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Abstract 
Background: n-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
catalyses the NAD+-dependent oxidative phosphorylation of n-
glyceraldehyde-3-phosphate to 1,3-diphospho-n-glycerate and its 
reverse reaction in glycolysis and gluconeogenesis. 
Methods: Four distinct crystal structures of human n-Glyceraldehyde-
3-phosphate dehydrogenase (HsGAPDH) have been determined from 
protein purified from the supernatant of HEK293F human epithelial 
kidney cells. 
Results: X-ray crystallography and mass-spectrometry indicate that 
the catalytic cysteine of the protein (HsGAPDH Cys152) is partially 
oxidised to cysteine S-sulfonic acid. The average occupancy for the 
Cys152-S-sulfonic acid modification over the 20 crystallographically 
independent copies of HsGAPDH across three of the crystal forms 
obtained is 0.31±0.17. 
Conclusions: The modification induces no significant structural 
changes on the tetrameric enzyme, and only makes aspecific contacts 
to surface residues in the active site, in keeping with the hypothesis 
that the oxidising conditions of the secreted mammalian cell 
expression system result in HsGAPDH catalytic cysteine S-sulfonic acid 
modification and irreversible inactivation of the enzyme.
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Introduction
Mammalian HEK293F cells are routinely used in conjunction 
with secreted protein expression vectors for recombinant  
protein production1. They owe their popularity to ease of handling, 
robust growth rate, excellent transfectability, high capacity 
for recombinant protein expression, low-cost media require-
ments and low levels of secreted contaminants2. Of course, in 
absence of secretion of the desired recombinant protein at 
hand, contaminants are the only proteins present in recom-
binant protein expression systems3,4. In the course of a research 
effort aimed at the purification of recombinant Chaetomium  
thermophilum ERAD mannosidase CtHTM1P from the super-
natant of HEK293F cells, we purified, crystallised and deter-
mined crystal structures of human n-Glyceraldehyde-3-phosphate 
dehydrogenase (HsGAPDH , EC 1.2.1.12)5.

GAPDH is essential for glycolysis and gluconeogenesis; it 
catalyses the NAD+-dependent oxidative phosphorylation of  
n-glyceraldehyde-3-phosphate to 1,3- diphospho-n-glycerate (and 
its reverse reaction)6. The GAPDH-catalysed forward reaction  
occurs at an important transition point in glycolysis between the 
enzymatic steps that consume and generate ATP. Several stud-
ies indicate that the enzyme has pleiotropic functions inde-
pendent of its canonical role in glycolysis7–9. In addition to  
the somatic cells HsGAPDH isoform, the human genome 
encodes a testis-specific isoform HsGAPDHS (G3PT_HUMAN  
(Uniprot O14556)), which is expressed only in the post-meiotic  
period of spermatogenesis. In multiple mammalian species 
the sperm isozyme (GAPDHS) shares about 70% amino acid  
identity with the somatic isozyme, and possesses an additional 
72-residues N-terminal extension. The latter enables association 
of GAPDHS to the sperm flagellum fibrous sheath, so that 
the enzyme – together with other glycolytic enzymes - pro-
vides a localised source of ATP that is essential for sperm  
motility10.

GAPDH was one of the first enzymes to be crystallised11,12 
and one of the first enzymes whose structure was determined by 
X-ray crystallography13,14. A number of studies have reported 
the GAPDH catalytic Cys carrying oxidised post-translational 
modifications. In particular, cysteine sulfenic acid (CSX, see 
Figure 1A) has been observed in the structure of rabbit muscle 
GAPDH15 (of course, by X-ray diffraction alone, this modifica-
tion may be difficult to distinguish from S-hydroxy-cysteine 

Figure 1. Cys oxidised modifications and GAPDH PDB entries that carry them at the catalytic Cys152. A: S-Oxy-Cysteine aka 
Cysteine sulfenic acid (CSX, PDB ID 1J0X); B: S-Cysteinesulfinic acid aka S-sulfinocysteine aka 3-Sulfino-L-alanine (CSD, PDB IDs 2VYN and 
2VYV); C: S-hydroxy-cysteine (CSO, not described in any GAPDH structures); D: Cysteine-S-sulfonic acid (CSU, PDB ID 5M6D and this work).

          Amendments from Version 1
•    �A new version of Figure 1 has been uploaded (file named 

Slide1.tiff).
•    �Two new references have been added 63,64. 
•    �Small typos have been corrected (the most important one in 

the Legend to Figure 1).

Any further responses from the reviewers can be found at 
the end of the article
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Table 1. Human GAPDH crystal structures.

Isoform (Uniprot) PDB ID Polymorph (Z) Resolution (Å) Tetramer PG Reference

G3P_HUMAN (P04406) 6YND P21 Form A (16) 1.54 1 This work

6YNE P21 Form B (8) 1.85 1 This work

6YNF P21 Form C (16) 2.39 1 This work

6YNH P21 Form D (8) 2.62 1 This work

1U8F, 1ZNQ P212121 Form A (16) 1.75, 2.50 1 19,20

3GPD C2 Form A (8) 3.50 2 21

4WNC P21 Form E (16) 1.99 1 22,23

4WNI P212121 Form B (16) 2.30 1 22,23

6IQ6 P21 Form F (16) 2.29 1 24

6ADE I222 (24) 3.15 2 and 222 N/A

G3PT_HUMAN (O14556) 3H9E, 3PFW, 5C7O C2 Form B (8) 1.72, 2.15, 1.73 2 10,25

5C7O P3121 (12) 1.86 2 10

(CSO, see Figure 1C)). Cysteine-S-sulfinic acid (CSD, see 
Figure 1B) has been observed in structures of rat GAPDHS 
and E. coli GAPDH16. Cysteine-S-sulfonic acid (CSU, see 
Figure 1D) modifies the catalyic Cys in a structure of 
Streptococcus pneumoniae GAPDH17.

In this paper, we present and discuss mass spectrometry and 
crystallographic evidence supporting partial oxidation of the 
catalytic Cys residue of HsGAPDH purified from the supernatant 
of a HEK293F cell culture. A fraction of the molecules shows 
Cys-S-sulfonic acid instead of Cys in the active site. The four 
HsGAPDH crystal structures we describe (which we label 
as P2

1
 forms A-D, see Table 1) represent novel HsGAPDH  

monoclinic polymorphs and are the first HsGAPDH crystal  
structures carrying a Cysteine-S-sulfonic acid modification of 
the catalytic cysteine Cys152. Crystal form A is the highest 
resolution HsGAPDH structure determined to date (1.52 Å).

Methods
Cloning
The cloning of the Chaetomium thermophilum ERAD man-
nosidase CtHTM1P (the product of the gene CTHT_0058730, 
Uniprot entry G0SCX7_CHATD) in the CtHTM1P

50−1092
-pHLsec 

vector for secreted mammalian cell expression is described in 
detail in the Open Laboratory Notebook page (see Extended 
data18). Briefly, the DNA encoding CtHTM1P

50−1092
 was PCR 

amplified from a commercially obtained plasmid encoding the 
full length gene, and inserted into the pHLsec vector2 using 
ligation independent cloning: the CtHTM1P

50−1092
 DNA 

insert and the AgeI/KpnI linearisedAgeI /KpnI pHLsec DNA were 
mixed in 3:1 molar ratio: 0.06pmol of CtHTM1P

50−1092
 DNA 

(122 ng) and 0.02pmol of AgeI/KpnI linearised pHLsec DNA 
(60 ng). To this DNA, 10 µL of Gibson Assembly MasterMix(2X) 
(New England Bioscience E2611L) were added and the total 

volume made 20 µL with deionised water. The mix was heated 
at 50 °C for 1 hour.

Protein expression
A volume of 450 mL of HEK293F cells at a concentration 
of 106 cells/mL suspended in GIBCO FreeStyle 293 Media 
(ThermoFisher Scientific 12338018) was transfected with the 
CtHTM1P

50−1091
-pHLsec vector, using the FreeStyle MAX 293 

expression system (Thermo Fisher K900010). Briefly, 1 μg of 
DNA was used per mL of culture: the DNA vector was initially 
dissolved in 45 mL of phosphate-buffered saline (PBS: 0.01 M 
phosphate buffer pH 7.4, 0.0027 M potassium chloride and 
0.137 M sodium chloride; PBS tablets, Sigma Aldrich P4417) 
and vortexed vigorously for 3 seconds; 1.8 mL of a filter-steri-
lised solution of 0.5 mg/ml polyethylenimine (PEI) was added to 
the PBS/DNA solution and vortexed vigorously for 3 seconds; 
the mixture was incubated at room temperature for 20 minutes; 
the DNA/PEI mixture was added to the cell culture; the cell cul-
ture was made 5 μM kifunensine (an inhibitor of endoplasmic 
reticulum and Golgi mannosidases, Cayman Chemical 109944- 
15-2). The cell culture was split into three 500 mL Erlenmeyer 
flasks with 0.2 μm vent caps (Corning), with 150 mL of culture 
in each flask, and incubated in an orbital shaker incubator at 
37°C, shaking at 120 rpm, under a 5% CO

2
 atmosphere. The 

cells’ supernatant was harvested 4 days post-transfection by 
centrifuging at 4,000 x g for 5 minutes.

Protein purification
The cell supernatant was made 1x PBS by addition of the 
appropriate volume of 10x PBS stock (obtained by dissolving 
five PBS tablets (Sigma Aldrich P4417) in 200 mL of deionised 
water). The pH was adjusted to 7.4 and the solution filter-sterilised 
through a 0.2 μm bottle-top filter. Nickel immobilised metal 
affinity chromatography (IMAC) was used as the first step of 
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purification. A 5mL HisTrap HP column (GE Healthcare 
17-5248-01) was equilibrated with five column volumes (CV) 
of binding buffer (50 mM sodium phosphate pH 7.5, 300 mM 
NaCl, 1 mM TCEP (Sigma Aldrich C4706)). The cell culture 
supernatant was loaded onto the column at room tempera-
ture at a flow rate of 3 mL/min. After a 5CV wash in binding 
buffer, the column was fitted to an ÄKTA purifier fast protein 
liquid chromatography (FPLC) machine in a 4°C cabinet and 
further washed with 6 mL of elution buffer (50 mM sodium 
phosphate pH 7.5, 500 mM imidazole (Honeywell Fluka 56750), 
200 mM NaCl).

The wash fractions from the IMAC run (total volume 4.5 mL) 
were pooled and concentrated to 2 mL in a polyethersulfone spin 
concentrator of 10 kDa MW cut-off (Thermo Fisher Scien-
tific 88513). The concentrated sample was filtered through a 
0.22 μm spin filter and loaded on a 2 mL loop connected to an 
ÄKTA purifier FPLC machine in a 4°C cabinet. The sample 
was injected on a size exclusion chromatography (SEC)  
S200 16/60 column (GE Healthcare 28-9893-35) equilibrated in  
filter-sterilised and degassed 20 mM HEPES pH 7.5, 100 mM 
NaCl and 1mM TCEP (Sigma Aldrich C4706) buffer, and run 
down the column at 0.4mL/min flow rate, collecting 1 mL elution 
fractions. HsGAPDH-containing fractions were pooled and con-
centrated as described before to a volume of 70 µL, and pro-
tein concentration measured by loading 1.5 µL of sample on a 
NanoDrop 1000 spectrophotometer (Thermo Scientific). The 
absorbance was OD

280
=15.0, equivalent to a concentration of 

18.8 mg/mL (calculated from HsGAPDHϵ
280

=0.7963 (mg/mL)−1 cm−1).

A volume of 30 µL of the HsGAPDH obtained from the 
S200 SEC run was diluted to 500 µL in filter-sterilised and 
degassed buffer HEPES (Sigma Aldrich H3375) 20 mM pH7.5, 
NaCl 100 mM, TCEP 1mM and injected onto a Superdex 
S200 10/300 column equilibrated in the same buffer. The mass 
of the sample was detected on elution with an 18-angle multi-
angle light scattering detector (Dawn® HELEOS® II) coupled 
with a differential Refractive Index detector (Optilab® T-rEX) 
(Wyatt Technology). Figure 2 illustrates the results of the run. 
The three fractions C2-C3-C4 eluting between 12.5 and 14 mL 
were pooled and concentrated to a volume of 45 µL - and a 
concentration of 3.0 mg/mL.

Protein crystallisation
Vapour diffusion crystallisation 200 nL sitting drops were set 
up using a Mosquito crystallisation robot (SPT Labtech), mix-
ing HsGAPDH in mother liquor:protein ratioes 1:1 (drop 1) and 
1:2 (drop 2), with the 96-conditions MORPHEUS crystallisation 
screen (Molecular Dimensions,26,27), and the drops were left 
equilibrating at 18°C. P2

1
 Forms A and B: the protein from 

the S200 SEC run was set up for crystallisation at a concen-
tration of 18.8 mg/mL. Form A: these crystals grew in drop 2 
equilibrated against condition H9 of the MORPHEUS crys-
tallisation screen (Molecular dimensions,26,27): 0.1 M Amino 
acids solution (DL-Glutamic acid, DL-Alanine, Glycine,  
DL-Lysine, DL-Serine); 0.1 M Buffer System 3 (Tris (base), 
bicine pH 8.5); 30% v/v Precipitant Mix 1 (40% v/v PEG 
500MME, 20% w/v PEG 20000). Form B: these crystals grew 
in drop 2 equilibrated against condition F9 of the MORPHEUS  

Figure 2. Size exclusion chromatography multiangle light scattering (SEC-MALS) elution profile of HsGAPDH. Elution profile of 
the HsGAPDH sample run on the SEC S200 10/300 column interfaced with the 18-angle MALS light scattering detector (Dawn HELEOS II®) 
coupled with a differential refractive index detector (Optilab® T-rEX) (Wyatt Technology). The fractions C3-C4 eluting between 13 and 14 mL 
(boxed) correspond to a HsGAPDH tetramer of apparent mass 144 KDa. Inset: the SDS-PAGE NuPAGE Bis-Tris 4-12% gel (Thermo Fisher 
NP0322PK2), run at 200 V for 30’ in MES buffer, stained in Simply Blue™ SafeStain (Thermo Fisher LC6060) for 1 h and destained with water. 
The unedited gel has been deposited together with the Open Laboratory Notebook page (see Underlying data18).
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crystallisation screen26,27: 0.12M monosaccharides solution 
(D-Glucose, D-Mannose, D-Galactose, L-Fucose, D-Xylose, 
N-Acetyl-D-Glucosamine); 0.1M Buffer System 3 (Tris (base), 
bicine pH 8.5) 30% v/v Precipitant Mix 1 (40% v/v PEG 
500MME, 20% w/v PEG 20000). P2

1
 Forms C and D: the pro-

tein from the size exclusion chromatography multiangle light 
scattering (SEC-MALS) run was set up for crystallisation at 
a concentration of 3.0 mg/mL. Both form C and from D 
grew in drop 1 equilibrated against the F1 condition of the 
MORPHEUS crystallisation screen26,27: 0.12 M monosaccha-
rides solution (D-Glucose, D-Mannose, D-Galactose, L-Fucose, 
D-Xylose, N-Acetyl-D-Glucosamine); 0.1 M Buffer System 3 
(Tris (base), bicine pH 6.5) 30% v/v Precipitant Mix 1 (40% v/v 
PEG 500MME, 20% w/v PEG 20000).

X-ray data diffraction collection and processing
All crystals were cryo-cooled by plunging them into liquid 
nitrogen. X-ray diffraction data were collected at beamline I03 
of the Diamond Light Source in Harwell, England, UK, with 
an X-ray beam of wavelength λ=0.97622 Å and size 80x20 μM. 
Other data collection parameters are listed in Table 2. X-ray dif-
fraction data were processed with the autoPROC suite of 
programs version 1.0.528 with the following command line 

options: process -h5 Datapath/Data_master.h5 -M 
HighResCutOnCChalf -d DataOutputDirectory. An 
alternative Open Source suite that would enable X-ray dif-
fraction data processing in equivalent ways is xia229 running 
DIALS30.

Structure determination and refinement
P2

1
 Form A: initial structure factor phases were computed 

by molecular replacement, searching for eight copies of the 
HsGAPDH monomer in PDB ID 1U8F in space group P2

1
 using 

the program CCP4-Molrep version 11.7.0231 with all default 
parameters. The eight copies of the HsGAPDH monomer 
are arranged in two tetramers in the asymmetric unit. Initial 
automated water addition and positional and individual 
B-factor refinement were carried out in autoBUSTER, 
version 2.10.332,33. An alternative Open Source piece of software 
that would enable refinement against X-ray diffraction data in 
equivalent ways is Vagabond34. autoBUSTER was run with 
the following command line options: refine -m Data.
staraniso_alldata-unique.mtz -p Model.pdb -
autoncs -Seq GAPDH.seq -d OutputDir -l XPE.
grade_PDB_ligand.cif ExcludeBadContacts=’EXC
LUDE *|203:* *|203:*’ AutomaticFormfactorCorr

Table 2. Human GAPDH crystal X-ray diffraction data collection parameters and data processing statistics.  Values 
in parentheses refer to the highest resolution shell.

Form A Form B Form C Form D

PDB ID 6YND 6YNE 6YNF 6YNH

Det. dist., dmax (mm, Å) 198.35, 1.5 288.19, 2.0 253.03, 1.8 356.69, 2.4

Photon flux (photons/s) 8.84×1011 8.88×1011 8.85×1011 3.88×1012

Transmission 25% 25% 25% 100%

Number of images 3,600 3,600 3,600 3,600

Oscillation range (◦) 0.10 0.10 0.1 0.25

Exposure time (s) 0.05 0.05 0.03 0.013

Space Group P21 P21 P21 P21

Cell edges: a,b,c (Å) 81.88, 124.45, 141.99 81.79, 124.65, 79.64 87.14, 111.43, 135.94 87.02, 111.30, 69.74

Cell angle β (◦) 99.38 117.04 96.02 98.33

Resolution Range (Å) 93.04-1.52 (1.71-1.52) 72.85-1.85 (2.05-1.85) 135.18-2.39 (2.74-2.39) 86.10-2.62 (2.89-2.62)

Rmerge 0.08 (1.07) 0.226 (1.488) 0.27 (1.28) 0.40 (2.47)

Rmeas 0.09 (1.16) 0.245 (1.618) 0.29 (1.38) 0.41 (2.54)

Observations 2,029,459 (100,354) 568,580 (26,433) 418,478 (20,849) 496,488 (24,336)

Unique observations 295,270 (14,763) 81,465 (4,074) 59,243 (2,962) 28,207 (1,409)

Average I/σ(I) 11.7 (1.7) 6.5 (1.5) 6.5 (1.6) 9.0 (1.5)

Completeness 69.4 (12.2) 67.6 (12.8) 58.2 (8.7) 71.3 (14.0)

Multiplicity 6.9 (6.8) 7.0 (6.5) 7.1 (7.0) 17.6 (17.3)

CC1/2 0.997 (0.608) 0.991 (0.456) 0.986 (0.591) 0.990 (0.464)
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Table 3. Human GAPDH crystal structures refinement statistics. Values in parentheses refer to the highest 
resolution shell, unless otherwise specified.

Form A Form B Form C Form D

PDB ID 6YND 6YNE 6YNF 6YNH

Space group (Z) P21 (16) P21 (8) P21 (16) P21 (8)

Resolution range 140.10-1.52(1.63-1.52) 72.85-1.85 (1.98-1.85) 135.18-2.39 (2.62-2.39) 86.10-2.62 (2.72-2.62)

Reflex.s working set 280,585 (5,242) 77,398 (1,536) 56,303 (1,124) 25,751 (545)

Reflex.s free set 14,686 (332) 4,059 (94) 2,940 (61) 1,459 (20)

R,Rf ree 0.182,0.199 
(0.209,0.225)

0.190,0.207 
(0.218,0.220)

0.179,0.219 
(0.222,0.347)

0.176,0.215 
(0.231,0.359)

Rmsdbonds (Å) 0.008 0.008 0.009 0.008

Rmsdangles (◦) 1.02 1.05 1.04 1.03

Ramachandran fav. 97.4% (2,697/2,768) 97.5% (1,304/1,338) 97.0% (2,586/2,667) 97.5% (1,300/1,333)

Ramachandran allow. 99.7% (2,760/2,768) 99.7% (1,334/1,338) 99.5% (2,653/2,667) 99.7% (1,329/1,333)

Tetramers (A,C,E,H) and (B,D,F,G) (B,D,F,G) (A,C,E,H) and (B,D,F,G) (B,D,F,G)

Occ. Cys-SO3H A:0.13 B:0.15 N/A A:0.5 B:0.41 B:0.41

C:0.09 D:0.18 N/A C:0.46 D:0.33 D:0.42

E:0.13 F:0.15 N/A E:0.38 F:0.43 F:0.40

G:0.15 H:0.08 N/A G:0.42 H:0.72 G:0.35

Prot.(Wat.) Atoms 20,428 (1,639) 10,108 (569) 20,152 (726) 10,164 (132)

〈B〉prot (〈B〉wat) (Å2) 27.26 (33.12) 29.40 (36.17) 39.74 (22.93) 45.38 (29.13)

ection=yes -l CSU.grade_PDB_ligand.cif. Auto-
mated non-crystallographic restraints were used throughout35,  
including water molecules (assigned to each chain using CCP4-
Sortwater version 7.0.078, with all default parameters).  
At each catalytic Cys152 site, a 0.5:0.5 occupancy ratio mix-
ture of Cys and Cys S-sulfonic acid was initially modelled in  
unbiased Fo-Fc residual density (see Figure 5). At each Cys152 
site, occupancies for Cys and Cys S-sulfonic acid were then 
refined under the constraint that they sum up to 1.000±0.005. 
Crystal form A was deposited in the Protein Data Bank (PDB) 
with ID code 6YND. Refinement statistics are reported in Table 3. 
P2

1
 Forms B,C and D: initial structure factor phases were com-

puted by molecular replacement, searching with the P2
1
 Form A 

tetramer (PDB ID 6YND) in space group P2
1
, placing one 

tetramer per asymmetric unit in P2
1
 Forms B and D and two 

tetramers per asymmetric unit in P2
1
 Form C, using the program 

CCP4-Molrep31 version 11.7.02, with all default parameters. 
The same refinement protocol and restraints were used a 
described for P2

1
 Form A, but with additional external secondary 

structure restraints35 to the highest resolution P2
1
 Form A structure, 

using the extra command line flag to -ref 6YND.pdb when 
running autoBUSTER, version 2.10.332,33. An alternative Open 
Source piece of software that would enable refinement against 
X-ray diffraction data in equivalent ways is Vagabond34. 
Crystal forms B, C and D were deposited in the PDB with 

ID codes 6YNE, 6YNF and 6YNH, respectively. Refinement  
statistics are reported in Table 3.

Mass spectrometry
Protein was purified by 1D-PAGE before Coomassie staining 
and excision for proteomic analysis. Protein was digested in-gel 
with the addition of 20 ng sequencing grade trypsin (Promega 
V5111). No reduction or alkylation was performed during diges-
tion to help preserve the native state of oxidation. Resulting pep-
tides were analysed over a 1 h liquid chromatography–mass 
spectrometry acquisition with elution from a 50 cm EasyNano 
C18 column as detailed in 36 onto a Thermo Orbitrap Fusion 
Tribrid mass spectrometer. Spectra were acquired in data depend-
ent acquisition mode with sequential fragmentation of all 
selected peptide precursors using both higher-energy collisional 
dissociation and electrontransfer dissociation (ETD). All spec-
tra were acquired in the Orbitrap mass analyser with internal 
calibration from the ETD reagent.

Product ion spectra were searched against the expected 
sequence of HsGAPDH (Uniprot P04406) appended to a custom 
in-house database. All pieces of software were run with default 
parameters, with the exception that propionamide (+71.037114) 
and dehydro (-1.007825 Da) were added as manually defined 
variable modifications. The analysis was carried out using  

Page 7 of 20

Wellcome Open Research 2020, 5:114 Last updated: 25 AUG 2020

https://www.rcsb.org/structure/6YND
https://www.rcsb.org/structure/6YNE
https://www.rcsb.org/structure/6YNF
https://www.rcsb.org/structure/6YNH
https://identifiers.org/pdb:6YND
https://identifiers.org/pdb:6YND
https://identifiers.org/pdb:6YNE
https://identifiers.org/pdb:6YNF
https://identifiers.org/pdb:6YNH
https://identifiers.org/uniprot:P04406


Figure 3. Product ion spectrum of GAPDH-derived tryptic peptide 146IISNASCTTNCLAPLAK162 lacking Cys modification. Product 
ions are annotated with theoretical b- and y- ions (fragment ions that appear to extend from the amino- or carboxy-terminus of a peptide, 
respectively) from the peptide assignment IISNASCTTNCLAPLAK. A: data analysed using Mascot37, PEAKS38 and Byonic™39 search engines, 
with all default parameters. B: data analysed using MSConvert40, SearchGui41 and PeptideShaker42.

Mascot version 2.6.1 (Matrix Science)37, PEAKS Studio X+,10.5 
(Bioinformatics Solutions Inc.)38 and Byonic™ 3.0 (Protein 
Metrics Inc)39 search engines (Figure 3A and Figure 4A). The 
same data analysis was also carried out with freeware, using a  
combination of MSConvert version 3.040, SearchGui version 
3.3.1841 and PeptideShaker version 1.16.4542 (Figure 3B and 
Figure 4B). The resulting peptide assignments are equivalent 
to the ones obtained with the commercial pieces of software, 
see Figure 3 and Figure 4. Searching specified a precursor toler-
ance of 3 ppm and a fragment ion tolerance of 0.02 Da. Initial 
searches included variable modification of: S-Oxy Cysteine 
(Figure 1A), Cysteine S-sulphinic acid (Figure 1B), and Cysteine 
S-sulphonic acid (Figure 1D). Searches were then expanded 
in PEAKS38 to include 313 of the most frequently observed 
proteomic modifications and in Byonic™39 to include disulfide 
bonding and wildcard mass addition to Cys.

Peptide spectra matches were filtered to p-values (or equivalents) 
of <0.05. Individual spectra were manually inspected for site 
localisation or ambiguity before reporting. Global protein  
coverage of over 90% was achieved. Individual post-translational 
modification (PTM) modified spectra were manually inspected 
for site localisation specificity and potential PTM ambiguity 
before reporting.

Results
Since the first crystal structures of the lobster GAPDH enzyme43–45 
several crystal structures of prokaryotic and eukaryotic 
GAPDHs have been determined. At the time of this writing, the 
PDB contains more than 142 GAPDH entries, 11 of which are 
of human GAPDH isoforms (see Table 1). All human GAPDH 
crystal structures described so far contain tetramers, sitting in 
crystal sites of three different symmetries: point group 1 (four 
copies of the monomer all slightly different from each other); 
point group 2 (dimer of dimers); and point group 222 (four 
identical copies in a tetramer of exact 222 symmetry).

HsGAPDH crystals of form A and form B grew from the  
HsGAPDH protein sample purified from the supernatant of 
HEK293F cells by two chromatography steps (IMAC+SEC); 
crystals of forms C and form D grew from the same HsGAPDH 
protein sample after an extra SEC-MALS chromatography 
step, see Figure 2. Our HsGAPDH crystal structures all contain 
tetramers of point group 1 (two tetramers per asymmetric unit in 
forms A and C, and one tetramer per asymmetric units in forms 
B and D). Overall, the four novel crystal forms contain 24 crys-
tallographically independent observations of the HsGAPDH  
molecule, adding to the 29 ones already present in the PDB at the 
time of this writing (see Table 1). The overall rmsd

Cα is 0.170 Å 
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Figure 4. Product ion spectrum of GAPDH-derived tryptic peptide 146IISNASCTTNCLAPLAK162. A precursor equating to a mass of 
1869.8623 Da was selected and fragmented by HCD. Resulting ions are annotated with theoretical b- and y- ions from the peptide assignment 
IISNASC(+79.9568 Da)TTNC(+71.036 Da)LAPLAK using the Byonic™ search engine. Annotation of acrylamide adduct modification (+71.036 
Da) at Cys156 is implicitly localised from the m/z difference between the product ions y6 and y7. Cys-S-sulfonic acid modification at Cys152 
is implied from the difference in mass between the precursor selected and the resulting y11-15 m/z values observed as neutral mass 
products labelled with “~”. The measured neutral mass difference is 79.9568 Da, equating to a mass error of 0.018 mDa for S-sulfonic acid 
modification. A: data analysed using Mascot37, PEAKS38 and Byonic™39 search engines, with all default parameters. B: data analysed using 
MSConvert40, SearchGui41 and PeptideShaker42.

Figure 5. Fo-Fc difference crystal electron density map around HsGAPDH Cys152 residues. Representative HsGAPDH monomers 
in crystal form C (PDB ID 6YNF) are shown: A: monomer B; B: monomer E; C: monomer G. The 2.5 σ contour of the unbiased Fo-Fc map 
is depicted as a green mesh (the map was calculated with phases from the model before the Cys-S-sulfonic acid modification was built). 
Residue HsGAPDH 152 was modelled and refined as a 0.28:0.72 superposition of Cys:Cys-S-sulfonic acid. C atoms: cyan; N atoms: blue; O 
atoms: red; S atoms: yellow. Selected non-bonding interactions between the modified Cys and neighbouring residues are represented as 
white dashed lines with distances in Å. The Figure was made in PyMOL46. An alternative Open Source piece of software is USF Chimera47.
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across these 24 crystallographically independent copies of  
HsGAPDH.

The protein sample from which crystal forms C and D were 
grown was analysed by mass spectrometry. In addition to 
peptides corresponding to unmodified Cys152 (see Figure 3), 
we detected ions derived from fragmentation of the Cys152 con-
taining tryptic peptide 146IISNASCTTNCLAPLAK162, which 
suggests Cys152 S-sulfonic acid modification (Figure 4). Anno-
tation is complicated by the presence of a further modifica-
tion at Cys156 with a mass addition of +71.036 Da, as directly 
observed in the fragmentation spectrum by the mass spacing 
between the y-6 and y-7 ions (Figure 4). The +71.036 Da mass 
addition at Cys156 is best annotated as acrylamide adduct (pro-
pionamide) imparted during PAGE separation48 rather than 
being a native modification at this residue. The measured mass 
of the peptide was 1869.8623 Da and the theoretical mass for 
the unmodified peptide is 1718.8695 Da. Including the anno-
tated acrylamide adduct, this leaves 79.9568 Da unaccounted for, 
which is an extremely close match to S-sulfonic acid modifica-
tion of Cys (+79.9568 Da). A potential ambiguity for the assign-
ment is the similarity in mass of phosphorylation (+79.966331); 
however, phosphorylation would equate to mass error of 
9.5 mDa as opposed to just 0.018 mDa for S-sulfonic acid. 
Unlike in the case of the acrylamide adduct, the +79.9568 Da 
mass addition cannot be observed in any of the individual b- or 
y-ions in the fragmentation spectrum (Figure 4), implying 
complete neutral loss of the moiety between precursor selec-
tion and fragmentation. Although neutral loss is frequently 
observed with Ser and Thr phosphorylation, it is rarely seen with 
100% efficiency, further suggesting sulfation of Cys152 as the 
most credible assignment. Relative quantification of modified 
versus unmodified peptide forms is not possible based on 
the mass spectrometry data alone, due to unknown but likely 
significant differences in relative response resulting from the 
changes in the physico-chemical properties of the Cys152- 
containing ions upon Cys-S-sulfation.

Peaks suggesting Cys152 S-sulfonic acid modification are also 
visible in the initial crystal electron density Fo-Fc difference 
maps of crystal forms A, C and D1, contoured at 2.5σ level or 
higher, in close proximity to the Cys152 γ sulfur atom of 
most HsGAPDH chains in the asymmetric unit (see Figure 5). 
The orientation of the Cys-S-sulfonic acid moiety in the active 
site is not unique, but it varies from chain to chain across the 
three crystal forms. Figure 6A illustrates the modification in 
the eight copies of HsGAPDH in crystal form C. The Cys152  
S-sulfonic acid chain makes only loose non-bonding contacts to  
residues in the active site (see also Figure 5). Modelling of the 
Cys152 residue as a superposition of Cys and Cys-S-sulfonic acid 
with variable occupancies in crystal forms A, C and D enables 
estimation of the extent to which the crystals contain the Cys152 
modification. The average occupancy for the Cys152-S-sulfonic  

acid modification over these 20 crystallographically inde-
pendent copies of HsGAPDH is 0.31±0.17 (see Table 3). The 
HsGAPDH monomer with the largest occupancy for the modi-
fication (Occ

C ys−S−SO3
=0.72) is monomer H in crystal form 

C. This predominantly Cys-S-sulfonated HsGAPDH mono-
mer superposes with an rmsd

C α=0.423 Å (over 334 Cα atoms)  
with the Streptococcus pneumoniae GAPDH monomer carry-
ing the same modification17, see Figure 6B. When comparing 
the modified structure to the one of HsGAPDH with unmodi-
fied Cys152 (PDB ID 1U8F) no significant local changes to 
active site side chains are observed either (rmsd

Cα=0.127 over 
333 Cα atoms), see Figure 6C. None of the HsGAPDH mol-
ecules in the crystals contain NAD+ nor any bound ligand in the 
active site.

Discussion and conclusions
GAPDH is mainly a cytoplasmic enzyme, but it has been reported 
to moonlight as a cell surface and/or extracellular enzyme in 
healthy human cells49,50, in human cells subjected to stresses such 
as micronutrient starvation, hypoxia, infection, and cancer50–54, 
and to act as a extracellular effector in fungi and bacteria55–62. For 
recent reviews on GAPDH inhibitors and their multiple roles in  
several pharmacological applications see 63,64.

In our study, HsGAPDH was purified from the supernatant of 
HEK293F cells treated with the mannosidase inhibitors kifunen-
sine and kept for 4 days at 37°C after transfection with a DNA 
plasmid for recombinant expression of an endoplasmic reticu-
lum glycoprotein. Although kifunensine is toxic to cells only in 
concentrations higher than the one used (5μM), during the 
4 days between transfection and harvesting of the supernatant 
the experimental conditions are likely harsher than the basal 
levels of oxidative stress in the HEK293F cell culture media65.

Stable oxidation of the GAPDH catalytic cysteine has been 
observed in a number of studies, for example to Cys sulfenic acid 
mediated by thiolate oxidation66: the modification is reversible but 
it confers the modified cysteine electrophilic properties similar 
to the ones of sulfenyl halides67. For example, GAPDH catalytic 
cysteine modification to sulfenic acid converts the enzyme from 
dehydrogenase to an acyl phosphatase68–70. In the presence of 
excess oxidant, further oxidation of sulfenic acid to sulfinic acid 
or sulfonic acid is possible. However, in contrast to GAPDH 
catalytic Cys oxidation to sulfenic acid, which is reversible, oxi-
dation to sulfonic acid leads to irreversible enzyme inactivation  
and Cys S-sulfonation is generally considered an irreversible  
form associated with protein misfolding, degradation, and  
pathology67. In particular, S-sulfonated GAPDH has been reported 
to translocate to subcellular domains where it does not normally 
occur, where it may stimulate a “gain of function” that could  
provoke apoptosis49.

It is unclear whether the Cys S-sulfonic acid modification 
we observe in HsGAPDH purified from the supernatant of 
HEK293F cells represents a physiological response of the cells 
to the recombinant secreted protein expression system condi-
tions, or whether it is simply the outcome of a protracted oxidative 
environment on the pool of extracellular enzyme instead. 

1 Judging from the crystal electron density difference maps, crystal form B 
does not seem to have significant Cys152 S-sulfonic acid modification, so in 
this crystal form residue 152 was modelled as Cys in all chains.
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Figure 6. Cys152-S-sulfonic acid modification of HsGAPDH . N atoms: blue; O atoms: red; S atoms: yellow. A: the Cys152-S-sulfonic 
acid modification in the 8 copies of HsGAPDH in crystal form C. The GAPDH monomer is in surface representation and coloured blue to red 
from N- to C-terminus. The inset shows the Cys152 S-sulfonic acid chains adopting slightly different conformations in different molecules 
in the asymmetric unit. B: superposition of the active site of Cys152-S-sulfonic acid modified HsGAPDH (chain H in crystal form C, green C 
atoms) with two copies of Cys152-S-sulfonic acid modified Streptococcus pneumoniae GAPDH (SpGAPDH, PDB ID 5M6D, chain “A”, white C 
atoms; chain “B”, yellow C atoms). C: superposition of the active site of Cys152-S-sulfonic acid modified HsGAPDH (chain H in crystal form C, 
green C atoms) with native HsGAPDH (chain “O” of PDB ID 1U8F, cyan C atoms). The side chain of the catalytic Cys152 of native HsGAPDH 
in PDB ID 1U8F was modelled and refined as a superposition two alternate conformations. The Figure was made in PyMOL46. An alternative 
Open Source piece of software is USF Chimera47.

GAPDH allostery is mediated by intra-dimer contacts (the active 
site of one dimer subunit is in close proximity to residues in the 
neighbouring subunit). The observation that HsGAPDH 
tetramers pack in the crystals in ordered fashion even in pres-
ence of partial Cys-S-sulfonic acid modification, together with the 
overall structural similarity of the Cys S-sulfonated and native 
monomeric enzymes, suggests that the secreted HsGAPDH 
is constantly inactivated by catalytic Cys S-sulfonation in the 
expression system’s oxidising extracellular environment. Of 
course, it is also possible that the relative amounts of oxidised 
vs. reduced GAPDH could vary during protein purification (after  
harvesting the cells’ supernatant) due to changes in the ionic 
strength and pH; all buffers used were degassed (minimising O

2
 

content) but contain 1 mM Tris (2-Carboxyethyl) phosphine 
(TCEP), a reducing agent that prevents intermolecular disul-
phide_bond-mediated oligomerisation of GAPDH. The crys-
tallisation conditions do not nominally contain redox active  

ingredients but crystal forms A,B grow at pH 8.5, while 
forms C,D grow at pH 6.5. MS characterisation of GAPDH  
samples purified at sequential stages during the expression/ puri-
fication procedure would elucidate the time-dependence of the 
enzyme catalytic Cys residue redox composition in the chosen  
experimental conditions.

Data availability
Underlying data
X-ray data of forms A, B, C and D at Protein Data Bank,  
Accession numbers 6YND, 6YNE, 6YNF and 6YNH:

https://identifiers.org/pdb:6YND

https://identifiers.org/pdb:6YNE

https://identifiers.org/pdb:6YNF

https://identifiers.org/pdb:6YNH

Page 11 of 20

Wellcome Open Research 2020, 5:114 Last updated: 25 AUG 2020

https://identifiers.org/pbd:5M6D
https://identifiers.org/pbd:1U8F
https://identifiers.org/pbd:1U8F
https://identifiers.org/pdb:6YND
https://identifiers.org/pdb:6YNE
https://identifiers.org/pdb:6YNF
https://identifiers.org/pdb:6YNH


References

Mass spectrometry datasets at MassIVE, Accession number 
MSV000085325: https://identifiers.org/ massive:MSV000085325

Zenodo: Crystal structure determination of Cys-S-sulfonated 
HsGAPDH from protein purified from the supernatant of 
HEK293F cells. https://doi.org/10.5281/zenodo.381727718

This project contains the following underlying data: 

•	 Gel-Figure3.jpeg (original unedited gel image for  
Figure 2)

Extended data
Zenodo: Crystal structure determination of Cys-S-sulfonated 
HsGAPDH from protein purified from the supernatant of HEK293F 
cells. https://doi.org/10.5281/zenodo.381727718

This project contains the following extended data: 

•	 Copy of the Open Laboratory Notebook (PDF)

•	 Original unedited gel images for Open Laboratory 
Notebook (JPG, JPEG and PNG files)

Data are available under the terms of the Creative Commons 
Attribution 4.0 International license (CC-BY 4.0).

Acknowledgements
Siyu Wang and Louise Fairall helped with HEK293F cells expres-
sion. John W.R. Schwabe gave us access to the SEC-MALS 
instrument and Christopher J. Millard helped with the 
SEC-MALLS experiment. Trevor Greenhough coordinates the 
Midlands Diamond BAG. Neil Paterson helped with the han-
dling of samples at beamline I03 of the Diamond Light Source 
in Harwell, England, UK. Tony Larson gave us access to 
resources at the York Centre of Excellence in Mass Spectrometry. 
Thanks are due to Damir Handzar and Matjaz Hren for their 
help with retrieval of original un-annotated SDS-PAGE gels 
from the SciNote backups.

1. 	 Subedi GP, Johnson RW, Moniz HA, et al.: High Yield Expression of 
Recombinant Human Proteins with the Transient Transfection of HEK293 
Cells in Suspension. J Vis Exp. 2015; (106): e53568.  
PubMed Abstract | Publisher Full Text | Free Full Text 

2. 	 Aricescu RA, Weixian Lu, Yvonne Jones E: A time- and cost-efficient system 
for high-level protein production in mammalian cells. Acta Crystallogr D Biol 
Crystallogr. 2006; 62(Pt 10): 1243–1250.  
PubMed Abstract | Publisher Full Text 

3. 	 Antonyuk SV, Eady RR, Strange RW, et al.: The structure of glyceraldehyde 
3-phosphate dehydrogenase from Alcaligenes xylosoxidans at 1.7 A 
resolution. Acta Crystallogr D Biol Crystallogr. 2003; 59(Pt 5): 835–842.  
PubMed Abstract | Publisher Full Text 

4. 	 Costanzo LD, Gomez GA, Christianson GW: Crystal structure of lactaldehyde 
dehydrogenase from Escherichia coli and inferences regarding substrate 
and cofactor specificity. J Mol Biol. 2007; 366(2): 481–493.  
PubMed Abstract | Publisher Full Text | Free Full Text 

5. 	 Needham DM, Pillai RK: The coupling of oxido-reductions and dismutations 
with esterification of phosphate in muscle. Biochem J. 1937; 31(10): 1837–
1851.  
PubMed Abstract | Publisher Full Text | Free Full Text 

6. 	 Martin WK, Cerff R: Physiology, phylogeny, early evolution, and GAPDH. 
Protoplasma. 2017; 254(5): 1823–1834.  
PubMed Abstract | Publisher Full Text | Free Full Text 

7. 	 Tarze A, Deniaud A, Le Bras M, et al.: GAPDH, a novel regulator of the pro-
apoptotic mitochondrial membrane permeabilization. Oncogene. 2007; 
26(18): 2606–2620.  
PubMed Abstract | Publisher Full Text 

8. 	 Zala D, Hinckelmann MV, Yu H, et al.: Vesicular glycolysis provides on-board 
energy for fast axonal transport. Cell. 2013; 152(3): 479–491.  
PubMed Abstract | Publisher Full Text 

9. 	 Butera G, Mullappilly N, Masetto F, et al.: Regulation of Autophagy by Nuclear 
GAPDH and Its Aggregates in Cancer and Neurodegenerative Disorders. Int 
J Mol Sci. 2019; 20(9): 2062.  
PubMed Abstract | Publisher Full Text | Free Full Text 

10. 	 Danshina PV, Qu W, Temple BR, et al.: Structural analyses to identify 
selective inhibitors of glyceraldehyde 3-phosphate dehydrogenase-S, a 
sperm-specific glycolytic enzyme. Mol Hum Reprod. 2016; 22(6): 410–426. 
PubMed Abstract | Publisher Full Text | Free Full Text 

11. 	 Warburg O, Christian W: Isolierung und Kristallisation des Proteins des 
oxydierenden Gärungsferments. Springer. 1939. 

12. 	 Cori GT, Slein MW, Cori CF: Crystalline d-glyceraldehyde-3-phosphate 
dehydrogenase from rabbit muscle. J Biol Chem. 1948; 173(2): 605–618. 
PubMed Abstract 

13. 	 Watson HC, Duée E, Mercer WD: Low resolution structure of glyceraldehyde 

3-phosphate dehydrogenase. Nat New Biol. 1972; 240(100): 130–133.  
PubMed Abstract | Publisher Full Text 

14. 	 Rossmann MG, Ford GC, Watson HC, et al.: Molecular symmetry of 
glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol. 1972; 64(1):  
237–245.  
PubMed Abstract | Publisher Full Text 

15. 	 Cowan-Jacob SW, Kaufmann M, Anselmo AN, et al.: Structure of rabbit-
muscle glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr D Biol 
Crystallogr. 2003; 59(Pt 12): 2218–2227.  
PubMed Abstract | Publisher Full Text 

16. 	 Frayne J, Taylor A, Cameron G, et al.: Structure of insoluble rat sperm 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) via heterotetramer 
formation with Escherichia coli GAPDH reveals target for contraceptive 
design. J Biol Chem. 2009; 284(34): 22703–22712.  
PubMed Abstract | Publisher Full Text | Free Full Text 

17. 	 Moreau C, Terrasse R, Thielens NM, et al.: Deciphering Key Residues 
Involved in the Virulence-promoting Interactions between Streptococcus 
pneumoniae and Human Plasminogen. J Biol Chem. 2017; 292(6): 2217–2225. 
PubMed Abstract | Publisher Full Text | Free Full Text 

18. 	 Roversi P, Lia A: Crystal structure determination of Cys-S-sulfonated 
HsGAPDH from protein purified from the supernatant of HEK293F cells. 
2020.  
http://www.doi.org/10.5281/zenodo.3817277

19. 	 Jenkins JL, Tanner JJ: High-resolution structure of human D-glyceraldehyde-
3-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr. 2006; 62(Pt 3): 
290–301.  
PubMed Abstract | Publisher Full Text 

20. 	 Ismail SA, Park HW: Structural analysis of human liver glyceraldehyde-3-
phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr. 2005; 61(Pt 11): 
1508–1513.  
PubMed Abstract | Publisher Full Text 

21. 	 Mercer WD, Winn SI, Watson HC: Twinning in crystals of human skeletal 
muscle D-glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol. 1976; 
104(1): 277–283.  
PubMed Abstract | Publisher Full Text 

22. 	 White MR, Khan MM, Deredge D, et al.: A dimer interface mutation in 
glyceraldehyde-3-phosphate dehydrogenase regulates its binding to AU-
rich RNA. J Biol Chem. 2015; 290(3): 1770–1785.  
PubMed Abstract | Publisher Full Text | Free Full Text 

23. 	 White MR, Khan MM, Deredge D, et al.: A dimer interface mutation in 
glyceraldehyde 3-phosphate dehydrogenase regulates its binding to AU-
rich RNA. J Biol Chem. 2015; 290(7): 4129.  
Publisher Full Text 

24. 	 Park JB, Park H, Son J, et al.: Structural Study of Monomethyl Fumarate-Bound 

Page 12 of 20

Wellcome Open Research 2020, 5:114 Last updated: 25 AUG 2020

https://identifiers.org/ massive:MSV000085325
https://doi.org/10.5281/zenodo.3817277
https://doi.org/10.5281/zenodo.3817277
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
http://www.ncbi.nlm.nih.gov/pubmed/26779721
http://dx.doi.org/10.3791/53568
http://www.ncbi.nlm.nih.gov/pmc/articles/4780855
http://www.ncbi.nlm.nih.gov/pubmed/17001101
http://dx.doi.org/10.1107/S0907444906029799
http://www.ncbi.nlm.nih.gov/pubmed/12777799
http://dx.doi.org/10.1107/s0907444903041441
http://www.ncbi.nlm.nih.gov/pubmed/17173928
http://dx.doi.org/10.1016/j.jmb.2006.11.023
http://www.ncbi.nlm.nih.gov/pmc/articles/1866264
http://www.ncbi.nlm.nih.gov/pubmed/16746523
http://dx.doi.org/10.1042/bj0311837
http://www.ncbi.nlm.nih.gov/pmc/articles/1267150
http://www.ncbi.nlm.nih.gov/pubmed/28265765
http://dx.doi.org/10.1007/s00709-017-1095-y
http://www.ncbi.nlm.nih.gov/pmc/articles/5610209
http://www.ncbi.nlm.nih.gov/pubmed/17072346
http://dx.doi.org/10.1038/sj.onc.1210074
http://www.ncbi.nlm.nih.gov/pubmed/23374344
http://dx.doi.org/10.1016/j.cell.2012.12.029
http://www.ncbi.nlm.nih.gov/pubmed/31027346
http://dx.doi.org/10.3390/ijms20092062
http://www.ncbi.nlm.nih.gov/pmc/articles/6539768
http://www.ncbi.nlm.nih.gov/pubmed/26921398
http://dx.doi.org/10.1093/molehr/gaw016
http://www.ncbi.nlm.nih.gov/pmc/articles/4884916
http://www.ncbi.nlm.nih.gov/pubmed/18910716
http://www.ncbi.nlm.nih.gov/pubmed/4509026
http://dx.doi.org/10.1038/newbio240130a0
http://www.ncbi.nlm.nih.gov/pubmed/5015398
http://dx.doi.org/10.1016/0022-2836(72)90332-4
http://www.ncbi.nlm.nih.gov/pubmed/14646080
http://dx.doi.org/10.1107/s0907444903020493
http://www.ncbi.nlm.nih.gov/pubmed/19542219
http://dx.doi.org/10.1074/jbc.M109.004648
http://www.ncbi.nlm.nih.gov/pmc/articles/2755679
http://www.ncbi.nlm.nih.gov/pubmed/28011643
http://dx.doi.org/10.1074/jbc.M116.764209
http://www.ncbi.nlm.nih.gov/pmc/articles/5313095
http://www.doi.org/10.5281/zenodo.3817277
http://www.ncbi.nlm.nih.gov/pubmed/16510976
http://dx.doi.org/10.1107/S0907444905042289
http://www.ncbi.nlm.nih.gov/pubmed/16239728
http://dx.doi.org/10.1107/S0907444905026740
http://www.ncbi.nlm.nih.gov/pubmed/957435
http://dx.doi.org/10.1016/0022-2836(76)90013-9
http://www.ncbi.nlm.nih.gov/pubmed/25451934
http://dx.doi.org/10.1074/jbc.M114.618165
http://www.ncbi.nlm.nih.gov/pmc/articles/4340419
http://dx.doi.org/10.1074/jbc.M114.618165


Human GAPDH. Mol Cells. 2019; 42(8): 597–603.  
PubMed Abstract | Publisher Full Text | Free Full Text 

25. 	 Chaikuad A, Shafqat N, Al-Mokhtar R, et al.: Structure and kinetic 
characterization of human sperm-specific glyceraldehyde-3-phosphate 
dehydrogenase, GAPDS. Biochem J. 2011; 435(2): 401–409.  
PubMed Abstract | Publisher Full Text 

26. 	 Gorrec F: The MORPHEUS protein crystallization screen. J Appl Crystallogr. 
2009; 42(Pt 6): 1035–1042.  
PubMed Abstract | Publisher Full Text | Free Full Text 

27. 	 Gorrec F: The MORPHEUS II protein crystallization screen. Acta Crystallogr F 
Struct Biol Commun. 2015; 71(Pt 7): 831–837.  
PubMed Abstract | Publisher Full Text | Free Full Text 

28. 	 Vonrhein C, Flensburg C, Keller P, et al.: Data processing and analysis with 
the autoPROC toolbox. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4): 293–
302.  
PubMed Abstract | Publisher Full Text | Free Full Text 

29. 	 Winter G, Lobley CMC, Prince SM: Decision making in xia2. Acta Crystallogr D 
Biol Crystallogr. 2013; 69(Pt 7): 1260–1273.  
PubMed Abstract | Publisher Full Text | Free Full Text 

30. 	 Beilsten-Edmands J, Winter G, Gildea R, et al.: Scaling diffraction data in the 
DIALS software package: algorithms and new approaches for multi-crystal 
scaling. Acta Crystallogr D Struct Biol. 2020; 76(Pt 4): 385–399.  
PubMed Abstract | Publisher Full Text | Free Full Text 

31. 	 Vagin A, Teplyakov A: Molecular replacement with MOLREP. Acta Crystallogr D 
Biol Crystallogr. 2010; 66(Pt 1): 22–25.  
PubMed Abstract | Publisher Full Text 

32. 	 Blanc E, Roversi P, Vonrhein C, et al.: Refinement of severely incomplete 
structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr D Biol 
Crystallogr. 2004; 60(Pt 12 Pt 1): 2210–2221.  
PubMed Abstract | Publisher Full Text 

33. 	 Bricogne G, Blanc E, Brandl M, et al.: BUSTER 2.10.3. In BUSTER 2.10.3. 2017. 
34. 	 Ginn HM: Vagabond: a new project for macromolecular model refinement. 

Acta Crystallographica Section A Crystal Physics, Diffraction, Theoretical and General 
Crystallography. 2018; A74: a454. 

35. 	 Smart OS, Womack TO, Flensburg C, et al.: Exploiting structure similarity in 
refinement: automated NCS and target-structure restraints in BUSTER. Acta 
Crystallogr D Biol Crystallogr. 2012; 68(Pt 4): 368–380.  
PubMed Abstract | Publisher Full Text | Free Full Text 

36. 	 de Pablos LM, Ferreira TR, Dowle AA, et al.: The mRNA-bound Proteome of 
Leishmania mexicana: Novel Genetic Insight into an Ancient Parasite. Mol 
Cell Proteomics. 2019; 18(7): 1271–1284.  
PubMed Abstract | Publisher Full Text | Free Full Text 

37. 	 Perkins DN, Pappin DJ, Creasy DM, et al.: Probability-based protein 
identification by searching sequence databases using mass spectrometry 
data. Electrophoresis. 1999; 20(18): 3551–3567.  
PubMed Abstract | Publisher Full Text 

38. 	 Tran N, Qiao R, Xin L, et al.: Deep learning enables de novo peptide 
sequencing from data-independent-acquisition mass spectrometry. Nature 
methods. 2019; 16(1): 63–66.  
PubMed Abstract | Publisher Full Text 

39. 	 Bern M, Kil YJ, Becker C: Byonic: advanced peptide and protein identification 
software. Curr Protoc Bioinformatics. Chapter 13:Unit13.20. 2012.  
PubMed Abstract | Publisher Full Text | Free Full Text 

40. 	 Adusumilli R, Mallick P: Data Conversion with ProteoWizard msConvert. 
Methods Mol Biol. 2017; 1550: 339–368.  
PubMed Abstract | Publisher Full Text 

41. 	 Barsnes H, Vaudel M: SearchGUI: A Highly Adaptable Common Interface 
for Proteomics Search and de Novo Engines. J Proteome Res. 2018; 17(7): 
2552–2555.  
PubMed Abstract | Publisher Full Text 

42. 	 Vaudel M, Burkhart JM, Zahedi RP, et al.: Eystein Oveland, Frode S Berven, 
Albert Sickmann, Lennart Martens, and Harald Barsnes. PeptideShaker 
enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol. 2015; 
33(1): 22–24.  
PubMed Abstract | Publisher Full Text 

43. 	 Buehner M, Ford GC, Moras D, et al.: D-glyceraldehyde-3-phosphate 
dehydrogenase: three-dimensional structure and evolutionary 
significance. Proc Natl Acad Sci U S A. 1973; 70(11): 3052–3054.  
PubMed Abstract | Publisher Full Text | Free Full Text 

44. 	 Buehner M, Ford GC, Moras D, et al.: Structure determination of crystalline 
lobster D-glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol. 1974; 
82(4): 563–585 .  
PubMed Abstract | Publisher Full Text 

45. 	 Buehner M, Ford GC, Olsen KW, et al.: Three-dimensional structure of D-
glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol. 1974; 90(1): 25–49. 
PubMed Abstract | Publisher Full Text 

46. 	 Schrödinger, LLC: The PyMOL Molecular Graphics System, Version 1.8.0.3. In: 
PyMOL version 1.8.0.3. 2015. 

47. 	 Pettersen EF, Goddard TD, Huang CC, et al.: UCSF Chimera-a visualization 
system for exploratory research and analysis. J Comput Chem. 2004; 25(13): 
1605–1612.  
PubMed Abstract | Publisher Full Text 

48. 	 Feng CH, Lu CY: Modification of major plasma proteins by acrylamide and 
glycidamide: Preliminary screening by nano liquid chromatography with 
tandem mass spectrometry. Analytica chimica acta. 2011; 684(1–2): 80–86. 
PubMed Abstract | Publisher Full Text 

49. 	 Tristan C, Shahani N, Sedlak TW, et al.: The diverse functions of GAPDH: views 
from different subcellular compartments. Cell Signal. 2011; 23(2): 317–323. 
PubMed Abstract | Publisher Full Text | Free Full Text 

50. 	 Frederikse PH, Nandanoor A, Kasinathan C: “Moonlighting” GAPDH Protein 
Localizes with AMPA Receptor GluA2 and L1 Axonal Cell Adhesion Molecule 
at Fiber Cell Borders in the Lens. Curr Eye Res. 2016; 41(1): 41–49.  
PubMed Abstract | Publisher Full Text 

51. 	 Singh A, Manoj Kumar C, Chaudhary S, et al.: Moonlighting glycolytic protein 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily 
conserved plasminogen receptor on mammalian cells. FASEB J. 2017; 31(6): 
2638– 2648.  
PubMed Abstract | Publisher Full Text 

52. 	 Nakano T, Goto S, Takaoka Y, et al.: A novel moonlight function 
of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for 
immunomodulation. Biofactors. 2018; 44(6): 597–608.  
PubMed Abstract | Publisher Full Text 

53. 	 Malhotra H, Kumar M, Singh A, et al.: Navdeep Sheokand, Chaaya Iyengar 
Raje, and Manoj Raje. Moonlighting Protein Glyceraldehyde-3-Phosphate 
Dehydrogenase: A Cellular Rapid-Response Molecule for Maintenance 
of Iron Homeostasis in Hypoxia. Cell Physiol Biochem. 2019; 52(3): 517–531. 
PubMed Abstract | Publisher Full Text 

54. 	 Singh Chauhan A, Kumar M, Chaudhary S, et al.: Trafficking of a 
multifunctional protein by endosomal microautophagy: linking two 
independent unconventional secretory pathways. FASEB J. 2019; 33(4): 
5626–5640.  
PubMed Abstract | Publisher Full Text 

55. 	 Kumar Matta S, Agarwal S, Bhatnagar R: Surface localized and extracellular 
Glyceraldehyde-3-phosphate dehydrogenase of Bacillus anthracis is a 
plasminogen binding protein. Biochim Biophys Acta. 2010; 1804(11): 2111–
2120.  
PubMed Abstract | Publisher Full Text 

56. 	 Muñoz-Provencio D, Pérez-Martínez G, Monedero V: Identification of Surface 
Proteins from Lactobacillus casei BL23 Able to Bind Fibronectin and 
Collagen. Probiotics and antimicrobial proteins. 2011; 3(1): 15–20.  
PubMed Abstract | Publisher Full Text 

57. 	 Vanden Bergh P, Heller M, Lagache SB, et al.: The Aeromonas salmonicida 
subsp. salmonicida exoproteome: global analysis, moon-lighting proteins 
and putative antigens for vaccination against furunculosis. Proteome Sci. 
2013; 11(1): 44.  
PubMed Abstract | Publisher Full Text | Free Full Text 

58. 	 Nagarajan R, Ponnuraj K: Cloning, expression, purification, crystallization 
and preliminary X-ray diffraction analysis of glyceraldehyde-3-phosphate 
dehydrogenase from Streptococcus agalactiae NEM316. Acta Crystallogr F 
Struct Biol Commun. 2014; 70(Pt 7): 938–941.  
PubMed Abstract | Publisher Full Text | Free Full Text 

59. 	 Martín R, Sánchez B, Urdaci MC, et al.: Effect of iron on the probiotic 
properties of the vaginal isolate Lactobacillus jensenii CECT 4306. 
Microbiology. 2015; 161(Pt 4): 708–718.  
PubMed Abstract | Publisher Full Text 

60. 	 Borgdorff H, Gautam R, Armstrong SD, et al.: Cervicovaginal microbiome 
dysbiosis is associated with proteome changes related to alterations of 
the cervicovaginal mucosal barrier. Mucosal Immunol. 2016; 9(3): 621–633. 
PubMed Abstract | Publisher Full Text 

61. 	 Frohnmeyer E, Deptula P, Nyman TA, et al.: Secretome profiling of 
Propionibacterium freudenreichii reveals highly variable responses even 
among the closely related strains. Microb Biotechnol. 2018; 11(3): 510–526. 
PubMed Abstract | Publisher Full Text | Free Full Text 

62. 	 Grimmer J, Dumke R: Organization of multi-binding to host proteins: The 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Mycoplasma 
pneumoniae. Microbiol Res. 2019; 218: 22–31.  
PubMed Abstract | Publisher Full Text 

63. 	 Muronetz VI, Melnikova AK, Barinova KV, et al.: Inhibitors of Glyceraldehyde 3-
Phosphate Dehydrogenase and Unexpected Effects of Its Reduced Activity. 
Biochemistry (Mosc). 2019; 84(11): 1268–1279.  
PubMed Abstract | Publisher Full Text 

64. 	 Lazarev VF, Guzhova IV, Margulis BA, et al.: Glyceraldehyde-3-phosphate 
Dehydrogenase is a Multifaceted Therapeutic Target. Pharmaceutics. 2020; 
12(5): 416.  
PubMed Abstract | Publisher Full Text | Free Full Text 

65. 	 Ugarte N, Ladouce R, Radjei S, et al.: Proteome alteration in oxidative stress-
sensitive methionine sulfoxide reductase-silenced HEK293 cells. Free Radic 
Biol Med. 2013; 65: 1023–1036.  
PubMed Abstract | Publisher Full Text 

66. 	 Wages PA, Lavrich KS, Zhang Z, et al.: Protein Sulfenylation: A Novel Readout 
of Environmental Oxidant Stress. Chem Res Toxicol. 2015; 28(12): 2411–2418. 
PubMed Abstract | Publisher Full Text | Free Full Text 

67. 	 Gupta V, Carroll KS: Sulfenic acid chemistry, detection and cellular lifetime. 
Biochim Biophys Acta. 2014; 1840(2): 847–875.  
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 13 of 20

Wellcome Open Research 2020, 5:114 Last updated: 25 AUG 2020

http://www.ncbi.nlm.nih.gov/pubmed/31387164
http://dx.doi.org/10.14348/molcells.2019.0114
http://www.ncbi.nlm.nih.gov/pmc/articles/6715340
http://www.ncbi.nlm.nih.gov/pubmed/21269272
http://dx.doi.org/10.1042/BJ20101442
http://www.ncbi.nlm.nih.gov/pubmed/22477774
http://dx.doi.org/10.1107/S0021889809042022
http://www.ncbi.nlm.nih.gov/pmc/articles/3246824
http://www.ncbi.nlm.nih.gov/pubmed/26144227
http://dx.doi.org/10.1107/S2053230X1500967X
http://www.ncbi.nlm.nih.gov/pmc/articles/4498703
http://www.ncbi.nlm.nih.gov/pubmed/21460447
http://dx.doi.org/10.1107/S0907444911007773
http://www.ncbi.nlm.nih.gov/pmc/articles/3069744
http://www.ncbi.nlm.nih.gov/pubmed/23793152
http://dx.doi.org/10.1107/S0907444913015308
http://www.ncbi.nlm.nih.gov/pmc/articles/3689529
http://www.ncbi.nlm.nih.gov/pubmed/32254063
http://dx.doi.org/10.1107/S2059798320003198
http://www.ncbi.nlm.nih.gov/pmc/articles/7137103
http://www.ncbi.nlm.nih.gov/pubmed/20057045
http://dx.doi.org/10.1107/S0907444909042589
http://www.ncbi.nlm.nih.gov/pubmed/15572774
http://dx.doi.org/10.1107/S0907444904016427
http://www.ncbi.nlm.nih.gov/pubmed/22505257
http://dx.doi.org/10.1107/S0907444911056058
http://www.ncbi.nlm.nih.gov/pmc/articles/3322596
http://www.ncbi.nlm.nih.gov/pubmed/30948621
http://dx.doi.org/10.1074/mcp.RA118.001307
http://www.ncbi.nlm.nih.gov/pmc/articles/6601212
http://www.ncbi.nlm.nih.gov/pubmed/10612281
http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
http://www.ncbi.nlm.nih.gov/pubmed/30573815
http://dx.doi.org/10.1038/s41592-018-0260-3
http://www.ncbi.nlm.nih.gov/pubmed/23255153
http://dx.doi.org/10.1002/0471250953.bi1320s40
http://www.ncbi.nlm.nih.gov/pmc/articles/3545648
http://www.ncbi.nlm.nih.gov/pubmed/28188540
http://dx.doi.org/10.1007/978-1-4939-6747-6_23
http://www.ncbi.nlm.nih.gov/pubmed/29774740
http://dx.doi.org/10.1021/acs.jproteome.8b00175
http://www.ncbi.nlm.nih.gov/pubmed/25574629
http://dx.doi.org/10.1038/nbt.3109
http://www.ncbi.nlm.nih.gov/pubmed/4361672
http://dx.doi.org/10.1073/pnas.70.11.3052
http://www.ncbi.nlm.nih.gov/pmc/articles/427167
http://www.ncbi.nlm.nih.gov/pubmed/4817797
http://dx.doi.org/10.1016/0022-2836(74)90249-6
http://www.ncbi.nlm.nih.gov/pubmed/4375720
http://dx.doi.org/10.1016/0022-2836(74)90254-x
http://www.ncbi.nlm.nih.gov/pubmed/15264254
http://dx.doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/21167989
http://dx.doi.org/10.1016/j.aca.2010.10.042
http://www.ncbi.nlm.nih.gov/pubmed/20727968
http://dx.doi.org/10.1016/j.cellsig.2010.08.003
http://www.ncbi.nlm.nih.gov/pmc/articles/3084531
http://www.ncbi.nlm.nih.gov/pubmed/25614994
http://dx.doi.org/10.3109/02713683.2014.997886
http://www.ncbi.nlm.nih.gov/pubmed/28298336
http://dx.doi.org/10.1096/fj.201600982R
http://www.ncbi.nlm.nih.gov/pubmed/28753256
http://dx.doi.org/10.1002/biof.1379
http://www.ncbi.nlm.nih.gov/pubmed/30897319
http://dx.doi.org/10.33594/000000037
http://www.ncbi.nlm.nih.gov/pubmed/30640524
http://dx.doi.org/10.1096/fj.201802102R
http://www.ncbi.nlm.nih.gov/pubmed/20727989
http://dx.doi.org/10.1016/j.bbapap.2010.08.004
http://www.ncbi.nlm.nih.gov/pubmed/26781495
http://dx.doi.org/10.1007/s12602-011-9065-8
http://www.ncbi.nlm.nih.gov/pubmed/24127837
http://dx.doi.org/10.1186/1477-5956-11-44
http://www.ncbi.nlm.nih.gov/pmc/articles/3826670
http://www.ncbi.nlm.nih.gov/pubmed/25005093
http://dx.doi.org/10.1107/S2053230X14011418
http://www.ncbi.nlm.nih.gov/pmc/articles/4089536
http://www.ncbi.nlm.nih.gov/pubmed/25635270
http://dx.doi.org/10.1099/mic.0.000044
http://www.ncbi.nlm.nih.gov/pubmed/26349657
http://dx.doi.org/10.1038/mi.2015.86
http://www.ncbi.nlm.nih.gov/pubmed/29488359
http://dx.doi.org/10.1111/1751-7915.13254
http://www.ncbi.nlm.nih.gov/pmc/articles/5902329
http://www.ncbi.nlm.nih.gov/pubmed/30454655
http://dx.doi.org/10.1016/j.micres.2018.09.006
http://www.ncbi.nlm.nih.gov/pubmed/31760917
http://dx.doi.org/10.1134/S0006297919110051
http://www.ncbi.nlm.nih.gov/pubmed/32370188
http://dx.doi.org/10.3390/pharmaceutics12050416
http://www.ncbi.nlm.nih.gov/pmc/articles/7285110
http://www.ncbi.nlm.nih.gov/pubmed/23988788
http://dx.doi.org/10.1016/j.freeradbiomed.2013.08.008
http://www.ncbi.nlm.nih.gov/pubmed/26605980
http://dx.doi.org/10.1021/acs.chemrestox.5b00424
http://www.ncbi.nlm.nih.gov/pmc/articles/4769880
http://www.ncbi.nlm.nih.gov/pubmed/23748139
http://dx.doi.org/10.1016/j.bbagen.2013.05.040
http://www.ncbi.nlm.nih.gov/pmc/articles/4184475


68. 	 Ehring R, Colowick SP: The two-step formation and inactivation of 
acylphosphatase by agents acting on glyceraldehyde phosphate 
dehydrogenase. J Biol Chem. 1969; 244(17): 4589–4599.  
PubMed Abstract 

69. 	 Allison WS, Connors MJ: The activation and inactivation of the acyl 
phosphatase activity of glyceraldehyde-3-phosphate dehydrogenase. Arch 

Biochem Biophys. 1970; 136(2): 383–391.  
PubMed Abstract | Publisher Full Text 

70. 	 Allison WS, Benitez LV: An adenosine triphosphate-phosphate exchange 
catalyzed by a soluble enzyme couple inhibited by uncouplers of oxidative 
phosphorylation. Proc Natl Acad Sci U S A. 1972; 69(10): 3004–3008.  
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 14 of 20

Wellcome Open Research 2020, 5:114 Last updated: 25 AUG 2020

http://www.ncbi.nlm.nih.gov/pubmed/4309146
http://www.ncbi.nlm.nih.gov/pubmed/4314108
http://dx.doi.org/10.1016/0003-9861(70)90209-2
http://www.ncbi.nlm.nih.gov/pubmed/4507619
http://dx.doi.org/10.1073/pnas.69.10.3004
http://www.ncbi.nlm.nih.gov/pmc/articles/389695


Open Peer Review
Current Peer Review Status:   

Version 1

Reviewer Report 11 August 2020

https://doi.org/10.21956/wellcomeopenres.17433.r39295

© 2020 Raje C. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Chaaya I. Raje  
National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India 

The authors Lia A et al., provide X-ray crystallography data to define the Cys-152-S-sulfonic acid 
modification observed in human GAPDH. Post translational modifications are known to modulate 
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The article "Partial catalytic Cys oxidation of human GAPDH” by A. Lia et al. contains new and 
important information on the structure of the active site of GAPDH with the catalytic Cys152 
oxidized to sulfonic acid. It is no less interesting that it was possible to isolate this form of oxidized 
GAPDH from the conditioned medium of human epithelial kidney cells subjected to stress. The 
disadvantage of this article is the lack of information on the enzymatic activity of the isolated 
enzyme, in which only part of the active site cysteines is oxidized. These data could show the 
degree of irreversible oxidation of the enzyme and confirm the results of crystallographic studies. 
It should also be noted that the reducing agent was added only on the stage of chromatographic 
purification of the enzyme. It is possible that the irreversible oxidation of GAPDH could occur not 
only during cell cultivation, but also during the preparation of the conditioned medium for 
purification (collecting, dilution, and filtration) as well as during its application on the column. 
  
Other comments: 
 

In the title, it would be better to indicate precisely the product of cysteine oxidation. 
 

1. 

The phrase "GAPDH catalyses the reversible NAD+-dependent oxidative phosphorylation of 
n-glyceraldehyde-3-phosphate to 1,3- diphospho-n-glycerate in both glycolysis and 
gluconeogenesis” is inaccurate, since during gluconeogenesis the reverse reaction takes 
place. 
 

2. 

“In multiple mammalian species the sperm isozyme shares about 70% amino acid identity 
with the somatic isozyme and plays a role in anchoring GAPDHS to the fibrous sheath in the 
principal piece of the sperm flagellum”. The phrase is incomprehensible. It is unclear, what 
plays a role in anchoring GAPDHS. You can write that the additional N-terminal fragment of 
the sperm isoenzyme is necessary for anchoring GAPDHS to the fibrous sheath of the sperm 
flagellum.  
 

3. 

The designations of the cysteine derivatives in Fig. 1 could be supplemented with those 
accepted in enzymology (S-OH, SO2H, SO3H). The accepted name of the protein is D-
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glyceraldehyde-3-phosphate dehydrogenase. 
 
The Introduction and Discussion are overloaded with references to old articles, but there is 
not enough references to later works. For example, there are references to the first works 
of 1969-1972 years on GAPDH isolation and on acylphosphatase activity of GAPDH.  
 

5. 

 Methods. Cloning and isolation of recombinant mannosidase is excessively detailed in 
Methods. It should be emphasized that the aim of this work was to isolate GAPDH from the 
conditioned medium and indicate what is critical for the isolation of this enzyme (for 
example, the importance of using reducing agents to prevent the oxidation of GAPDH). The 
authors did not decipher the name of the used reducing agent (TCEP - Tris (2-Carboxyethyl) 
phosphine), which complicates the understanding of the article. 
 

6. 

Discussion and conclusion. “However, in contrast to sulfenic acid, higher oxidation states of 
catalytic Cys residues lead to enzyme inactivation ” – an incorrect phrase, since the oxidation 
of the catalytic cysteine to sulfenic acid also leads to disappearance of the dehydrogenase 
activity, although reversible
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thoughtful comments, and for the suggestions. We believe we have addressed all of them 
and we are confident that the manuscript is improved because of this. 
 
In the following we respond to this Reviewer comments in a point-by-point format. 
 
The disadvantage of this article is the lack of information on the enzymatic activity of the isolated 
enzyme, in which only part of the active site cysteines is oxidized. These data could show the 
degree of irreversible oxidation of the enzyme and confirm the results of crystallographic studies. 
  
We agree with the Reviewer that enzymatic activity measurements ought to correlate with 
the percentage of residual reduced catalytic Cys in our sample. Of course, as we state in the 
discussion, “in contrast to sulfenic acid, higher oxidation states of catalytic Cys residues lead 
to enzyme inactivation and Cys S-sulfonation is generally considered an irreversible form 
associated with protein misfolding, degradation, and pathology (Reference [65])”, so 
enzymatic assays of our oxidised GAPDH would likely add to the literature very little that is 
not known already. 
  
It should also be noted that the reducing agent was added only on the stage of chromatographic 
purification of the enzyme. It is possible that the irreversible oxidation of GAPDH could occur not 
only during cell cultivation, but also during the preparation of the conditioned medium for 
purification (collecting, dilution, and filtration) as well as during its application on the column. 
  
This is a very good point and we have added the following paragraph to the discussion: “Of 
course, it is also possible that the relative amounts of oxidised vs. reduced GAPDH could vary 
during protein purification (after harvesting the cells’ supernatant) due to changes in the ionic 
strength and pH; all buffers used were degassed (minimising O2 content) but contain 1 mM Tris 
(2-Carboxyethyl) phosphine (TCEP), a reducing agent that prevents intermolecular 
disulphide_bond-mediated oligomerisation of GAPDH. The crystallisation conditions do not 
nominally contain redox active ingredients but crystal forms A,B grow at pH 8.5, while forms C,D 
grow at pH 6.5. MS characterisation of GAPDH samples purified at sequential stages during the 
expression/ purification procedure would elucidate the time-dependence of the enzyme catalytic 
Cys residue redox composition in the chosen experimental conditions.” 
 
  
Other comments: 
  
1. In the title, it would be better to indicate precisely the product of cysteine oxidation. 
We have modified the title to: “Partial catalytic Cys oxidation of human GAPDH to sulfonic 
acid.” 
 
2. The phrase "GAPDH catalyses reversible NAD+-dependent oxidative phosphorylation of n-
glyceraldehyde-3-phosphate to 1,3- diphospho-n-glycerate in both glycolysis and 
gluconeogenesis” is inaccurate, since during gluconeogenesis the reverse reaction takes place. 
We have modified the phrase as follows: “GAPDH is essential for glycolysis and 
gluconeogenesis; it catalyses the NAD+-dependent oxidative phosphorylation of n-
glyceraldehyde-3-phosphate to 1,3- diphospho-n-glycerate (and its reverse reaction). The GAPDH-
catalysed forward reaction occurs at an important transition point in glycolysis between the 
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enzymatic steps that consume and generate ATP.” 
 
3.  “In multiple mammalian species the sperm isozyme shares about 70% amino acid identity with 
the somatic isozyme and plays a role in anchoring GAPDHS to the fibrous sheath in the principal 
piece of the sperm flagellum”. The phrase is incomprehensible. It is unclear, what plays a role in 
anchoring GAPDHS. You can write that the additional N-terminal fragment of the sperm 
isoenzyme is necessary for anchoring GAPDHS to the fibrous sheath of the sperm flagellum.  
We have modified this sentence along the Reviewer’s suggestion: “In multiple mammalian 
species the sperm isozyme (GAPDHS) shares about 70% amino acid identity with the somatic 
isozyme, and possesses an additional 72-residues N-terminal extension. The latter enables 
association of GAPDHS to the sperm flagellum fibrous sheath, so that the enzyme – together with 
other glycolytic enzymes - provides a localised source of ATP that is essential for sperm motility.” 
 
4. The designations of the cysteine derivatives in Fig. 1 could be supplemented with those 
accepted in enzymology (S-OH, SO2H, SO3H). The accepted name of the protein is D-
glyceraldehyde-3-phosphate dehydrogenase. 
            We have modified the Figure – adding the conventional names for the Cys 
derivatives. We include the accepted name of the protein in the first paragraph of the 
paper. 
 
5. The Introduction and Discussion are overloaded with references to old articles, but there is not 
enough references to later works. For example, there are references to the first works of 1969-
1972 years on GAPDH isolation and on acylphosphatase activity of GAPDH.  
            We include references to early work to give credit to the scientists who first 
characterised the enzyme. We take the point that it is important to reference more recent 
work too. We have now included references to two reviews on GAPDH inhibition in order to 
link to more recent GAPDH work: “For recent reviews on GAPDH inhibitors and their multiple 
roles in several pharmacological applications see 69,70.”. Ref. 69: Muronetz VI, Melnikova AK, 
Barinova KV, Schmalhausen EV. Inhibitors of Glyceraldehyde 3-Phosphate Dehydrogenase and 
Unexpected Effects of Its Reduced Activity. Biochemistry (Mosc). 2019;84(11):1268-1279. 
doi:10.1134/S0006297919110051; Ref. 70: Lazarev VF, Guzhova IV, Margulis BA. Glyceraldehyde-
3-phosphate Dehydrogenase is a Multifaceted Therapeutic Target. Pharmaceutics. 
2020;12(5):416. Published 2020 May 2. doi:10.3390/pharmaceutics12050416. 
 
6. Methods. Cloning and isolation of recombinant mannosidase is excessively detailed in 
Methods. It should be emphasized that the aim of this work was to isolate GAPDH from the 
conditioned medium and indicate what is critical for the isolation of this enzyme (for example, the 
importance of using reducing agents to prevent the oxidation of GAPDH). The authors did not 
decipher the name of the used reducing agent (TCEP - Tris (2-Carboxyethyl) phosphine), which 
complicates the understanding of the article. 
  
            The details on the cloning of the recombinant mannosidase are necessary for full 
reproducibility of the experiment as it was carried out. We have added the full chemical 
name of TCEP in the place in the text where it first appears and explained the intended 
reason for its presence in our protein chemistry buffers: “all buffers (…) contain 1 mM Tris (2-
Carboxyethyl) phosphine (TCEP), a reducing agent that prevents intermolecular disulphide_bond-
mediated oligomerisation of GAPDH. 
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7. Discussion and conclusion. “However, in contrast to sulfenic acid, higher oxidation states of 
catalytic Cys residues lead to enzyme inactivation ” – an incorrect phrase, since the oxidation of 
the catalytic cysteine to sulfenic acid also leads to disappearance of the dehydrogenase activity, 
although reversible. 
            We have modified the sentence as follows: “However, in contrast to GAPDH catalytic Cys 
oxidation to sulfenic acid, which is reversible, oxidation to sulfonic acid leads to irreversible 
enzyme inactivation” 
   

Competing Interests: We have no competing interests to disclose.

 
Page 20 of 20

Wellcome Open Research 2020, 5:114 Last updated: 25 AUG 2020


