	27.	 Achaz G. Frequency spectrum neutrality tests: one for all and all for one.
Genetics. 2009;183:249–258.

	28.	 Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics.
2000;155:1405–1413.

	29.	 Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics.
1993;133:693–709.

	30.	 Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA
polymorphism. Genetics. 1989;123:585–595.

	31.	 Jette Morris A, Yoo Andy B, Grondona M. SLURM: Simple Linux Utility for
Resource Management. In: Feitelson D, Rudolph L, Schwiegelshohn U, eds.

Lecture Notes in Computer Science: Proceedings of Job Scheduling Strategies for Parallel
Processing (JSSPP). Berlin, Germany: Springer; 2003:44–60

	32.	 Corbett P, Feitelson D, Fineberg S, et al. Input/Output in Parallel and Distributed
Computer Systems. Boston, MA: Springer; 1996:127–146.

	33.	 Li J, Liao WK, Choudhary A, et al. Parallel netCDF: a high-performance scien-
tific I/O interface. Paper presented at: 2003 ACM/IEEE Conference on
Supercomputing (SC’03); November 15-21, 2003; Phoenix, AZ.

	34.	 The HDF Group. Hierarchical Data Format Version 5 2000–2010. Champaign,
IL: The HDF Group. http://www.hdfgroup.org/HDF5 (2010).

	35.	 Streit K, Hammacher C, Zeller A, Sebastian H. Sambamba: a runtime system for
online adaptive parallelization. In: O’Boyle M, ed. 21st International Conference on
Compiler Construction (CC). Berlin, Germany: Springer; 2012:240–243.

http://www.hdfgroup.org/HDF5

