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Abstract

African American (AA) women have an excess breast cancer mortality than European American (EA) women. To investigate 
the contribution of tumor biology to this survival health disparity, we compared gene expression profiles in breast tumors 
using RNA sequencing data derived from 260 AA and 155 EA women who were prospectively enrolled in the Southern 
Community Cohort Study (SCCS) and developed breast cancer during follow-up. We identified 59 genes (54 protein-coding 
genes and 5 long intergenic non-coding RNAs) that were expressed differently between EA and AA at a stringent false 
discovery rate (FDR) < 0.01. A gene signature was derived with these 59 genes and externally validated using the publicly 
available Cancer Genome Atlas (TCGA) data from180 AA and 838 EA breast cancer patients. Applying C-statistics, we found 
that this 59-gene signature has a high discriminative ability in distinguishing AA and EA breast cancer patients in the TCGA 
dataset (C-index = 0.81). These findings may provide new insight into tumor biological differences and the causes of the 
survival disparity between AA and EA breast cancer patients.

Introduction
Breast cancer is the most common cancer in women world-
wide, with more than 2 million new cases diagnosed annually 
(1). Due to advances in early detection and improvements in 
treatment, breast cancer survival has increased substantially 
over the last three decades, particularly in developed countries 
where the 5-year survival rates for invasive breast cancer have 
reached 90% and higher (2). However, there is a significant ra-
cial disparity in breast cancer survival, with African American 
(AA) patients having a higher breast cancer mortality rate than 
European American (EA) patients. This disparity could be par-
tially attributed to differences in breast cancer biology between 
AA and EA (3).

Several previous studies have profiled gene expression in 
breast cancer tissues to investigate possible distinct biological 
mechanisms and molecular pathways of breast carcinogenesis 
and prognosis between AA and EA women (4–8). A recent study 
analyzed racial differences in the expression levels of 200 genes, 

including 50 genes from the PAM50 panel, in breast cancer tis-
sues collected from 495 AA and 478 EA patients included in the 
Carolina Breast Cancer Study (7). In another recent study, RNA 
sequencing (RNA-Seq) data generated from the breast cancer 
tissues of 154 AA and 774 EA breast cancer patients included in 
the Cancer Genome Atlas (TCGA) were analyzed (4). Both studies 
identified genes that were differentially expressed between AA 
and EA patients. However, none of these studies rigorously 
cross-validated their findings using an independent dataset, 
and thus some of the reported observations could be spurious 
due to type I errors.

In this study, we used RNA-Seq data generated from a large 
collection of breast tumors—from 260 AA and 155 EA patients 
from the Southern Community Cohort Study (SCCS)—to iden-
tify a gene signature that best differentiates between these two 
patient groups. We constructed a 59-genes signature using the 
SCCS data and externally validated this gene signature with 
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TCGA data by showing that this signature discriminates be-
tween tumors from AA and EA patients. Furthermore, we evalu-
ated the association of the genes included in this signature with 
overall survival among AA or EA breast cancer patients. None 
of these genes, however, were significantly associated with sur-
vival after adjusting for multiple comparisons.

Methods

Study population
Breast cancer patients included in the current project are from the 
SCCS, a population-based, prospective cohort of 85 806 participants aged 
40–79  years at recruitment from 12 southeastern states in the United 
States, recruited between 2002 and 2009 (9,10). Ascertainment of incident 
breast cancer cases among SCCS participants was conducted through an-
nual linkage with state cancer registries in the SCCS catchment area. Data 
related to cancer diagnosis and treatment, including stage of diagnosis, 
first-course treatment, and tumor estrogen receptor (ER), progesterone re-
ceptor (PR), and human epidermal growth factor receptor 2 (HER2) status 
were obtained from the state cancer registries.

Gene expression profiling and data processing

SCCS data
Gene expression levels in SCCS samples were derived from RNA-Seq of 
total RNA isolated from formalin-fixed paraffin-embedded (FFPE) breast 
cancer tissues. Total RNA was extracted and purified using Qiagen’s 
miRNeasy FFPE Kit. The quantity and quality of the RNA samples ex-
tracted from tumor tissue FFPE sections were evaluated using Nanodrop 
(E260, E260/E280 ratio, spectrum 220–320 nm) and were separated on an 
Agilent BioAnalyzer. Both Ribo-Zero and RNase H were used for rRNA de-
pletion. Illumina TruSeq RNA sample Prep Kit v2 was used to prepare a 
sequencing library, and HiSeq 2000 was used for sequencing. Each sample 
was sequenced pair-ended with a read length of 100 bp. A minimum of 
10M reads was obtained for each sample. RNA-Seq data were processed 
following the mRNA analysis pipeline of TCGA GDC (https://docs.gdc.
cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/). 
A two-pass method of STAR (11) was used for raw data alignment to the 
human reference genome (hg38). RNA expression levels were determined 
from aligned BAM files using HT-Seq-Count (12). The GENCODE v22 was 
used for coding gene and noncoding RNAs annotation in the human 
genome (13). Gene expression levels were measured using fragments 
per kilobase of transcripts per million mapped reads (FPKM), then log2-
transformed after excluding genes that were not expressed in over half of 
the samples (median FPKM = 0). Quantile normalization was performed 
to standardize the expression level to the same scale. Probabilistic esti-
mation of expression residuals factors was calculated to correct for batch 
effects and other potential experimental confounders (14). In this study, 
we only investigated protein-coding genes and lincRNAs.

The molecular intrinsic subtype of breast cancer (luminal A, luminal 
B, basal-like, HER2-enriched, and normal-like) was determined following 
the strategy of Giovanni’s work using the PAM50 classifier (15,16) and im-
plemented using R package genefu (17).

TCGA data
Breast cancer data from TCGA, which are publicly available from the NCI 
GDC data portal (https://portal.gdc.cancer.gov/), was used in this study 
as an independent validation set. We obtained the most updated clin-
ical information from the TCGA Pan-Cancer Clinical Data Resource (18). 
HTSeq-FPKM data for TCGA breast cancer samples were downloaded 
as gene expression profiles and for further analysis, by using R package 
TCGAbiolinks (12,19). Principal component analyses were conducted using 
EIGENSTRAT bases on genotype data from TCGA samples (20). Using the 
1000 Genomes Project data as reference (21), we used the first and second 
principal components of TCGA samples to determine race and kept those 
AA and EA samples for subsequent analyses.

TCGA RNA-Seq gene expression data were processed following the 
same transformation, normalization, and subtyping steps applied to the 
SCCS data. We used the TCGA breast cancer data as an external validation 
set for our race-differentiated gene signature identified from the SCCS.

Statistical analyses
All statistical analyses were performed in R 3.6.1. Differences in demo-
graphic and clinicopathological characteristics between AA and EA pa-
tients were assessed with t-test or nonparametric Wilcoxon rank-sum 
test for continuous variables. Binary and categorical data were analyzed 
with chi-square test. Univariable overall survival analyses were conducted 
using Kaplan–Meier estimates and log-rank tests. The Cox proportional 
hazards were used for multivariable modeling.

Gene signature development and validation
Using data from the SCCS, we identified genes that were differentially ex-
pressed between AA and EA breast cancer patients using linear regression 
models, adjusting for age at diagnosis, PAM50 subtypes, tumor, nodes, and 
metastases stages, probabilistic estimation of expression residuals fac-
tors, and batch effect. A false discovery rate (FDR) of 0.01 was employed 
to account for multiple testing. Penalized logistic regression with ridge 
regularization was used to reduce the prediction variance and overcome 
the potential problem of multicollinearity by shrinking the model coef-
ficients when building the race-differentiated gene expression signature 
(22). Cross-validation was used for the tuning parameter selection.

To externally validate this gene signature derived from the SCCS, we 
used data from TCGA. The identified gene signature was fitted to the TCGA 
gene expression data to predict patient race (AA versus EA). Ridge regres-
sion was used instead of lasso or elastic net because the purpose was to 
validate the gene signature post model finalization; therefore no further 
variable selection should be performed at this step. The gene signature 
was then evaluated in terms of both discrimination and calibration. The 
C-statistic was calculated to assess the predictive accuracy of the entire 
signature in discriminating AA and EA breast cancer in this external val-
idation set. Calibration of the gene signature was assessed graphically in a 
calibration graph by plotting the observed outcomes against the predicted 
probabilities.

Survival analyses
The race-differentiated genes identified above were assessed for their 
associations with breast cancer survival in the SCCS. Allowing for reten-
tion of correlated genes, we used elastic net penalized Cox regression to 
identify a subset of the race-differentiated genes that were prognostic of 
breast cancer survival, adjusting for clinical variables, including age at 
diagnosis, stage, race, ER, PR, and HER2. Variable selection was achieved 
through elastic net-penalized partial likelihood, where both mixing and 
overall shrinkage tuning parameters are simultaneously cross-validated.

Results

Study samples

The demographic and clinical characteristics are summarized 
separately for SCCS and TCGA patients in Table  1. A  total of 
415 SCCS female participants (260 AA and 155 EA) with breast 
cancer were included in the study. The median follow-up period 
in the SCCS was 132 months (range, 7–177 months). AA cases 

Abbreviations	

AA	 African American
EA	 European American
ER	 estrogen receptor
FDR	 false discovery rate
FFPE	 formalin-fixed paraffin-embedded
GO	 Gene Ontology
HER2	 human epidermal growth factor re-

ceptor 2
PR	 progesterone receptor
RNA-Seq	 RNA sequencing
SCCS	 Southern Community Cohort Study
TCGA	 the Cancer Genome Atlas

TNBC	 triple negative breast cancer.
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were diagnosed at a younger age than EA cases in both the SCCS 
(P = 0.029) and TCGA (P = 0.007). Using the PAM50 classifier, more 
AA patients were classified as basal-like and HER2-enriched 
breast cancer subtypes than EA patients (basal-like: 25.8% 
versus 20.6% in the SCCS, 37.2% versus 14.3% in TCGA; HER2-
enriched: 11.2% versus 7.7% in the SCCS, 12.2% versus 8.9% in 
TCGA). Fewer AA patients were classified as luminal A and lu-
minal B breast cancer subtypes than EA patients (luminal A: 
43.1% versus 50.3% [P = 0.154] in the SCCS, 26.7% versus 48.9% 
[P < 0.001] in TCGA; luminal B: 13.8% versus 15.5% [P = 0.638] in 
the SCCS, 18.9% versus 21.5% [P = 0.423] in TCGA). More AA pa-
tients were classified as triple negative breast cancer (TNBC) 
subtype than EA patients (18.1% versus 13.5% [P = 0.206] in the 
SCCS; 18.3% versus 8.7% [P = 0.0016] in TCGA). These differences 
were statistically significant in TCGA but not in the SCCS.

Race-differentiated gene signature in breast cancer 
tumor tissues

We identified 19  065 genes (16  586 protein-coding and 2479 
lincRNAs) that were expressed in over half of the SCCS sam-
ples. Of these, 2001 (10.5%) were differentially expressed in EA 
and AA at a nominal P value < 0.05, among which 59 genes (54 
protein-coding genes and 5 lincRNAs) reached an FDR-adjusted 
P value < 0.01 (Table 2). Of these 59 genes, 31 genes expressed 
significantly higher in AA than EA women, while the remaining 
28 genes expressed significantly higher in EA than AA women. 
The top three differentially expressed genes which expressed 

higher in AA were TAS2R43 (OMIM 612668), NUTM2F (no OMIM 
ID), and PWP2 (OMIM 601475), while the top three differen-
tially expressed genes which expressed higher in EA were 
PM20D1(OMIM 617124), BIRC7 (OMIM 605737), and LOC102724159 
(ENSG00000275464, no OMIM). Hierarchical clustering of this 
gene set shows a good performance of the enrichment for both 
race and different subtypes (Figure 1). All 59 of these genes were 
included in constructing the race-differentiated gene signature. 
Penalized logistic regression model with ridge regularization 
was implemented to shrink the coefficients in order to reduce 
the variance in prediction.

External validation in TCGA

We validated our 59-gene signature by fitting the model to the 
independent TCGA gene expression data to predict patient race 
(AA versus EA). The gene signature was then evaluated in terms 
of both discrimination and calibration. The concordance stat-
istic (C-statistic, equal to the area under the receiver operating 
characteristic curve, AUC) was computed to evaluate overall 
prediction accuracy. At the external validation in TCGA breast 
cancer data, the C-statistic for the 59-gene signature was 0.81, 
indicating high discriminative ability of the gene signature to dis-
tinguish between AA and EA breast cancer patients. Calibration 
is the degree of correspondence between the estimated prob-
ability produced by the gene signature and the actual observed 
probability. The calibration curve of the gene signature was con-
structed with TCGA data and shown in Supplementary Figure 1, 

Table 1.  Clinicopathological characteristics of breast cancer patients according to race groups in the SCCS and TCGA

Variable SCCS (n = 415) TCGA (n = 1018)

Race AA EA P value AA EA P value

No. of subjects (%) 260 (62.7) 155 (37.3)  180 (17.7) 838 (82.3)  
Age at diagnosis, mean (SD) 58.5 (9.0) 60.6 (9.4) 0.029 56.3 (13.5) 59.2 (13.1) 0.007
PAM50 subtype, no. (%)       
  Luminal A 112 (43.1) 78 (50.3) 0.474 48 (26.7) 410 (48.9) <0.001
  Luminal B 36 (13.8) 24 (15.5) 34 (18.9) 180 (21.5)
  Basal-like 67 (25.8) 32 (20.6) 67 (37.2) 120 (14.3)
  HER2-enriched 29 (11.2) 12 (7.7) 22 (12.2) 75 (8.9)
  Normal-like 16 (6.2) 9 (5.8) 9 (5.0) 53 (6.3)
TNBC, no. (%)       
  Yes 47 (18.1) 21 (13.5) 0.285 33 (18.3) 73 (8.7) <0.001
  Noa 213 (81.9) 134 (86.5) 147 (81.7) 765 (91.3)
ER, no. (%)       
  Negative 85 (33.3) 36 (24.8) 0.095 69 (39.2) 148 (18.6) <0.001
  Positive 170 (66.7) 109 (75.2) 107 (60.8) 648 (81.4)
  Undeterminedb 5 10  4 42  
PR, no. (%)       
  Negative 110 (43.7) 52 (36.1) 0.173 88 (50) 229 (28.9) <0.001
  Positive 142 (56.3) 92 (63.9) 88 (50) 564 (71.1)
  Undeterminedb 8 11  4 45  
HER2, no. (%)       
  Negative 165 (85.5) 97 (84.3) 0.914 74 (83.1) 450 (77.4) 0.378
  Positive 28 (14.5) 18 (15.7) 16 (16.9) 131 (22.6)
  Undeterminedb 67 40  91 257  
AJCC stage, no. (%)       
  Stage I 74 (36.1) 65 (51.2) 0.02 32 (18.2) 145 (17.7) 0.614
  Stage II 83 (40.5) 46 (36.2) 106 (60.2) 465 (56.6)
  Stage III 38 (18.5) 14 (11.0) 34 (19.3) 196 (23.9)
  Stage IV 10 (4.9) 2 (1.6) 4 (2.3) 15 (1.8)
  Stage X or unknown 55 28  4 19  

aAll participants with undetermined for any or all the three components were included in the ‘No’ group.
bUndetermined or not evaluated—not included in statistical tests to evaluate racial differences.

http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgaa035#supplementary-data
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Table 2.  The set of 59 genes found to be significantly differential expressed in the SCCS at FDR-adjusted P value < 0.01

ENSEMBL ID Gene symbol P value (SCCS) FDR (SCCS) P value (TCGA)

ENSG00000255374 TAS2R43 <0.001 <0.001 <0.001
ENSG00000130950 NUTM2F <0.001 <0.001 <0.001
ENSG00000241945 PWP2 <0.001 <0.001 <0.001
ENSG00000259604 Lnc-ALDH1A3-1 <0.001 0.005 <0.001
ENSG00000160221 GATD3A <0.001 <0.001 <0.001
ENSG00000176681 LRRC37A <0.001 <0.001 <0.001
ENSG00000142178 SIK1 <0.001 0.001 <0.001
ENSG00000134184 GSTM1 <0.001 <0.001 <0.001
ENSG00000261701 HPR <0.001 0.008 <0.001
ENSG00000158488 CD1E <0.001 <0.001 <0.001
ENSG00000196436 NPIPB15 <0.001 <0.001 <0.001
ENSG00000173678 SPDYE2B <0.001 <0.001 <0.001
ENSG00000224635 AL391095.1 <0.001 <0.001 <0.001
ENSG00000106113 CRHR2 <0.001 0.004 <0.001
ENSG00000105499 PLA2G4C <0.001 <0.001 <0.001
ENSG00000204147 ASAH2B <0.001 0.002 <0.001
ENSG00000197822 OCLN <0.001 0.008 <0.001
ENSG00000197728 RPS26 <0.001 <0.001 <0.001
ENSG00000168255 POLR2J3 <0.001 <0.001 <0.001
ENSG00000203666 EFCAB2 <0.001 0.003 <0.001
ENSG00000106686 SPATA6L <0.001 <0.001 <0.001
ENSG00000152689 RASGRP3 <0.001 0.008 <0.001
ENSG00000178295 GEN1 <0.001 <0.001 <0.001
ENSG00000215908 CROCCP2 <0.001 <0.001 <0.001
ENSG00000154237 LRRK1 <0.001 0.001 <0.001
ENSG00000026950 BTN3A1 <0.001 0.007 <0.001
ENSG00000149292 TTC12 <0.001 0.004 <0.001
ENSG00000198060 MARCH5 <0.001 0.004 <0.001
ENSG00000154096 THY1 <0.001 <0.001 <0.001
ENSG00000111671 SPSB2 <0.001 0.008 <0.001
ENSG00000135723 FHOD1 <0.001 0.004 <0.001
ENSG00000150477 KIAA1328 <0.001 0.009 <0.001
ENSG00000231389 HLA-DPA1 <0.001 0.008 <0.001
ENSG00000131669 NINJ1 <0.001 0.009 <0.001
ENSG00000181481 RNF135 <0.001 0.009 <0.001
ENSG00000203747 FCGR3A <0.001 0.002 <0.001
ENSG00000144026 ZNF514 <0.001 0.001 <0.001
ENSG00000186468 RPS23 <0.001 <0.001 <0.001
ENSG00000175745 NR2F1 <0.001 0.009 <0.001
ENSG00000171503 ETFDH <0.001 0.002 <0.001
ENSG00000068654 POLR1A <0.001 <0.001 <0.001
ENSG00000185684 EP400P1 <0.001 <0.001 <0.001
ENSG00000279457 WASH9P <0.001 0.004 <0.001
ENSG00000280670 CCDC163 <0.001 0.008 <0.001
ENSG00000149089 APIP <0.001 <0.001 <0.001
ENSG00000273136 NBPF26 <0.001 <0.001 <0.001
ENSG00000140263 SORD <0.001 <0.001 <0.001
ENSG00000277203 F8A1 <0.001 <0.001 <0.001
ENSG00000223865 HLA-DPB1 <0.001 <0.001 <0.001
ENSG00000280071 GATD3B <0.001 <0.001 <0.001
ENSG00000019169 MARCO <0.001 <0.001 <0.001
ENSG00000262202 Lnc-GRAP-3 <0.001 <0.001 <0.001
ENSG00000132207 SLX1A <0.001 <0.001 <0.001
ENSG00000215374 FAM66B <0.001 0.001 <0.001
ENSG00000016402 IL20RA <0.001 <0.001 <0.001
ENSG00000170160 CCDC144A <0.001 0.005 <0.001
ENSG00000275464 LOC102724159 <0.001 <0.001 <0.001
ENSG00000101197 BIRC7 <0.001 0.008 <0.001
ENSG00000162877 PM20D1 <0.001 <0.001 <0.001
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available at Carcinogenesis Online. The Brier score measures dis-
agreement between the observed outcome and a prediction and 
is the mean squared error ranging from 0 to 1, where the lower 
Brier score indicates the better calibration of the predictions. 
The Brier score of our 59-gene signature was 0.064, indicating 
high reliability and prediction accuracy of the gene signature to 
distinguish between AA and EA breast cancer patients.

Survival analysis

Using the Cox proportional hazards regression model, adjusting 
for age at diagnosis, subtype, ER, PR, HER2, and stage, we in-
vestigated the association of each gene from our 59 race-
differentiated genes with overall survival (Supplementary Table 
1, available at Carcinogenesis Online) among both AA and EA 
women. Using a P value of 0.10 as the tentative threshold for a 
significant association in the SCCS, we found that 10 of the 59 
genes were associated with overall survival in AA but not in EA, 
while 7 genes were associated with overall survival in EA but not 
in AA. None of these genes were significantly associated with 
breast cancer survival after adjusting for multiple comparisons.

Race-differentiated gene signature by breast cancer 
subtypes

We investigated differentially expressed genes between AA 
and EA patients by three different breast cancer subtypes: (i) 
basal-like breast cancer subtype; (ii) luminal breast cancer 
subtype; and (iii) TNBC subtype. The analysis strategy was the 
same as the overall breast cancer patients. Among those breast 
cancer patients with both basal-like and TNBC subtypes, no 
gene reached an FDR-adjusted P value < 0.05. Within the pa-
tients with luminal breast cancer subtype, 1847 (9.7%) were 

differentially expressed in EA and AA at a nominal P value < 0.05, 
among which 40 genes (36 protein-coding genes and 4 lincRNAs) 
reached an FDR-adjusted P value < 0.01 (Supplementary Table 
2, available at Carcinogenesis Online). Twenty-seven of these 40 
genes were in the overall 59 race-differentiated genes. We built 
a luminal-subtype-specific race-differentiated gene signature 
with these 40 genes by penalized logistic regression model with 
ridge regularization and externally validated with TCGA data. At 
the external validation in TCGA luminal breast cancer data, the 
C-statistic for the 40-gene signature was 0.80 and the Brier score 
was 0.21.

Discussion
In this study, we investigated differentially expressed genes 
between AA and EA breast cancer patients by using RNA-Seq 
data from the SCCS and using TCGA data for validation. For the 
first time, a race-differentiated gene signature was constructed 
and validated externally to predict breast cancer patient race. 
Moreover, we performed survival analyses to explore the associ-
ation between gene expression and overall survival.

In total, we identified 59 genes that showed significant dif-
ferences in their expression levels between AA and EA breast 
cancer at an FDR-adjusted P value < 0.01. The results described 
in our study were quite consistent with previous studies. For ex-
ample, 19 of 59 differentially expressed genes identified in our 
study were also differentially expressed at an FDR-adjusted P 
value of < 0.05 in Huo’s study (4).

Within the 59 race-differentiated genes, we found that sev-
eral genes play a critical role in the immune system, such as 
IL20RA, MARCO, BTN3A1, HLA-DPA1 and HLA-DPB1. Some genes 

Figure 1.  Hierarchical clustering of 59 genes significantly differentially expressed between AA and EA patients after adjusting for age at diagnosis, PAM50 subtypes, 

tumor, nodes, and metastases stages, probabilistic estimation of expression residuals factors and batch effects for both the SCCS and TCGA.

http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgaa035#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgaa035#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgaa035#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgaa035#supplementary-data
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were related to the prognosis of breast cancer, such as SORD and 
FAM3A. SORD is a key enzyme in the polyol pathway and plays 
an important role in the development of diabetic complications 
(23). SORD is usually used as the measurement of epithelial-to-
mesenchymal transition suppression. Polyol pathways repre-
sent a molecular link between glucose metabolism and cancer 
differentiation. The overexpression of SORD may cause poor 
prognoses of cancer (24). FAM3A belongs to a family of cytokines 
containing four genes (FAM3A, FAM3B, FAM3C and FAM3D) that 
are mainly expressed in highly proliferative tissue, and it has 
been suggested that it plays a core role in cell proliferation, and 
functions as an activator of the ERK1/2 and p38MAPK signaling 
pathways (25,26). Interestingly, PWP2 which was more highly 
expressed in AA and LOC102724159 which was more highly ex-
pressed in EA are paralogous genes. Among the genes that were 
strongly associated with overall survival in both the SCCS and 
TCGA data, SPSB2 regulated protein degradation by acting as 
adaptors for ubiquitin ligases (27).

Our study focused on the discovery of the biological basis be-
hind the race/ethnic difference between AA and EA breast cancer 
patients instead of the discovery of specific genes and as the cumu-
lative effect of multiple genes rather than a single gene effect de-
termines cancer phenotypes, a combination of race-differentiated 
genes may simultaneously contribute to the biological differ-
ence of racial disparity in breast cancer. We performed a Gene 
Ontology (GO) biological processes enrichment analysis with the 
59 race-differentiated genes (Supplementary Table 3, available at 
Carcinogenesis Online) using WebGestalt (28). Forty-three GO terms 
were enriched at nominal P value < 0.05 and most of these GO 
terms focus on endonuclease activity, endodeoxyribonuclease ac-
tivity and antigen binding (Supplementary Figure 2, available at 
Carcinogenesis Online). Endonuclease activity may affect the base 
excision repair (BER) pathway (29), which was reported different 
between AA and EA (30).

There are two limitations in the present study. First, our 
RNA-Seq data in the SCCS were generated from FFPE samples, 
and thus, gene expression in some genes, particularly those 
with low expression levels, may not be reliably measured due to 
the processing and storage of FFPE samples (31,32). The second 
limitation is that only overall survival data were collected in the 
SCCS.

Conclusion
In this study, we analyzed racial differences in gene expression 
using RNA-Seq data generated from breast cancer samples in-
cluded in the SCCS. We identified 59 that were differentially 
expressed in AA and EA breast cancer samples included in the 
SCCS. A gene signature constructed using these genes were ex-
ternally validated using TCGA data yielding a C-statistic of 0.81 
and the Brier score of 0.064. These findings provide insight into 
the biological differences in tumors and the survival disparity 
between AA and EA breast cancer patients.

Supplementary material
Supplementary data are available at Carcinogenesis online.
Supplementary Figure 1. Calibration plot of the 59-gene sig-
nature model with TCGA data to diagnose lack of fit. A calibra-
tion curve describes the relationship between predicted values 
(x-axis) and the truth (y-axis). The solid curve is for the fitted 
logistic regression model, and the dotted curve is its loess 
smoother. The diagonal line represents the line of perfect cali-
bration. If the smoother lies close to the diagonal, the model is 

well calibrated. The smoother shows a slight deviation from the 
diagonal line. The Brier score of the gene signature was 0.064, 
indicating high reliability and prediction accuracy of the gene 
signature to distinguish between AA and EA breast cancer 
patients.
Supplementary Figure 2. Bar chart for enrichment ratios of 43 
GO terms which were enriched at nominal P-value < 0.05 from 
59 race-differentiated genes.
Supplementary Table 1. Association of selected genes with 
overall survival among breast cancer patients
Supplementary Table 2. The set of 40 genes found to be signifi-
cantly differential expressed between AA and EA in the Luminal 
subtype breast cancer patients of SCCS at an FDR-adjusted P 
value < 0.01.
Supplementary Table 3. Gene Ontology biological processes en-
richment results with the 59 race-differentiated genes

Funding
Research reported in this publication was supported in part by 
grants from the National Institutes of Health (R01CA202981 and 
U01CA202929). The content is solely the responsibility of the au-
thors and does not necessarily represent the official views of 
the National Institutes of Health. SCCS data collection was per-
formed by the Survey and Biospecimen Shared Resource which 
is supported in part by the Vanderbilt-Ingram Cancer Center (P30 
CA68485). The study used resources at the Advanced Computing 
Center for Research and Education (ACCRE) at Vanderbilt 
University, which is supported in part by the National Institutes 
of Health S10 Shared Instrumentation (1S10OD023680).

Acknowledgement
The authors thank Marshal Younger for assistance with editing 
and manuscript preparation.
Conflict of Interest Statement: None declared.

References
	1.	 Bray, F. et al. (2018) Global cancer statistics 2018: GLOBOCAN estimates 

of incidence and mortality worldwide for 36 cancers in 185 countries. 
CA. Cancer J. Clin., 68, 394–424.

	2.	 Howlader, N.N.A. et al. (eds) (2019) SEER Cancer Statistics Review, 1975–
2016. National Cancer Institute, Bethesda, MD. https://seercancergov/
csr/1975_2016/ (October 2019, date last accessed).

	3.	 Gupta, V. et al. (2018) Racial disparity in breast cancer: can it be mat-
tered for prognosis and therapy. J. Cell Commun. Signal., 12, 119–132.

	4.	 Huo, D. et al. (2017) Comparison of breast cancer molecular features 
and survival by African and European ancestry in the Cancer Genome 
Atlas. JAMA Oncol., 3, 1654–1662.

	5.	 Martin, D.N. et al. (2009) Differences in the tumor microenvironment 
between African-American and European-American breast cancer pa-
tients. PLoS One, 4, e4531.

	6.	 Field, L.A. et al. (2012) Identification of differentially expressed genes 
in breast tumors from African American compared with Caucasian 
women. Cancer, 118, 1334–1344.

	7.	 Parada, H. Jr et al. (2017) Race-associated biological differences among 
luminal A and basal-like breast cancers in the Carolina Breast Cancer 
Study. Breast Cancer Res., 19, 131.

	8.	 D’Arcy,  M. et  al. (2015) Race-associated biological differences among 
luminal A breast tumors. Breast Cancer Res. Treat., 152, 437–448.

	9.	 Signorello,  L.B. et  al. (2010) The Southern Community Cohort Study: 
investigating health disparities. J. Health Care Poor Underserved, 21(1 
suppl.), 26–37.

	10.	Signorello,  L.B. et  al. (2005) Southern Community Cohort Study: 
establishing a cohort to investigate health disparities. J. Natl. Med. 
Assoc., 97, 972–979.

http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgaa035#supplementary-data
http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgaa035#supplementary-data
https://seercancergov/csr/1975_2016/
https://seercancergov/csr/1975_2016/


J.Ping et al.  |  893

	11.	Dobin,  A. et  al. (2013) STAR: ultrafast universal RNA-seq aligner. 
Bioinformatics, 29, 15–21.

	12.	Anders, S. et al. (2015) HTSeq—a Python framework to work with high-
throughput sequencing data. Bioinformatics, 31, 166–169.

	13.	Harrow, J. et al. (2012) GENCODE: the reference human genome annota-
tion for The ENCODE Project. Genome Res., 22, 1760–1774.

	14.	Stegle, O. et al. (2010) A Bayesian framework to account for complex 
non-genetic factors in gene expression levels greatly increases power 
in eQTL studies. PLoS Comput. Biol., 6, e1000770.

	15.	Parker, J.S. et al. (2009) Supervised risk predictor of breast cancer based 
on intrinsic subtypes. J. Clin. Oncol., 27, 1160–1167.

	16.	Ciriello, G. et al.; TCGA Research Network. (2015) Comprehensive mo-
lecular portraits of invasive lobular breast cancer. Cell, 163, 506–519.

	17.	Gendoo,  D.M. et  al. (2016) Genefu: an R/Bioconductor package for 
computation of gene expression-based signatures in breast cancer. 
Bioinformatics, 32, 1097–1099.

	18.	Liu,  J. et al.; Cancer Genome Atlas Research Network. (2018) An inte-
grated TCGA pan-cancer clinical data resource to drive high-quality 
survival outcome analytics. Cell, 173, 400.e11–416.e11.

	19.	Colaprico, A. et al. (2016) TCGAbiolinks: an R/Bioconductor package for 
integrative analysis of TCGA data. Nucleic Acids Res., 44, e71.

	20.	Price, A.L. et al. (2006) Principal components analysis corrects for strati-
fication in genome-wide association studies. Nat. Genet., 38, 904–909.

	21.	Auton, A. et al.; 1000 Genomes Project Consortium. (2015) A global ref-
erence for human genetic variation. Nature, 526, 68–74.

	22.	Jain, R.K. (1985) Ridge regression and its application to medical data. 
Comput. Biomed. Res., 18, 363–368.

	23.	Carr, I.M. et al. (1995) Molecular genetic analysis of the human sorbitol 
dehydrogenase gene. Mamm. Genome, 6, 645–652.

	24.	Schwab, A. et al. (2018) Polyol pathway links glucose metabolism to the 
aggressiveness of cancer cells. Cancer Res., 78, 1604–1618.

	25.	Peng, X. et al. (2016) Identification of FAM3D as a new endogenous chemo-
taxis agonist for the formyl peptide receptors. J. Cell Sci., 129, 1831–1842.

	26.	Zhu, Y. et al. (2002) Cloning, expression, and initial characterization of 
a novel cytokine-like gene family. Genomics, 80, 144–150.

	27.	Kuang,  Z. et  al. (2010) The SPRY domain-containing SOCS box pro-
tein SPSB2 targets iNOS for proteasomal degradation. J. Cell Biol., 190, 
129–141.

	28.	Liao, Y. et al. (2019) WebGestalt 2019: gene set analysis toolkit with re-
vamped UIs and APIs. Nucleic Acids Res, 47, W199–W205. 

	29.	Kim,  Y.J. et  al. (2012) Overview of base excision repair biochemistry. 
Curr. Mol. Pharmacol., 5, 3–13.

	30.	Gao, R. et al. (2008) Ethnic disparities in Americans of European descent 
versus Americans of African descent related to polymorphic ERCC1, 
ERCC2, XRCC1, and PARP1. Mol. Cancer Ther., 7, 1246–1250.

	31.	Groelz,  D. et  al. (2013) Non-formalin fixative versus formalin-fixed 
tissue: a comparison of histology and RNA quality. Exp. Mol. Pathol., 94, 
188–194.

	32.	von Ahlfen, S. et al. (2007) Determinants of RNA quality from FFPE sam-
ples. PLoS One, 2, e1261.


