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Introduction
The analysis of genome variability using next-generation 
sequencing (NGS) data has been successfully performed in 
many species, mainly in model species where large read depth 
was usually achieved and the reference sequence for that spe-
cies was available.1–6

However, the study of nonmodel organisms becomes a chal-
lenge when the reference sequence is not available and exists 
the reference of a related species. Moreover, research projects 
trying to engage population genomics analysis of nonmodel 
species with limited budgets are forced to choose between few 
individuals at relative high read depth or, alternatively, to more 
individuals but moderate to low read depth.

Popular NGS pipelines for calling single-nucleotide poly-
morphisms (SNPs) are not always adequate for population 
genomics analyses and should be used with caution. Previous 
publications7–11 show that important errors are introduced dur-
ing the estimation of the levels and the patterns of variability 
under common experimental designs,12 moderate or low read 
depth and/or nonreference species.

Bioinformatic tools for the analysis of variants from NGS 
data have been mainly designed for detecting SNPs but not for 

the analysis of variability. Accurate estimation of the levels of 
variability has fundamental importance for the detection of 
selective events and for understanding the history of the popu-
lations. Most popular SNP callers6,13 are mainly focused on the 
high recovery detection of SNPs while keeping lower false dis-
covery rates. Li6 developed a statistical framework for SNP 
calling, which accurately assigns the frequency spectrum of the 
alleles using a likelihood ratio test. Although this algorithm is 
effectively efficient for large sample data sets and even for low 
read depths, the frequency of the variants deviates from the 
expected value for small data sets, especially when divergent 
reference sequences are used.10 Furthermore, the number of 
missing positions (positions without information about the 
nucleotide are present there) in regions with no variants has 
not been specifically taken into account in most variability 
analyses. In summary, estimates of variability can be very far 
from the real one because the inaccurate frequency of the vari-
ants and the unclear information about the effective positions 
to be considered for the analysis.

In this work, we present a new version of the software GH 
caller. GH caller reads pileup and mpileup format files and outputs 
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a FASTA format file ready to be analyzed by different software 
tools for the study of population genomics, such as PopGenome,14 
VariScan,15 and mstatspo.10 It implements the Roesti et al16 and 
Lynch17 algorithm to accurately account the number of effective 
positions and the frequency of the variants, making this tool 
highly suitable for population genomics studies, especially at low 
read depths where it outperforms alternative SNP callers such as 
SAMtools or GATK (see the work by Nevado et al10). This new 
version of GH caller has been mainly developed to obtain results 
in a reasonable time, which in the field of NGS analysis is critical. 
In this sense, GH caller has been optimized for faster processing 
in 2 ways: (1) modifying the code algorithm and (2) using several 
high-performance computing (HPC) strategies.

Methods
Features of GH caller

GH caller is a tool for genome variability analysis that reads NGS 
mapped reads from diploid individual(s) in a pileup or mpileup 
file, performs SNP calling as developed by Roesti et  al,16 and 
outputs the results in a multi-FASTA file. For each individual 
and site, 2 bases are represented, including missing values (N) if 
any, as they contain the diploid information available for each 
homologous position. GH caller counts the number of chromo-
somes that are effectively read per site making the frequency 
estimation unbiased in relation to the sample, which is useful for 
calculating neutrality tests and nucleotide variation.10

Input and output data.  GH caller reads mpileup or pileup for-
mats obtained from BAM standard NGS files using SAM-
tools.18 The first 3 columns represent the chromosome or 
scaffold name, the position number, and the reference sequence, 
respectively. The rest of columns are grouped in sets of 3 ele-
ments, representing the data of a diploid individual with the 
number of reads, the bases seen, and the base quality. The 
pileup format contains information for a single individual, 
whereas mpileup can contain data from multiple individuals. 
The name of each individual can be included using the flag 
–names to help the identification of the sequences. Also, the 
optional out-group sequence can be appended in the same 
FASTA file using the flags (–outgroup; see Supplementary 
Table 1 for more options). Note that each pileup file and each 
FASTA reference file must contain a single chromosome. Also, 
mpileup data should be filtered for mapping quality, to avoid 
reads with very low mapping quality introducing errors.

The output of GH caller is a multi-FASTA format file with 
2 sequences per individual and a length equal to the same 
length as the input scaffold/chromosome. Each 2 consecutive 
sequences represent the unphased genotype of each individual.

Algorithm

Frequency caller algorithm for diploid samples.  GH caller imple-
ments the Roesti algorithm,16 which is based on the algorithms 

proposed by Lynch17 and Hohenlohe et al.19 In this implemen-
tation, a preliminary filtering is convenient for erasing the pos-
sible noise produced by very-low-quality sequencing data but 
also for regions where the numbers of reads were dispropor-
tionally high or too low to be used for the variability estima-
tion. In Supplementary Table 1, the filtering options available 
are described. The American Standard Code for Information 
Interchange (ASCII) code for each used sequencing platform 
(flag –platform) can also be included to calculate the qual-
ity of the sequences appropriately.

The Roesti algorithm implemented in GH caller calculates 
the genotype of each site and individual with a multinomial 
(see equations (1) to (3) below), assuming a fixed raw sequence 
error (flag –error). The 2 most likely genotypes are com-
pared with a likelihood ratio test (LRT) against a χ2 distribu-
tion (flag –chivalue) as indicated in the algorithm proposed 
by Hohenlohe et al. In the case LRT is not significant or the 
number of reads is below a threshold (eg, flag –minreads = 6), 
GH caller calculates the likelihood of a single nucleotide (so 
defines 1 of the 2 nucleotides to estimate as N). Likelihood 
ratio test is performed for the 2 most likely of the 4 remaining 
possibilities (A/N, C/N, T/N, and G/N). If significant, it keeps 
the one with the highest probability; otherwise, it assigns N/N. 
In a more formal notation, the detailed algorithm explained 
above is described as follows.

Define nr  as the number of reads that pass the base quality 
threshold per site and per individual. Define minreads as the 
minimum number of reads to attempt a genotype call.

•• If nr ≥minreads  do (A), otherwise do (B).
•• (A)—Define all 10 possible genotypes for 4 different 

nucleotides, ie, AA, AC, CC, AG, CG, GG, AT, CT, GT, 
and TT. As indicated in equations (1a) and (1b) by 
Hohenlohe et  al,19 for a given nucleotide, namely, 
1,2,3 4, or  and a number of reads for each nucleotide 
nr1 , nr 2 , nr3 , and nr 4 , define ε  as a given raw sequence 
error rate, then the likelihood to have a heterozygous 
genotype (1, 2) is as follows:
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and the likelihood to be homozygous is as follows:
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Calculate all 10 combinations and choose the 2 genotypes 
with the highest likelihood, namely, Lg1  and Lg 2 .

If LRT L Lg g p= − >2 2 1
2log( / ) χ , keep the highest likeli-

hood genotype ( )Lg1 , where χ p
2  is the threshold χ2  value, given 

by the user for a 1-degree-of-freedom test. Otherwise, do step B.
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1.	 (B)—Call only one of the nucleotides of the genotype, 
leaving the remaining a missing site (N). The likelihood 
is as follows:

	
L N
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Calculate all 4 combinations (ie, N and each of the 4 nucleo-
tides) and choose the 2 haplotypes with the highest likelihood, 
namely, Lh1  and Lh2 .

If LRT L Lh h p= − >2 2 1
2log( / ) χ , keep the highest likeli-

hood haplotype ( Lh1 , ie, (1, N)), where χ p
2  is the threshold χ2  

value given by the user for a 1-degree-of-freedom test. 
Otherwise, keep the missing genotype (N, N).

Parallel algorithm.  The parallel implementation is based on a 
previous serial version of GH caller.10 The new approach takes 
advantage of the inherent data parallelism existing in the algo-
rithm, where all the steps can be applied for each position. 
Thanks to this property, we can split input data in groups of n  
positions and distribute them among the available processing 
units, where all computations will be performed concurrently. 
The main phases of the parallel program are as follows:

1.	 All the involved processes initialize the parallel 
environment.

2.	 The main process (master) indexes the input file, gener-
ates a list of chunks of data to be assigned, and maps the 
corresponding piece of input data to the other processes 
(workers).

3.	 The parallel computations start asynchronously on each 
worker. Locally, each process reads and parses a subset of 
data, applies the base calling algorithm to these data, and 
finally writes its partial results to the final FASTA output 
file.

4.	 If it was selected as a command line option, a synchroni-
zation point (barrier) is used to allow the master process 
to append a reference/out-group sequence to the FASTA 
output file.

Phases 1 and 3 are independent and only need a synchroni-
zation signal to begin, hence are performed in parallel, whereas 
phases 2 and 4 are serial and must be performed in order in a 
single master process. This sequence of steps is shown in Figure 
1 as a flowchart of the parallel algorithm.

Our application uses the standard Message Passing Interface 
(MPI)20 and distributes the data among the available processes 
by mapping subsets of data with a default size of 100 MB 
(hereinafter “chunks”), giving 1 chunk to each worker process 
at a time. All computational tasks involving these data subsets 
can be performed simultaneously and individually on each 
worker process. Each chunk does not need to be replicated in 

the local memory of other processes, and memory used is 
released when data are written to disk: this allows GH caller to 
process data sets without any size limits and use all the aggre-
gated memory available of all the allocated processors, at the 
same time.

Accuracy of results and usage of computational 
resources

We had the following goals in our experiments: (1) accuracy 
of results and (2) usage of computational resources. First, we 

Figure 1.  Flowchart of the master/worker algorithm, a parallel 

implementation of the Roesti algorithm.
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contrasted the serial and the parallel versions to validate all 
the changes introduced to the initial algorithm and thus to be 
sure both applications produce exactly the same results. 
Second, to analyze the computer performance of this new 
improved algorithm, we considered NGS data in several sce-
narios with a single population. The NGS sequences from the 
western lowland gorilla Gorilla gorilla21 were used for this 
purpose. As in the study by Nevado et al,10 already mapped 
files to gorilla genomes constructed in this previous work 
were subsampled using picard-tools DownsampleSam.22 To 
obtain all BAM files used in this work as input data, we kept 
the total sequencing costs fixed but sampling a varying num-
ber of individuals (diploid) with different read depth levels. 
As a result, each individual has a BAM file with a read depth 
level in a range of 2 to 20 while keeping total sequencing costs 
fixed at 40× (see Table 1 for more details of the different vari-
ables and the ranges considered). We estimated population 
genome-wide statistics from this data set to compare the 
overall accuracy of our application versus the new comparable 
algorithm provided by SAMtools.6,23 In addition, we have 
compared the results of GH caller and SAMtools in a set of 
real data sequences24. Here, we have analyzed 6 different lines 
(VED, IRK, SC, CAL, TRI, and CV) of Cucumis melo and 1 
out-group (cucumber, ie, Cucumis sativus). From these lines, 
we have decided to use the chromosome 1 data set, as is large 
enough to perform a comparative analysis. We have used 2 
different pipelines, both starting from individual pileup files 
for each variety. First, we used the SAMtools pipeline (as is 
detailed in the original manuscript of Sanseverino et al24) to 
obtain all estimated SNPs. Following the original manuscript, 
the SNP file containing all the information was converted 
into a single multi-FASTA file. Second, we used GH caller to 
estimate the number and the frequency of the SNPs from 
pileup files. GH caller outputs FASTA files that were were 
concatenated into a single one. After that, the 2 multi-FASTA 
files (1 from SNP calling with SAMtools and 1 from SNP 
calling of GH caller) were analyzed using mstatspop (available 
from NumGenomics Web site, http://bioinformatics.cragen-
omica.es/numgenomics/people/sebas/software/software.
html) to obtain the levels and patterns of variability. Finally, 

we have quantified the benefits from parallelization and  
optimization done in this application, and we have evaluated 
the overall effectiveness of the application, particularly,  
assessing how it can scale across different computing 
platforms.

SAMtools pipeline.  We used the well-known package SAM-
tools to compare results against our GH caller pipeline. In our 
pipeline, each individual’s data are analyzed separately. We 
used version 1.2.0 that includes an algorithm to properly 
handle multiallelic SNPs.6,23 Figure 2A shows the main steps 
of the pipeline.

We started with the SAMtools’ command, SAMtools 
mpileup (step 1), computing genotype likelihoods (-g), read-
ing a maximum of 1000 reads per-position (-d 1000), and 
using both minimum base quality threshold and minimum 
mapping quality of 20, and disabling the probabilistic realign-
ment for the computation of base alignment quality (BAQ), 
which helps to reduce false SNPs’ discoveries caused by mis-
alignments. We instruct the program to generate an uncom-
pressed output (-u), choosing a list of tags as output format 
(-t): number of high-quality bases (DP), per-sample Phred-
scaled strand bias P value (SP), number of high-quality nonref-
erence bases (SP), and number of high-quality ref-forward, 
ref-reverse, alt-forward, and alt-reverse bases (DP4). All other 
options were kept with their default values.

For analysis with SAMtools, we used the BCFtools call 
command (step 2a) with the new multiallelic and rare-variant 
calling algorithm (-m) (http://samtools.github.io/bcftools/
call-m.pdf ) and aggregating to the output also gVCF blocks 
of homozygous reference calls, where the minimum depth 
(-g) should be set to half the depth in each scenario. Variant 
calls were filtered with bcftools f ilter command of SAMtools 
package (step 2b), with the following options (-saFilter 
-g3 -G10) and a exclude expression (-e) which marks as 
low-quality SNPs those with quality below 10 (%QUAL < 10) 
or 15 if less than 2 reads support alternative base (AC < 2 && 
%QUAL < 15), and those with a minimum depth below 
threshold, which should be half the average depth for each 
scenario (FMT/DP < “$MINDEP”).

Table 1.  Different variables and ranges considered in this study.

Variable Cases Data Notes

Experimental design 2 individuals, 20× read depth 2I20X Total sequencing cost are fixed at 40×

5 individuals, 8× read depth 5I8X  

10 individuals, 4× read depth 10I4X  

20 individuals, 2× read depth 20I2X  

Bioinformatic tool SAMtools This genotype calling approach uses a new algorithm that can properly 
handle multiallelic SNPs

GH caller Genotype-haplotype calling approach using our parallel version of GH 
caller

http://bioinformatics.cragenomica.es/numgenomics/people/sebas/software/software.html
http://bioinformatics.cragenomica.es/numgenomics/people/sebas/software/software.html
http://bioinformatics.cragenomica.es/numgenomics/people/sebas/software/software.html
http://samtools.github.io/bcftools/call-m.pdf
http://samtools.github.io/bcftools/call-m.pdf
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The new filtered VCF format file was transformed to 
FASTA format using vcf2fasta (available from GitHub, https://
github.com/brunonevado/vcf2fas). Finally, FASTA output files 
were analyzed with mstatspop.

GH caller pipeline.  Figure 2B shows the main steps of this pipe-
line. We started the pipeline with a SAMtools’ mpileup com-
mand (step 1), using a minimum base quality threshold and a 
minimum mapping quality, both with a value of 20 and disabling 
the probabilistic realignment for the computation of BAQ. 
Other tool settings are kept with their default values. To start 
applying a genotype-haplotype per base calling, we run GH caller 
(step 2) with a set of options similar to the previous work: we 
used a threshold of 6 reads for genotype calls (–minreads = 6) 
and we only considered bases with a base quality above 20 
(–baseq = 20). Moreover, for each position and individual, we 
discarded sites having above double and below half the average 
read depth. That is, for data with an average read depth of 20× 
we would discard positions above 40 and below 10 reads 
(–maxdep = 40, –mindep = 10). We set the raw sequencing 
error used to calculate the genotype/haplotype likelihoods to 
0.01 (–error = 0.01) (see the algorithm above and the defi-
nition of the error parameter in the equations). Finally, as 

parameter to apply the LRT, we set the χ2 distribution to its 
default value (see options in Supplementary Table 1).

Estimating population genetics statistics.  The different statistics 
of variability allow us to detect differences in the patterns of 
expected variability considering different aspects of the site fre-
quency spectrum, ie, low, intermediate, or high SNP frequen-
cies, and detect possible biases. The variability estimators of 
Watterson (θw),25 Tajima26 (π), Achaz27 (θA), Fay and Wu28 
(θH), and Fu and Li29 (θFL), were calculated over windows of 
100 kB for the entire chromosome. Also, the neutrality tests of 
Tajima30 (TD), Fu and Li29 (D FLD), and Fay and Wu28 (H) 
were considered. Population statistics were calculated using the 
mstatspop tool from NumGenomics Web site in both pipelines 
(Figure 2, step 3).

Computing performance.  We used a hetereogeneous cluster, 
which consists of 2 groups of nodes with different hardware 
configurations. As first hardware configuration (scenario A), 
we chose 1 server with 1 processor Intel Xeon E31240 with 
frequency 3.30 GHz providing 4 cores with 2 threads per core, 
32 GB of RAM and running the operating system Scientific 
Linux 6.3. In this scenario, our application was evaluated using 

Figure 2.  SNP calling and filtering pipelines used in our experiments. (A) In case of SAMtools’ pipeline, all steps are repeated for each individual. One 

extra step is needed to convert VCF output obtained in step 3 to a FASTA format input file required by mstatspop. (B) In case of GH caller, the output file 

obtained in step 2 is already produced in the required format.

https://github.com/brunonevado/vcf2fas
https://github.com/brunonevado/vcf2fas
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a local file system (XFS) using 1 internal SATA hard drive of 
3 TB. This scenario is equivalent in terms of computational 
power to current workstation computers. The second configu-
ration (scenario B) is composed by 6 servers or nodes. Each 
node has 2 processors Intel Xeon X5660 processors with fre-
quency 2.8 GHz providing 6 cores per processor with 2 threads 
per core, 96 GB of RAM, and running the same Linux distri-
bution than scenario A. All these 6 nodes were connected via 
network links of 10 GB Ethernet. In this scenario, our applica-
tion was evaluated using the distributed file system Lustre ver-
sion 2.5.3, configured with 1 Metadata Server and 2 object 
storage servers, which were connected to the same network 
switch. This scenario represents typical shared clusters found in 
many research centers. In both scenarios, we used mpicxx for 
Open MPI version 1.8.8, and gcc 4.9.1 to compile all the 
source codes, with -03 optimization enabled.

The performance of GH caller is evaluated using the execu-
tion time ( )T  as a metric measured in seconds. In our case, 
execution time ( )T  is the maximum amount of time the appli-
cation could take to execute on a specific hardware platform. 
T1  is essentially the execution time of the original GH caller 
application (serial) using only 1 core as computational resources, 
N  is the number of cores, and TN  is the running time of the 
parallel algorithm using N  cores.

First, we compared the execution time elapsed with our new 
parallel version ( )TN  using both scenarios (A and B) while 
keeping the same workload and increasing the number of 
resources (N). Next, we ran the serial version of GH caller with 
all data sets, so we obtained T1  as a baseline time T  to com-
pare gains obtained at different times TN . We performed each 
experiment 10 times for each pileup input file and measured 
the time of program execution. Average execution time is cal-
culated taking these 10 replicates.

Memory usage.  The memory usage of GH caller is evaluated 
using the maximum resident set size (RSS memory) for each 
process during program execution. Resident set size is used to 
show how much of the memory allocated for a process is cur-
rently in main memory, including both stack and heap mem-
ory. It does not include neither swap nor memory used by 
shared libraries as long as the pages from those libraries were 
currently in memory. We obtained all these values using the 
accounting tool sacct provided by SLURM (Simple Linux 
Utility for Resource Management),31 the software used in the 
cluster to manage all the jobs submitted by the users. The 
sacct command displays accounting data for all jobs and 
job steps in the SLURM job accounting database in a variety 
of forms for analysis.

To identify the impact in memory usage caused using sub-
sets of data with a restricted size, we evaluated our application 
choosing the default chunk size of 100 MB and compared our 
results with the serial version of GH caller to find whether 
there are any gains obtained with respect to the original. In this 
case, we used only scenario A to run our experiment due to the 

fact that the differences between hardware in both scenarios 
should have no impact in memory usage. We launched the 
same experiments 5 times for each pileup input file and 
obtained the maximum RSS memory for each process meas-
ured by the SLURM accounting system during program exe-
cution. An average RSS memory size is calculated by taking all 
execution replicates.

Results
Accuracy of optimized GH caller versus updated 
SAMtools SNP caller

In the same direction to what was described by Nevado et al10 
for a previous SAMtools version, there is a strong dependency 
of SAMtools SNP caller to the average read depth when the 
level of variability and frequency-dependent neutrality tests 
are estimated, and it is much less dependant in the case of GH 
caller (Figures 3 and 4 and Supplementary Figures 4 and 5). 
As it can be observed, there are no changes in the results of 
the parallel version with respect to the accuracy of the original 
GH caller. In case of the second real data analysis (Figures 3 
and 4), it is observed that the SAMtools SNP caller has much 
stronger correlation between levels of variability, and the vari-
ance in the read depth per window is compared, suggesting 
that the differences in the levels of variability and the patterns 
of variability between GH caller and SAMtools are conse-
quence of artefactual patterns not well considered using the 
SAMtools SNP caller.

Usage of computational resources

The main objective of the experiments described here is to 
demonstrate the utility of the new application for the analysis 
of variability by improving the usage of computational 
resources. To obtain all input files used to benchmark our 
application, we converted all alignment BAM files to mpileup 
format with different read depth levels and number of indi-
viduals required.

Computing performance.  Table 2 shows the real time elapsed 
running GH caller in scenarios A and B. It can be clearly 
observed that the total execution time decreases by including 
more computational resources in both scenarios.

Supplementary Figure 1 shows the results from the 
experiments performed in scenario A (workstation). In this 
experiment, we scaled up to the total number of cores avail-
able in this server (4 cores) performing an SNP calling pro-
cess over all data sets (2I20X, 5I8X, 10I4X, and 20I2X). 
This results in an elapsed time reduced from 35 minutes 
26 seconds (2 cores) to 12 minutes 53 seconds (4 cores), 
which is a 2.5× decrease using the same input data (20I2X). 
However, potential gains are being limited due the lack of 
processing units.

The second set of experiments has been performed in sce-
nario B (cluster). In this case, we scaled up to a maximum of 64 
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cores (6 nodes). Supplementary Figure 2 shows how execution 
time can be reduced up to 20× (20I2X) by adding more com-
putational resources. We can observe how efficiency decreases 
when scaling up computational resources, the reason of which 
will be discussed in the next section.

Finally, Figure 5 compares execution time of GH caller 
using the original version with 1 core versus the parallel version 
using up to 64 cores over all data sets. Looking at the figure, we 
can conclude that regardless of input data, execution time can 

be reduced using the parallel version of GH caller together 
with all the available resources.

In conclusion, we can see that there is a significant reduc-
tion at the total execution time used by this new version of GH 
caller in both scenarios, especially with data sets with highest 
number of individuals.

Memory usage.  Table 3 shows the results of executing both GH 
caller serial (1 core) and parallel (64 cores) with input data of 

Figure 3.  The levels of variability for different statistics of variability (Theta Watterson, Theta Fu&Li, and Theta Fay&Wu) are estimated per windows of 

100 MB across the chromosome 1 using SAMtools (blue) and GH caller (red).

Figure 4.  Correlation of the levels of variability and the variance in the number of read depths per individual. The levels of variability for different statistics 

of variability (Theta Watterson, Theta Fu&Li, and Theta Fay&Wu from left to right) are estimated per windows of 100 MB across the chromosome 1 using 

SAMtools (upper plots in blue) and GH caller (bottom plots in red). A significant value indicates that the estimated variability is dependent on the read depth.



8	 Evolutionary Bioinformatics ﻿

different sizes. As we can observe in the first column, previous 
serial version of GH caller increases memory consumption 
accordingly to the size of input data: this version uses a maxi-
mum RSS memory size of 0.64 GB with an input data of 14 GB 
(case 2I20X) but more than 5 GB with an input of 20 GB 
(20I2X). As it is expected, it increases memory usage in 10× 

because the number of sequences analyzed is 10 times more 
when using data set 2I20X than data set 20I2X (see Table 1). 
This happens because this version stores all results in memory 
before writing data to disk. For the case of the parallel version, 
these values are the maximum value achieved by core. A chunk 
size of 100 MB is used as default when applying the mapping 

Table 2.  Execution time running GH caller in scenarios A (workstation) and B (cluster).

Data Size, GB Scenario A, No. of 
cores

Scenario B, No. of cores 

2 4 2 4 8 16 32 64

2I20X 14 7 m 44 s 3 m 00 s 7 m 16 s 2 m 34 s 1 m 15 s 54 s 49 s 46 s

5I8X 16 12 m 40 s 4 m 38 s 12 m 24 s 4 m 20 s 2 m 04 s 1 m 32 s 1 m 03 s 58 s

10I4X 18 21 m 32 s 7 m 43 s 21 m 44 s 7 m 27 s 3 m 46 s 2 m 23 s 1 m 32 s 1 m 20 s

20I2X 20 35 m 26 s 12 m 53 s 38 m 29 s 13 m 08 s 6 m 29 s 3 m 50 s 2 m 21 s 1 m 52 s

Figure 5.  Comparison of execution times using the original version with 1 core versus the parallel version using all the available cores in both scenarios 

A and B. We run an SNP calling process over all data sets (2I20X, 5I8X, 10I4X, and 20I2X). In all cases, execution time can be reduced using this parallel 

version of GH caller, especially using all resources from scenario B (cluster).
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process to distribute the data among all the available MPI 
worker processes. We adopted this size as a default because the 
preliminary results (Supplementary Figure 3) shown an average 
main memory usage of approximately 3 GB that can easily fit in 
commonly used infrastructures in these days. Moreover, our 
application allows to choose a custom chunk size using a com-
mand line option (-s chunk size). As it can be observed, we 
broke the previous relation between input data size and memory 
usage present in serial version. As a consequence, GH caller now 
allows to limit memory usage using different “chunk” sizes, 
regardless of the size of input data.

Maximum memory usage (RSS) per process in benchmark 
execution using scenario B: cluster. Comparison has been done 
between serial version of GH caller (1 core) and our parallel 
version using 64 cores with a default chunk size of 100 MB.

Because the chunk size employed has a direct impact with 
the memory used by our application, running this parameter 
could be useful if our hardware has a different relation between 
number of processor units and RAM memory, allowing GH 
caller to take advantage of all computational resources in plat-
forms with different bounds in this ratio (eg, commodity hard-
ware with a total of 8 GB of main memory and 8 cores has 
maximum of 1 GB of memory per processor unit). This feature 
additionally allows GH caller to use the whole memory avail-
able to the bunch of allocated processors, at the same time.

Discussion
We demonstrated the utility of the GH caller application by 
analyzing 2 different aspects: execution time and effective 
memory usage. We emphasize here that our purpose was not to 
present a discussion of the effects in genetic estimates of exper-
imental designs using different bioinformatics approaches, as 
this has been done by Nevado et al,10 but ensure that the accu-
racy of results still remains at the same level that previous ver-
sion already presented while improving execution times and 
memory requirements.

We have shown that our parallel implementation can pro-
vide a performance advantage on workstations with a limited 
number of cores and a local file system, but particularly when we 
can add more computational resources using a data-intensive 
computing system (cluster). Even though execution time can 
be considerably reduced by adding more computational 

resources, we observed a limited efficiency when we scale up 
the number of processes. We suspect that our input data set is 
still too small with respect to the number of resources 
employed. In fact, this can be seen taking as an example the 
execution time used by the larger data set (20I2X): in this 
example, total elapsed time was 1 minute and 52 seconds; 
therefore, the average time employed for every process using 
64 processes was just 1.75 seconds ( )112 / 64 . Consequently, 
gains obtained parallelizing the algorithm are masked by wait-
ing times and other overheads introduced by the MPI imple-
mentation. Furthermore, another reason for reduced scalability 
is the fact that our implementation is not optimized for paral-
lel I/O and cannot take advantage of collective operations, 
thus leading to poor performance when there are many MPI 
processes writing to the same output file.32 Future implemen-
tation could explore the possibility of applying different tech-
niques already employed by specialized input/output libraries 
in HPC such as Parallel netCDF33 and HDF534: collective 
input/output operations, data reordering to improve write per-
formance, asynchronous read/write, buffering, and/or lazy 
write methods. However, for this release, we preferred to focus 
our efforts in providing solutions where users having access to 
a workstation or cluster could benefit.

In terms of performance, it must be emphasized that the 
whole elapsed time of the variant analysis pipeline using GH 
caller has been reduced as a result of the work done at the 
internal “base-calling” step. Consequently, the time employed 
at the first step—running SAMtools mpileup command—
becomes more relevant. We propose 2 different approaches to 
reduce this time: first option could be using a new method to 
generate the mpileup file. This step can be done by dividing 
input data into regions of interest and performing this reduc-
tion process in parallel. Based on this idea, other applications 
tried to speed up this step using different strategies,35 so via-
bility and gains of this solution should be explored. Second 
approach is to extend the functionality of current application 
and provide new methods to read BAM files directly in a more 
efficient way than SAMtools mpileup command does, taking 
advantage of data parallelism property already cited.

In respect to the accuracy of the estimation of the new opti-
mized GH caller and their comparison with SAMtools SNP 
caller, the new optimized GH caller is identical, in terms of 

Table 3.  Maximum memory usage per process using scenario B, cluster.

Data Size, GB Serial version (1 core) Parallel version (64 cores)

Max. RSS, MB Max. RSS, MB

2I20X 14 640.78 2548.54

5I8X 16 1450.15 2522.96

10I4X 18 2763.65 2839.49

20I2X 20 5276.84 3009.27

Abbreviation: RSS, resident set size.
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output results, to the previous serial version of GH caller. The 
levels of variability are weakly affected by the read depth at the 
studied ranges.10 The strong differences in the levels of varia-
bility between GH caller and SAMtools SNP caller are caused 
by the different objectives to what they were designed. 
Although SAMtools SNP caller is designed and optimized to 
detect true SNPs in a sample, GH caller is designed to estimate 
accurately the level of variability, ie, does not matter if many 
SNPs are lost if the variability and the frequency of the variants 
are accurately estimated. Moreover, it is worth to mention that 
GH caller is designed for resequencing data of diploid individu-
als, and that while it can be used for other experiments, some 
specific biases need to be taken into account, eg, allele-specific 
expression in RNA-Seq data could affect the variability esti-
mates obtained from RNA.

In conclusion, we have presented a first parallel version of 
GH caller that can significantly reduce total execution time and 
CPU time, but maintaining the quality of results. We have pro-
posed a parallelization strategy that guarantees a good speedup 
with a limited number of processors and can be executed in 
either a cluster or a workstation environment. Moreover, this 
new version of GH caller is not limited by input or output data 
size, and the memory available of all resources can potentially 
be used. With our contribution, GH Caller allows taking the 
full advantage of computational resources available both in 
clusters and workstations.

Download and Usage
The latest stable software files, both the initial (sequential)  
and the new (parallel) versions, including sample files  
and documentation, are available from https://github.com/
CRAGENOMICA/pGHcaller. There you also will find how 
to compile and run the code as well as some example data sets.
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