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The spindle assembly checkpoint controls cell cycle progression during mitosis, synchronizing it
with the attachment of chromosomes to spindle microtubules. After the discovery of the mitotic
arrest deficient (MAD) and budding uninhibited by benzymidazole (BUB) genes as crucial checkpoint
components in 1991, the second decade of checkpoint studies (2001–2010) witnessed crucial
advances in the elucidation of the mechanism through which the checkpoint effector, the mitotic
checkpoint complex, targets the anaphase-promoting complex (APC/C) to prevent progression
into anaphase. Concomitantly, the discovery that the Ndc80 complex and other components of
the microtubule-binding interface of kinetochores are essential for the checkpoint response finally
asserted that kinetochores are crucial for the checkpoint response. Nevertheless, the relationship
between kinetochores and checkpoint control remains poorly understood. Crucial advances in
this area in the third decade of checkpoint studies (2011–2020) are likely to be brought about
by the characterization of the mechanism of kinetochore recruitment, activation and inactivation
of checkpoint proteins, which remains elusive for the majority of checkpoint components. Here,
we take a molecular view on the main challenges hampering this task.
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1. PREAMBLE
This essay aims to discuss a handful of crucial practical
and conceptual problems facing future studies in the
area of spindle assembly checkpoint (SAC) signalling.
Admittedly, the content is speculative and reflects the
author’s own biases in the interpretation of a rather
large body of solid facts and an equally large collection
of contradictory observations. While trying not to
ignore known facts and observations, the review avoids
lengthy and detailed descriptions of checkpoint mech-
anisms, unless strictly necessary. Such mechanisms
have been discussed in several recent reviews [1–5].
2. THE SPINDLE CHECKPOINT IN A NUTSHELL
The SAC is a feedback control mechanism whose
activity ensures accurate chromosome segregation
during mitosis. As with many other functions in the
cell, the practical implementation of the checkpoint is
entrusted to a set of dedicated ‘checkpoint proteins’.
Well-characterized checkpoint components include the
kinases Bub1, BubR1 and Mps1 [1]. Three additional
kinases, Prp4, Chk1 and Tao1 have also been proposed
to take part in the checkpoint [6–8]. At least in the case
of Tao1, however, initial claims of a role in the check-
point were recently put into question [9,10]. Other
checkpoint components include Mad1, Mad2 and the
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three subunits of the Rod, Zwilch and ZW10 (RZZ)
complex. These proteins are (at least in a broad sense)
devoid of catalytic activity and are implicated in
protein–protein interactions [1]. Together, the check-
point proteins contribute to the formation of a
checkpoint effector complex, named the mitotic
checkpoint complex (MCC) [11–13]. The MCC pro-
tects Cyclin B and Securin from ubiquitination,
preventing their destruction by the proteasome, and
thus maintaining the mitotic state.

The Cdk1 : Cyclin B complex is the ‘engine’ of cell
cycle progression [14]. It generates the thrust that
sets into motion the ‘wheels’ associated with mitosis,
including nuclear envelope breakdown, assembly of
the mitotic spindle, chromosome condensation, and so
on [15]. The SAC supports retrograde feedback signal-
ling to the cell cycle engine from one of the spinning
wheels, the process of attachment of chromosome to
the spindle [16]. In essence, the SAC prevents the
degradation of Cyclin B and Securin until completion
of the process of attachment of chromosomes to spindle
microtubules (metaphase) [17,18]. The checkpoint’s
services render metaphase an obligatory intermediate
of mitosis. This is because Cdk1 : Cyclin B activity con-
tinues to be delivered in each and every cell containing
a functional checkpoint precisely for the amount of
time required for achieving metaphase. In the absence
of checkpoint control, human cells leave mitosis pre-
maturely with unattached or improperly attached
chromosomes, usually encountering a disastrous fate
[19]. Under certain circumstances, the resulting
This journal is q 2011 The Royal Society
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imbalances in chromosome composition (aneuploidy
and polyploidy) might also result in cellular transform-
ation, in particular if occurring concomitantly with loss
of function of genomic gatekeepers [20].

The kinetochore is the main site of attachment of
microtubules to mitotic chromosomes. The kineto-
chore’s ‘hardware’ is made of a core of approximately
30 evolutionarily conserved scaffold proteins that
create a solid link between chromatin and the mitotic
spindle [21–24]. The ‘software’ is provided by a
number of regulatory proteins that become recruited
to kinetochores and are regulated there to deliver
their activity as appropriate [2,22,25,26]. Among
these are the components of the SAC, all of which
are recruited to kinetochores during mitosis [1].

There are several accounts of kinetochore-indepen-
dent contributions to checkpoint signalling of the
checkpoint components [11,13,27–32]. Nevertheless,
it is now established beyond reasonable doubt that kine-
tochore integrity is essential for checkpoint function:
ablation of crucial components of the kinetochore
hardware impairs the recruitment of the checkpoint
components and results in a checkpoint defect (as
discussed more thoroughly below) [19,33]. Indeed,
kinetochores might behave as catalysts in the production
of the checkpoint effector, the MCC [11–13]. Kineto-
chores might be accelerating specific rate-limiting
steps in this process [5,34–36].
3. THE SENSORY APPARATUS OF THE SPINDLE
ASSEMBLY CHECKPOINT
Understanding how kinetochores bind microtubules
and regulate checkpoint status accordingly is the
major challenge for mitotic checkpoint studies in the
next decade. A crucial question regards what is being
sensed by the checkpoint and how. Much of the dis-
cussion on the sensory apparatus of the SAC in the
last decade has taken place within the rather fuzzy
boundaries of the tension versus attachment dichot-
omy [37–42]. Recent faint glows indicate that the
field is becoming ripe for a modern synthesis bringing
about the substitution of these rather slippery concepts
with more precise molecular descriptions and models.
What are the crucial challenges confronting the
community?

Pioneering experiments by Nicklas and colleagues
in the late 1960s demonstrated that tension stabili-
zes kinetochore–microtubule attachment, and that an
error-correction mechanism discriminates between cor-
rect and incorrect attachments, selectively destabilizing
the latter [43]. The experiments hinted at the existence
of a tension sensor, but of course did not clarify its
location or molecular nature. Indeed, over 20 years
later, these questions remained the object of interesting
speculation [44]. In the mid-1990s, it became clear
that kinetochores and centromeres might be crucially
involved in the detection of tension [45–49]. This
initiated a search for the molecular components of the
tension-sensitive pathway. Experiments in the early
2000s in Saccharomyces cerevisiae brought to light a role
of the essential centromere and kinetochore serine/
threonine kinase Ipl1/Aurora B in the correction of im-
proper kinetochore–microtubule attachments [50–52].
Phil. Trans. R. Soc. B (2011)
When the activity of this kinase is inhibited, improper
and hyperstable kinetochore–microtubule attachments
accumulate in high numbers, possibly suggesting that
the process of error correction is inhibited.

With the discovery of the checkpoint genes [53,54],
an essential intellectual challenge was readily recog-
nized. Was there a relationship between the checkpoint
and the error-correction mechanism exposed by Nicklas
and colleagues, and if so, which one [44]? Ten years
later, the observation that Aurora B is primarily
required to sustain the SAC under conditions believed
to reduce tension at the kinetochore microtubule inter-
face, but not upon microtubule disassembly (i.e. not
under conditions of lack of microtubule attachment)
[42,55–61] led to the formulation of a popular
model to describe the possible connection between
error correction and the checkpoint [42,58]. In this
model, lack of tension activates error correction, which
in turn generates unattached kinetochores (as end-
products of the correction activity) that stimulate
the SAC response. The tension versus attachment
dichotomy embeds the idea that the checkpoint is exclu-
sively interested in lack of attachment, and becomes
satisfied by any type of microtubule attachment, even
of the type that cannot generate tension (for recent
discussions see [37,38–42]). It is only because of the
Aurora B-dependent activity of the error-correction
mechanism, and the subsequent creation of unattached
kinetochores, that the checkpoint becomes re-activated
at a kinetochore after microtubule binding. The model
predicts that if error correction is inhibited, e.g. through
the inhibition of Aurora B, the checkpoint becomes
automatically satisfied.

The model discussed in the previous paragraph
assumes that the SAC and error-correction machineries
are distinct, i.e. that they have a distinct molecular
composition. Indeed, checkpoint proteins like Mad1
and Mad2 do not influence the state of kinetochore–
microtubule alignment. With one notable recently
reported exception [62], there is no evidence that these
proteins participate in error correction or more generally
in kinetochore–microtubule attachment [63–65].
For most other checkpoint proteins, on the other hand,
a role in kinetochore–microtubule attachment is well
established. In S. cerevisiae, most checkpoint com-
ponents are not essential for viability [53,54,66],
presumably because their services are not as important
for faithful chromosome segregation as are those of
bona fide error-correction components, such as Ipl1,
which is encoded by an essential gene. However, loss
of Bub1 and Bub3 results in highly increased rates of
chromosome segregation errors [63–65]. In mamma-
lian cells, bona fide SAC components such as Mps1,
Bub1 and BubR1 appear to be involved in chromosome
congression and error correction [65,67–69] in a way
that is hardly distinguishable from that of Aurora B, at
least on the basis of the assays currently available to
monitor error correction.

These observations raise questions regarding the
actual role of Aurora B in the checkpoint. If bona
fide SAC kinases are also involved in error correction,
cannot Aurora B be implicated in the SAC? Is the role
of Aurora B in the SAC merely indirect, or rather does
Aurora B participate directly in it? Support for a direct
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role of Aurora B in checkpoint signalling from unat-
tached kinetochores has been gathered in several
systems, including budding and fission yeast, frogs
and humans [36,70–76]. In one recent study,
Aurora B activity was shown to be essential for check-
point signalling under conditions of complete or at
least near-complete microtubule depolymerization,
i.e. under conditions in which the checkpoint cannot
be satisfied by residual microtubules [74]. In another
study, activity of Aurora B was shown to sustain the
checkpoint-dependent metaphase arrest observed
upon constitutive targeting of the Mad1 : Mad2 com-
plex to kinetochores [36]. In the latter case, the
Aurora B-dependent metaphase arrest was shown to
be compatible with the presence of a full complement
of kinetochore microtubules, i.e. it occurred in the
absence of unattached kinetochores or of clearly
recognizable products of error correction [36].

The significance of these important findings is that
activity of Aurora B might be directly implicated in
checkpoint signalling, independently from its estab-
lished function in error correction. Furthermore,
evidence that Aurora B controls kinetochore recruit-
ment of most checkpoint components (in the absence
of microtubules, i.e. under conditions of lack of attach-
ment), including Mps1 [30,55,69,77,78], and that it is
important for their phosphorylation [74] suggests that
it might act near (or at) the apex of the checkpoint signal-
ling pathway. Furthermore, inhibition of Aurora B does
not result in overt kinetochore assembly defects [74,79].
This suggests that factors such as the disappearance of
crucial phospho-epitopes or the impairment of specific
conformational changes, rather than gross changes in
kinetochore composition, might be responsible for
impaired kinetochore recruitment of the checkpoint
proteins when Aurora B is inhibited.

Tracking the precise role of Aurora B and other mito-
tic kinases is an important prelude to addressing the
fundamental question of what type of offenses are
sensed by the checkpoint and error-correction pathways
and how and where they are sensed. If tension- and
attachment-dependent signalling were distinct, one
would have to postulate the existence of two distinct sen-
sory apparatuses. On the other hand, there might be a
single sensory apparatus, concomitantly eliciting error
correction and spindle checkpoint signalling [44].
Occam’s razor, admittedly a rather blunt tool, makes
us inclined towards the latter hypothesis. From a bio-
chemical perspective, this hypothesis is far simpler
because it predicts that the same sensor concomitantly
elicits the activation of chromosome alignment/error
correction and spindle checkpoint signalling pathways
that share—before diverging—several components,
most notably the Mps1 kinase and probably also the
Bub1 and BubR1 kinases. If the sensors were distinct,
and yet the pathways they activate shared at least a
subset of their components, one would have to imagine
circumstances in which the pathways would have to
operate independently. Biochemically, this would
imply directing the activity of the shared components
(e.g. Mps1 kinase activity) towards different substrates
depending on which pathway is active. This appears
unlikely, given that both error correction and spindle
checkpoint signalling occur at kinetochores and that
Phil. Trans. R. Soc. B (2011)
this is where the checkpoint and error-correction com-
ponents localize.

If there is a single sensory apparatus for error correc-
tion and SAC signalling, then previous results indicating
that Aurora B is dispensable for the checkpoint response
to unattached kinetochores might be the consequence of
incomplete loss of function. Future studies will have to
address this possibility. Indeed, there is evidence that a
very low level of Aurora B activity is sufficient to main-
tain the checkpoint in the presence of unattached
kinetochores. For instance, checkpoint inactivation at
high doses of microtubule-depolymerizing agents is
achieved only with relatively high doses of the Aurora
B inhibitors hesperadin or ZM447439 [74]. However,
the deleterious effects of Aurora B inhibition on check-
point status are strongly synergic with concomitant
inhibition of Bub1 or Mps1 [74,80].
4. THE KINETOCHORE
The arguments built in the previous section lead to the
conclusion that it is essential to understand error correc-
tion and spindle checkpoint signalling in the context of
the complex structural organization of the kinetochore.
A complete account of kinetochore organization is
beyond the scope of this review and several reviews on
this topic have been made available recently [21,22].
Suffice to say that kinetochores are thought to consist
of an inner plate hosting an interface between the 15-
subunit constitutive centromere-associated network
(CCAN) and specialized centromeric chromatin; and
an outer plate containing the 10-subunit KMN network
(from the initials of its Knl1, Mis12 and Ndc80 sub-
complexes) implicated in microtubule binding. The
CCAN and KMN networks are tightly connected. An
interaction between CENP-C (CCAN) and the Mis12
complex (KMN network) provides an important point
of contact [81–83]. The existence of additional points
of contact, including one between CENP-T (CCAN)
and the Ndc80 subcomplex (KMN network) [83,84],
is supported by extensive analyses of localization
dependencies of kinetochore proteins and from initial
experiments of biochemical reconstitution.

Biochemical and structural studies, including super-
resolution investigations of kinetochore organization by
fluorescence microscopy, have finally resulted in rather
precise maps of the relative position of many structural
kinetochore proteins and of several checkpoint com-
ponents [85–88]. For instance, these studies clarified
that the highly elongated 4-subunit Ndc80 complex,
conserved in all eukaryotes, orients its approximately
60 nm long axis at a relatively small angle with the
inter-kinetochore axis [85–87]. The kinetochore-
binding end of the Ndc80 complex was predicted to
be positioned near the Mis12 and Knl1 complexes
[87,88], and this prediction was fully confirmed in
experiments of biochemical reconstitution [89].

In prophase Drosophila melanogaster S2 cells, the
C-terminal region of the Ndc80 subunit is located
approximately 65 nm outward (i.e. towards the micro-
tubule) relative to CENP-A, the histone H3 variant
that marks centromeres from yeast to humans [40].
Remarkably, it was shown that this distance increases
to approximately 100 nm when kinetochores experience
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microtubule-dependent tension at metaphase [40].
This phenomenon is now known as intra-kinetochore
stretch or tension [40,90]. A major task for the future
is to understand how intra-kinetochore stretch is gener-
ated when microtubules bind the kinetochore. At one
extreme, intra-kinetochore stretching might be the
result of a discreet conformational change in the kineto-
chore caused by microtubule binding [22,91]. While this
is possible, it seems unlikely when considering the great
structural complexity of kinetochores. Each microtu-
bule-binding site contains six to eight copies of the
approximately 30 structural kinetochore components
[85]. Furthermore, in most species, kinetochores are
designed to bind multiple microtubules. Plausibly,
each microtubule-binding site becomes engaged at a
different time. Thus, it may be more sensible to interpret
intra-kinetochore stretching as a progressive, continuous
distortion of the kinetochore when microtubules are
added. In agreement with this idea, intermediate levels
of stretching are observed when microtubule end
dynamics are inhibited through addition of taxol [40].

Importantly, intra-kinetochore stretch was shown to
correlate with the status of checkpoint activation, with
high stretch being correlated with checkpoint satisfac-
tion. This idea of checkpoint control is alternative to a
previous idea that tension might be monitored at the
centromere, i.e. between sister kinetochores (inter-
kinetochore tension) [46]. A significant theoretical
limitation of the idea that the checkpoint sensor moni-
tors tension between sister kinetochores is that it is
not applicable to meiosis I, when the sisters co-orient
and the homologues pair through the chiasmata.
Conversely, the intra-kinetochore tension idea is also
applicable to checkpoint control in meiosis I.
5. MECHANISM OF CHECKPOINT SIGNALLING
As a summary so far, kinetochores can be thought of
as nano-sensors capable of sensing relatively small
structural changes in their organization. The scale of
these conformational changes is in range with the
dimensions of several kinetochore components. As
already indicated above, the long axis of the Ndc80
complex is approximately 60 nm, while the Mis12
complex has a long axis of approximately 23 nm
[89,92,93]. The length scale of these molecules is
comparable with the approximately 35 nm increase
in the distance between CENP-A and the C-terminal
region of Ndc80 when kinetochores become attached.

How are these relatively small internal structural
changes in kinetochores translated into robust check-
point activity states? If Aurora B is indeed the primary
checkpoint sensor, how does it sense conformational
change within kinetochores? Several crucial recent
observations started casting new light onto the mechan-
ism through which Aurora B controls phosphorylation
of its substrates. Aurora B is part of a larger complex,
known as chromosome passenger complex (CPC),
which contains Survivin, Borealin and inner centromere
protein (INCENP) as additional subunits [94]. The
CPC interacts with specialized centromeric chromatin
that displays phosphorylated Thr3 on histone H3, a
mark created by the kinase Haspin, as well as additional
molecular beacons, such as phosphorylated histone
Phil. Trans. R. Soc. B (2011)
H2A [95–99]. When placed at different depths within
the kinetochore, a fluorescence resonance energy trans-
fer sensor designed to be sensitive to Aurora B activity
becomes differentially phosphorylated depending on
the state of attachment [100]. When positioned near
the kinetochore–centromere interface (as a covalent
fusion to a specific inner kinetochore protein), the
sensor was constitutively phosphorylated, regardless of
whether tension was present or not. On the other
hand, a sensor positioned near the outer plate of the
kinetochore, again as a covalent fusion, was differen-
tially phosphorylated in a manner that correlated with
the degree of tension at the kinetochore [100]. These
observations strongly suggest that in the absence of ten-
sion, Aurora B is within the reach of its kinetochore
substrates, while rising levels of intra-kinetochore
stretch progressively impair its ability to reach such
substrates [22,40,90,91].

This idea is consistent with previous models sugges-
ting that stabilization of kinetochore–microtubule
interaction might be a consequence of the increasing
separation of substrates from the destabilizing activity
of Aurora B as attachment proceeds [50]. In its original
formulation, however, this hypothesis predicted that
tension separated a centromeric pool of Aurora B from
its substrates at the kinetochore. The new data, on the
other hand, suggest that the distance between Aurora
B and its substrates increases by approximately 35 nm
or less, i.e. by a size that might be similar or even
larger than the size of the CPC itself. It is very unlikely
that tension-sensitive differences in the shape of a diffu-
sible gradient of Aurora B or of an Aurora B substrate
can be established within the nanometre-scale structural
deformations associated with intra-kinetochore stretch.

These considerations force us to predict that there is a
kinetochore-associated pool of Aurora B. The function
of this pool, which is highly relevant to the phenomena
discussed here, probably is exercised on substrates that
are located in close proximity to Aurora B in the absence
of tension (possibly explaining why even little residual
kinase activity is sufficient to maintain the checkpoint)
and become separated when tension builds up. In
other words, microtubule binding or force applied onto
the kinetochore might result in the relative movement
of molecular parts whose length scale has the same
range as the extent of stretch. For instance, we have
recently proposed a ‘ruler’ or ‘dog-leash’ model to
explain how the Aurora B sensor might work [22]. The
dog-leash model proposes that the distance to which
Aurora B (the dog) can travel away from the base of
the kinetochore (the dog’s owner, represented by the
Survivin and Borealin subunits) is limited by the maxi-
mal stretch of the leash, the INCENP subunit of the
CPC. The dog-leash hypothesis remains completely
speculative. Its rigorous testing will require a deeper
understanding of the molecular mechanisms through
which Aurora B phosphorylation of substrates influences
the error correction and checkpoint responses.
6. IDENTIFICATION OF THE KINETOCHORE
RECEPTORS OF CHECKPOINT COMPONENTS
At this time, we have only a vague idea of the exact
mechanism through which Aurora B controls the



Review. The spindle checkpoint A. Musacchio 3599
behaviour of its substrates. Aurora B phosphorylation
of a motif in the N-terminal region of the kinetochore
subunit KNL1/Spc105 prevents the recruitment of
protein phosphatase 1 (PP1), probably through steric
hindrance or neutralization of the positive charge of
the Aurora B consensus site [101]. A similar principle
might apply to the phosphorylation of the N-terminal
tail of Ndc80, which, together with other segments of
the Ndc80 protein [102,103], provides a crucial contri-
bution to the microtubule-binding activity of the
kinetochore [79,104]. In the above-mentioned cases,
Aurora B phosphorylation negatively regulates inter-
actions of its substrates with target proteins. On the
other hand, Aurora B can also promote protein inter-
actions at the kinetochore. For instance, it promotes the
recruitment of several SAC proteins, including Mps1,
to kinetochores [69,77]. Whether this phosphorylation-
dependent recruitment reflects the existence of protein
domains capable of binding the phosphorylated Aurora
B consensus site is currently unknown.

In general, the identification of phosphorylation
events that are relevant to the recruitment and activation
of the components of the checkpoint and error-
correction pathways are crucial tasks for future studies.
Ideally, checkpoint-relevant substrates of Aurora B
should be phosphorylated under conditions of low
intra-kinetochore stretch, and become progressively
dephosphorylated upon increasing stretch [105]. If the
phospho-epitopes that promote kinetochore recruitment
of the checkpoint proteins were ‘transplantable’ to other
kinetochore proteins or to different regions of the same
protein, testing the effects of re-positioning the phos-
pho-epitopes relative to the predicted position of
Aurora B will become possible. ‘Transplantability’
implies that kinetochore regions that are necessary and
sufficient for the interaction with a given checkpoint
protein are identified and characterized. What are the
challenges associated with this task?

With the exclusion of the Aurora B-containing
CPC, which is recruited to H3-containing nucleo-
somes, as discussed above, all additional receptor
sites for the checkpoint components are probably con-
tained within the 10-subunit KMN network [1]. For
instance, the RNAi-based depletion of subunits of
the Ndc80 complex prevents kinetochore association
of the checkpoint proteins Mad1, Mad2 and Mps1
and of the subunits of the RZZ complex [27,106].
Conversely, Knl1 has been implicated in kinetochore
recruitment of Bub1 and BubR1 [107]. Although
these observations clearly point to the KMN network
as a necessary scaffold for checkpoint signalling, the
minimal structural elements required for high-affinity
binding of the checkpoint components have so far
escaped identification. To date, the only checkpoint-
relevant interaction whose minimal requirements
have been identified and recapitulated in vitro is the
recruitment of O-Mad2 by the Mad1–C–Mad2 com-
plex via conformational dimerization [108,109].

At least in part, difficulties in the identification of the
binding sites of the checkpoint proteins are a conse-
quence of the transient nature of their interaction with
mitotic kinetochores. For instance, the Mps1 kinase
turns over rapidly at kinetochores, suggesting that its
interaction with kinetochores is of relatively low-affinity
Phil. Trans. R. Soc. B (2011)
and possibly difficult to capture with classical methods
for studying protein interactions within cells [110].
Another SAC protein, Mad1, displays relatively long
residency times at mitotic kinetochores [110,111]. Yet,
this protein is refractory to co-immunoprecipitation
with other kinetochore proteins [27], possibly a
reflection of cooperative binding through multiple
low-affinity interactions, made possible, at least in
part, through Mad1 oligomerization. These low-affinity
interactions may not resist kinetochore solubilization
and dilution prior to immunoprecipitation, leading to
complex dissociation.

Additional difficulties in the identification of
minimal binding domains might stem from the com-
plexity of the multi-subunit interacting samples. We
suspect that at least in part, these problems will be alle-
viated through work on biochemical reconstitution.
With the availability of sufficient amounts of purified
recombinant or native kinetochore samples [79,89,
92,93,112], work on in vitro reconstitution might be
expected to contribute to the identification of the pre-
cise mechanisms of kinetochore recruitment of the
checkpoint proteins.
7. CHECKPOINT SILENCING
There has been considerable recent progress on the
identification of the mechanism of checkpoint silencing.
An interesting area of research focuses on the role of
Cdk1 : Cyclin B activity in the checkpoint response and
its suppression. As cells enter metaphase from prometa-
phase, they satisfy the checkpoint despite the presence of
high Cdk1 activity. Checkpoint inactivation under these
conditions is reversible: checkpoint silencing can be
reverted if a spindle-damaging agent is added even after
the beginning of Cyclin B degradation [113]. If Cyclin
B destruction is prevented, error correction and check-
point signalling are re-instated upon entry into
anaphase [114,115]. To render checkpoint inactivation
irreversible and to prevent error correction, inhibition
of Cdk1 : Cyclin B might be required [116,117]. Thus,
although Cdk1 : Cyclin B activity might be necessary
for checkpoint signalling [118], reversible checkpoint
inactivation is possible in the presence of high Cdk1
activity, suggesting that downregulation of Cdk1 activity
is not necessary for checkpoint silencing but only to
prevent checkpoint reactivation.

The PP1 phosphatase has emerged as a crucial antag-
onist of Aurora kinase activity at the kinetochore
[72,75,101,119]. In the presence of spindle damage,
PP1 activity is required to enforce mitotic exit when
Aurora B activity is artificially repressed [72,75]. The
emerging theme is that Aurora B antagonizes the loca-
lization of PP1 catalytic subunits through direct
phosphorylation of motifs, conforming to the consensus
sequence RVXF (where X may be one of several amino
acids, but not a negatively charged or a phosphorylated
one), which mediate PP1 localization [120]. The func-
tion of two such motifs, in the Knl1 and CENP-E
kinetochore proteins, has been recently discussed
[101,119]. By acting as PP1 docking sites and as targets
of Aurora B, these motifs might contribute to promoting
bi-stability in the checkpoint response. If the emerging
picture is that Aurora B and PP1 form an antagonistic
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pair, how the activity from the other checkpoint kinases
is reverted is currently unclear.

Another important area of research concerns the
mechanism of microtubule-dependent removal of
checkpoint proteins from kinetochores [121]. The
coiled-coil protein Spindly has recently emerged as a
crucial link between the RZZ complex and Dynein,
the minus-end-directed motor required for removal of
checkpoint proteins to kinetochores [122–125]. The
RZZ is crucially required for the recruitment of the
Mad1 : Mad2 complex to unattached kinetochores
[126]. Like Mad1 : Mad2, the RZZ is transported
away from kinetochores in a dynein-dependent manner
in a process known as kinetochore ‘stripping’. Retention
of Mad1 : Mad2 at fully attached kinetochores through
its covalent fusion to a subunit of the Mis12 com-
plex is sufficient to provoke a metaphase arrest [36].
A virtually identical phenotype is observed upon expres-
sing a mutant of Spindly that prevents Mad1 : Mad2
re-localization owing to its inability to interact with
Dynein [123]. These studies indicate that retention of
the Mad1 : Mad2 complex at attached kinetochores
is a sufficient condition for continued checkpoint
signalling, so that the removal of this complex from
kinetochores is necessary for checkpoint silencing.

An implication of the observations discussed in the
previous paragraph is that once it becomes removed
from kinetochores, the Mad1 : Mad2 complex might
become inactivated and unable to signal to the check-
point. Precisely how this happens is currently unclear.
It is possible that Mad1 : Mad2 forms a ternary com-
plex with a checkpoint antagonist known as p31comet,
a protein that is structurally related to Mad2 and
that binds to the closed conformer of Mad2 (C-
Mad2) [127–130]. As a C-Mad2 binder, p31comet

has the potential to play a dual function in checkpoint
silencing as a binder of C-Mad2 in the Mad1 : Mad2
complex or in the MCC [131,132]. Future studies
will have to unravel the relative importance of these
checkpoint-inactivating functions.
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