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The FMS-like tyrosine kinase 3 (FLT3) is highly expressed in
acute myeloid leukemia (AML). Internal tandem duplications
(ITD) of the juxtamembrane domain lead to the constitutive
activation of the FLT3 kinase inducing the activation of multiple
genes, which may result in the expression of leukemia-
associated antigens (LAAs). We analyzed the regulation of
LAA in FLT3-wild-type (WT)- and FLT3-ITDþ myeloid cells to
identify potential targets for antigen-specific immunotherapy
for AML patients. Antigens, such as PR-3, RHAMM, Survivin,
WT-1 and PRAME, were upregulated by constitutively active
FLT3-ITD as well as FLT3-WT activated by FLT3 ligand (FL).
Cytotoxic T-cell (CTL) clones against PR-3, RHAMM, Survivin
and an AML-directed CTL clone recognized AML cell lines and
primary AML blasts expressing FLT3-ITD, as well as FLT3-WTþ

myeloid dendritic cells in the presence of FL. Downregulation of
FLT3 led to the abolishment of CTL recognition. Comparing our
findings concerning LAA upregulation by the FLT3 kinase with
those already made for the Bcr-Abl kinase, we found analogies
in the LAA expression pattern. Antigens upregulated by both
FLT3 and Bcr-Abl may be promising targets for the develop-
ment of immunotherapeutical approaches against myeloid
leukemia of different origin.
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Introduction

The FMS-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase is
highly expressed by malignant cells in most cases of acute
myeloid leukemia (AML) and acute B-lineage leukemia (ALL).1,2

In addition, FLT3 mutations belong to the most frequent somatic
alterations in AML and occur in approximately 30% of AML
patients.3 The most common forms of mutant FLT3 are internal
tandem duplications (ITDs) in the juxtamembrane domain. This
duplication shows strong variations in length of 3 to more than
400 bp between different patients.4,5 The FLT3-ITD leads to the
constitutive activation by ligand-independent phosphorylation
of the receptor.3 It has been shown in clinical studies that AML
patients harboring FLT3-ITD mutations have a poor prognosis.6,7

Several small-molecule inhibitors of FLT3 have been developed
and are currently in different stages of clinical development,
including Sorafenib and SU5416.8–10 Although treatment with

FLT3 inhibitors results in clinical responses in relapsed AML
with activating FLT3 mutations, the reduction in peripheral
blood and bone marrow blasts is only transient.10–16 Combina-
tion therapies of FLT3 inhibitors and conventional chemother-
apy are currently being studied.17 However, the insensitivity
of quiescent leukemic stem cells towards kinase inhibitors
may lead to the selective outgrowth of these cells and finally to
disease relapse even after years of continuous treatment.

T lymphocytes have the potential to eliminate the AML stem
cell. Proof of principle has been shown in an exceptional
clinical situation where donor lymphocyte infusions can induce
complete cytogenetic remissions of AML relapsed after allo-
geneic stem cell transplantation.18 The donor’s T lymphocytes
include allo-restricted T cells, which may ideally combine
antigen specificity, high avidity and a superior leukemia–lytic
function. However, most of the allo-restricted T cells display
broad peptide specificity or even a peptide-independent human
leukocyte antigen (HLA)-dominant binding, both characteristics
leading to a wide reactivity and potentially to graft-versus-host
disease. Besides, the risk of graft-versus-host disease rises if
target antigens are widely expressed in the body. Therefore, the
current immunotherapeutic concepts focus on targeting those
antigens that are preferentially or even exclusively expressed by
AML blasts, including the AML stem cell.

Graf et al.19 successfully generated cytotoxic T cells (CTLs)
highly specific for an HLA-A*0101 (HLA-A1)-restricted epitope
derived from the FLT3-ITD of one AML patient showing that the
FLT3-ITD is a potential target antigen for immunotherapeutic
approaches. However, the variations in the length of the ITD
imply the problem of having to find an individual antigenic
epitope for each individual patient.4 An alternative approach to
circumvent this problem may lie in the observation that the
likewise constitutively active tyrosine kinase Bcr-Abl expressed
in Philadelphiaþ chronic myeloid leukemia (CML) upregulates
immunogenic leukemia-associated antigens (LAA).20 Some of
the Bcr-Abl-regulated LAA, such as PR-3 and Wilms tumor
protein (WT)-1, are also expressed in AML. Moreover, for PR-3
and WT-1, it has been shown that they spontaneously activate T
cells in AML patients, indicating the immunogenicity of these
antigens.21 On the basis of these findings, we asked the question
as to whether LAA are also regulated by FLT3-WT and/or FLT3-
ITD in AML.

In this study, we show that a panel of LAA, such as PR-3,
Survivin and RHAMM, is upregulated by constitutively active
FLT3-ITD. Moreover, the activation of non-mutated FLT3 upon
stimulation with FLT3 ligand (FL) leads to the upregulation of the
same LAA. Vice versa, treatment of FLT3-WTþ leukemia cells
with FLT3-small interfering RNA (siRNA) leads to the down-
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regulation of the LAA even in the presence of FL. LAA
downregulation was also observed after treatment of FLT3-ITDþ

leukemia cells with the FLT3 inhibitor Sugen SU5416. To prove
the functional relevance of FLT3-regulated LAA as immunological
targets, we used LAA-reactive CTL clones as effector cells.
Indeed, CTL clones specific for PR-3, Survivin and RHAMM
recognized various myeloid target cells harboring the activated
FLT3 kinase. The strong dependence of CTL killing on the FLT3
activation status indicates the relevance of FLT3-regulated LAA as
promising targets for T-cell-based immunotherapy.

Materials and methods

Cell culture
The human leukemia cell lines RS4;11 and MV4;11 (obtained
from the DSMZ, Braunschweig, Germany) carry the chromo-
somal translocation t(4;11)(q21;q23), but express different
MLL-AF4 variants owing to different break points. Further
leukemic cell lines used in this study were the cell lines K562
and K562 transfected with HLA-A*0201 (HLA-A2) (generous gift
from Th Wölfel, Klinikum der Johannes-Gutenberg-Universität,
Mainz, Germany) and BV-173 (DSMZ). The TAP-defective HLA-
A2þ T2 cell line was provided by P Cresswell (Yale University
School of Medicine, New Haven, CT, USA). The B lympho-
blastoid cell lines (LCLs) were generated by EBV transformation
of peripheral blood B cells from healthy donors.

MV4;11, K562tA2, BV-173 and T2 cells were cultured in
RPMI 1640 (Invitrogen, Carlsbad, CA, USA). RS4;11 cells were
maintained in a-minimum essential medium. All media were
supplemented with 100 U/ml penicillin, 100 mg/ml strepto-
mycin, 2 mM glutamine and 10% fetal calf serum.

The expression of HLA-A2 was confirmed by fluorescence-
activated cell sorting (FACS) analyses with a fluorescein
isothiocyanate-conjugated anti-HLA-A2 monoclonal antibody
(BD Pharmingen, San Diego, CA, USA). For interferon (IFN)-g
treatment, the medium was supplemented with 100 U/ml IFN-g
48 h before the functional assays.

Generation of CTL clones
Peripheral blood mononuclear cells (PBMCs) were derived from
healthy donors and AML patients. Isolation of CD8þ T cells
occurred via magnetic-activated cell sorting (Miltenyl Biotec,
Bergisch Gladbach, Germany) after indirect antibody staining.
The isolated HLA-A2� CD8þ T cells were repetitively stimulated
with allogenic HLA-A2þ dendritic cells (DCs) loaded with 10mg of
the HLA-A2-restricted peptide epitope PR-3169�177 (VLQELNVTV),
RHAMM165�173 (ILSLELMKL) or Survivin95�104 (ELTLGEFLKL).
CD8þ T cells and peptide-pulsed DCs were co-cultured in
200ml AIM-V medium in a stimulator to a response ratio of 1: 20
in 96-well round-bottom plates with 5% human AB-Serum (Milan
Analytica, LaRoche, Switzerland), 1000 U/ml interleukin (IL)-6 and
10 ng/ml IL-12. Restimulation was set up in the presence of 5 ng/ml
IL-7 and 100 U/ml IL-2. After two stimulations, the proliferating
T cells were stained with HLA-A2/PR-3169�177, HLA-A2/
RHAMM165�173 and HLA-A2/Survivin95�104 multimers, respec-
tively, and the specific T cells were FACS sorted with a MoFlo cell
sorter (Cytomation, Fort Collins, CO, USA)22 and cloned by limiting
dilution in five 96-well plates. The expansion of the T-cell clones
occurred in the presence of anti-CD3, IL-15, IL-2 and irradiated
LCL and PBMC as feeder cells.

IFN-g ELISpot assay
The production of IFN-g was determined in an ELISpot assay.
ELISpot membrane plates (Millipore, Bedford, MA, USA) were

coated overnight with an IFN-g-specific antibody (Mabtech AB,
Stockholm, Sweden). Target cells (2� 104 cells per well) and
CTL (5� 103 cells per well) were washed twice in RPMI medium
(Invitrogen) before seeding them onto the ELISpot plates. After
24 h incubation at 37 1C, the spots were assessed using
antibodies against IFN-g, and then stained with AEC (3-amino-
9-ethylcarbazole; Sigma-Aldrich, St Louis, MO, USA) staining
solution. The number of spots was counted by using an
automated ELISpot reader system (KS ELISpot, Carl Zeiss, Jena,
Germany).

Enzyme-linked immunosorbent assay
To detect the IFN-g production of the CTL clones, 2� 104 T
cells per well were co-cultured with 1� 104 target cells in
96-well round-bottom plates at 37 1C. After 24 h, supernatants
were collected and IFN-g production was determined using a
commercially available IFN-g enzyme-linked immunosorbent
assay (ELISA) kit (BD BioSciences International, San Jose, CA,
USA).

Cytotoxicity assay
Cytolytic activity was analyzed in a standard 4 h chromium
release assay as described.23 In short, the tumor cell lines
(5� 105 cells in 100 ml of fetal calf serum) were incubated with
100mCi of 51Cr for 1.5 h at 37 1C, washed and used as target
cells. Peptide-loaded T2 cells were first labeled with 51Cr for
1.5 h at 37 1C and then loaded with the respective peptide
(10 mg/ml) for an additional hour at room temperature. As
negative controls (ctrls), 51Cr-labeled T2 cells were loaded with
the HLA-A2-restricted peptide HIVpol476�484 (ILKEPVHGV).
The 51Cr-labeled targets were cultured with the T cells in RPMI
1640 with 10% fetal calf serum at 200ml per well in V-bottom,
96-well tissue culture plates (Greiner, Greiner Bio-One,
Frickenhausen, Germany). For evaluating the efficacy of
CTL-mediated lysis, the T cells were serially diluted and then
co-cultured with a fixed amount of target cells, resulting in
graded E:T ratios. For testing functional T-cell receptor (TCR)
avidity, the T cells were plated at a fixed E:T ratio of 30:1 while
the peptide concentration was titrated.

After 4 h of co-culturing the effector and target cells at 37 1C,
100ml of supernatant were collected and radioactivity was
measured in a g-counter. The killing was calculated as the
percentage of specific 51Cr release using the equation percen-
tage of specific lysis¼ ((sample release–medium release)/
(maximal release–medium release)).

siRNA treatment
The siRNA SMARTpool containing four pooled siRNA duplexes
directed against FLT3 (catalog no. M-003137-02-0005) and a
nonspecific siRNA (catalog no. D-001206-13-20) were
purchased from Thermo Science and Perbio (Thermo Fisher
Scientific, Waltham, MA, USA), respectively.

The transfection of siRNA was performed using the Nucleo-
factor system (Amaxa, Cologne, Germany) according to the
manufacturer’s instructions. The knockdown of the specified
protein was determined by FACS analyses.

RNA isolation and reverse transcription–polymerase
chain reaction
Total RNA was isolated using the RNeasy mini kit according to
the manufacturer’s instructions (Qiagen, Hilden, Germany). The
RNA was reverse transcribed using Moloney murine leukemia
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virus reverse transcription with oligo(dT) (Invitrogen). The
following primers were used: b-actin (sense: 50-GGGACCTGAC
TGACTACCTCAT-30; antisense: 50-ATAGTCCGCCTAGAAGCA
TTTG-30); PRAME (sense: 50-CTGTACTCATTTCCAGAGCCA
GA-30; antisense: 50-TATTGAGAGGGTTTCCAAGGGGTT-30);
PR-3 (sense: 50-CGGCCACATAACATTTGCAC-30; antisense:
50-TGGCACATCCCCAGATCAC-30); RHAMM (sense: 50-CAGGT
CACCCAAAGGAGTCTC-30; antisense: 50-CAAGCTCATCCAGT
GTTTGC-30); Survivin (sense: 50-ACCACCGCATCTCTACATT
C-30; antisense: 50-GCTCTTTCTCTGTCCAGTTTC-30); and WT-1
(sense: 50-TAACCACACAACGCCCATC-30; antisense: 50-AAAAC
CTTCGTTCACAGTCC-30). The polymerase chain reaction (PCR)
products were electrophoresed on a 2% agarose gel and stained
with ethidium bromide.

Flow cytometry
Flow cytometry was performed using HLA-A2/PR-3169�177,
HLA-A2/RHAMM165�173 and HLA-A2/Survivin95�104 multi-
mers, and anti-human CD8 monoclonal antibody, fluorescein
isothiocyanate conjugated (Immunotech, Marseille, France).
Fluorescence analyses were performed with the Coulter Epics
XL flow cytometer (Coulter Electronics, GmbH, Krefeld,
Germany) and documented with the FlowJo software (Tree Star,
Ashland, OR, USA).

RESULTS

The LAA PR-3, RHAMM, Survivin, WT-1 and PRAME
are upregulated by the FLT3 receptor tyrosine kinase
First we analyzed whether the FLT3 kinase has an influence on
the expression of the LAA PR-3, RHAMM, WT-1, PRAME and
Survivin that are known to be expressed in AML.24–29 As
examples for the FL-dependent FLT3-WT and the constitutively
active FLT3-ITD variant, we used the two different human acute
leukemia cell lines RS4;11 and MV4;11, which endogenously
express the FLT3-WT and FLT3-ITD, respectively.

In RS4;11 leukemia cells, the administration of FL increased
the expression levels of the LAA PR-3, RHAMM, WT-1, PRAME
and Survivin from low/intermediate levels before FL treatment to
high levels after incubation with FL (Figure 1a). This experi-
mental finding indicates the dependency of these LAA on the
activity of the FLT3 kinase. To further examine this finding, we
made an approach using the RS4;11 leukemia cells transfected

with siRNA against FLT3 and analyzed the expression of the LAA
PR-3, RHAMM, WT-1, PRAME and Survivin in the presence of
FL. Following treatment with FLT3-siRNA, the RS4;11 cells
showed a marked downregulation of these LAA even in the
presence of FL. The transfection of RS4;11 cells with the
irrelevant ctrl-siRNA in the presence of FL did not result in any
downregulation of LAA expression compared with that after
exclusive treatment with FL (Figure 1b).

In MV4;11 leukemia cells, in which the FLT3 kinase is
constitutively active, we detected a permanently high expres-
sion of the different LAA (Figure 1c). Culturing these cells with
SU5416, a known inhibitor of the FLT3-ITD activity, reduced the
expression of Survivin, an antigenic protein that has already
been known to be upregulated by the FLT3 kinase activity.30,31

In addition, we documented decreasing levels of the expression
of PRAME, WT-1, RHAMM and PR-3 after an incubation of
48–72 h. On the basis of these findings, we conclude that active
FLT3 kinase upregulates the expression of the LAA PR-3,
RHAMM, WT-1, PRAME and Survivin.

The correlation between the activity of the FLT3 kinase and
the expression of different LAA underlines the significance of
these antigens for the development of immunotherapeutic
approaches against myeloid leukemia.

CTL clones against the LAA PR-3, RHAMM and Survivin
recognize and lyse leukemia cell lines and primary AML
blasts
On the basis of our findings that FLT3-expressing cell lines are
able to upregulate the LAA PR-3, RHAMM, WT-1, PRAME and
Survivin, our aim was the generation of CTL clones directed
against HLA-A2-restricted epitopes of these LAA. For this
purpose, CD8þ T lymphocytes from healthy donors were
stimulated with allogeneic DCs loaded with the peptides
PR-3169�177, Survivin95�104, WT-1126�134, PRAME300�309 or
RHAMM165�173. Following repetitive stimulations, the amount
of PR-3169�177-, Survivin95�104- and RHAMM165�173-specific T
cells could be increased to numbers that permitted the
visualization, sorting with HLA-A2/peptide multimers and
cloning by limiting dilution. Sixty-two CTL clones grew in the
approach stimulated with PR-3169�177 from which after further
testing two proved to be tumour reactive. In the case of
Survivin95�104, one of 25 CTL clones tested was able to lyse
Survivin-expressing tumor cells. For RHAMM165�173, we got
three tumor-reactive out of 48 potential clones. Figure 2a

Figure 1 Influence of the FLT3 kinase on the expression of the LAA PR-3, RHAMM, WT-1, PRAME and Survivin. (a) RS4;11 (FLT3-WTþ ) cells
were treated with FL for a time period of 72 h and the expression of the LAA PR-3, RHAMM, WT-1, PRAME and Survivin was documented via
RT–PCR at 8, 12, 24, 48 and 72 h after treatment. (b) RS4;11 (FLT3-WTþ ) cells were treated with FL, FLT3-siRNA and/or ctrl-siRNA for 72 h, and
the expression of the LAA PR-3, RHAMM, WT-1, PRAME and Survivin was analyzed by RT–PCR. (Lanes 1–4 show the expression of the different
tumor antigens PR-3, RHAMM, WT-1, PRAME and Survivin in RS4;11 cells treated with FL (lane 1), in RS4;11 cells treated with FLT3-siRNA (lane
2), in RS4;11 cells treated with ctrl-siRNA (lane 3) and in RS4;11 cells without FL (lane 4).) (c) MV4;11 (FLT3-ITDþ ) cells were treated with the
FLT3 kinase inhibitor SU5614 for 72 h, and the expression of the LAA PR-3, RHAMM, WT-1, PRAME and Survivin was documented via RT–PCR at
different time points after treatment. The three figures are composed of different gels.
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exemplifies FACS staining of, in each case, one representative
CTL clone with the respective multimer.

The peptide specificity of the respective clones was confirmed
in an IFN-g ELISA, in which T2 cells loaded with PR-3169�177,
Survivin95�104, RHAMM165�173 or the irrelevant peptide
HIVpol476�484 were used as target cells. As shown in
Figure 2b, the different CTL clones secreted high amounts of
IFN-g after incubation with the respective relevant, but not with
the irrelevant peptide. In the same test, we analyzed whether the

different CTL clones were able to recognizse endogenously
processed PR-3169�177, Survivin95�104 and RHAMM165�173,
respectively. Therefore, the HLA-A2þ K562tA2 leukemia cells
known to express PR-3, Survivin and RHAMM were used as
target cells. The reactivity pattern of the different clones is
shown in Figure 2b. The different CTL clones were able to
recognize K562tA2 cells, whereas there was no recognition of
K562 cells used as negative ctrl. The lytic activity was
determined in a 51Cr release assay. Lysis of T2 cells loaded

Figure 2 CTL clones against PR-3, RHAMM, and Survivin, respectively, recognize the corresponding peptide epitopes. (a) FACS staining of the
different CTL clones with the respective multimers. (b) The different CTL clones were co-cultivated with T2 cells loaded with PR-3169�177,
RHAMM165�173, Survivin95�104 or HIVpol476�484, K562tA2, K562 or MCF7. The IFN-g concentration of the supernatant was determined by ELISA.
(c) Differential lytic activity of HLA-A2-restricted PR-3169�177-, RHAMM165�173- or Survivin95�104-directed CTL clones against T2 cells loaded
with the respective peptide (E) and HLA-A2þ K562tA2 cells (’). T2 cells loaded with the irrelevant peptide HIVpol476�484 (m) and K562 cells
(K) were used as negative ctrl. (d) Functional avidity of CTL clones was determined by the recognition of T2 cells pulsed with graded amounts of
peptides. (e) The different CTL clones were co-cultivated with FLT3-ITDþ blasts of an HLA-A2þ AML patient or with blasts of an HLA-A2� AML
patient. The IFN-g concentration of the supernatant was determined by ELISA.
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with the relevant peptide PR-3169�177 by CTL clone HK6 was
between 45 and 100% at increasing E:T ratios, whereas there
was no recognition of T2 cells pulsed with the irrelevant peptide
HIVpol476�484. The leukemic cell line K562tA2 was lysed with a
maximum of about 55% at an E:T ratio of 10:1 (Figure 2c, left).
The Rhamm-specific CTL clone JG9E5 showed about 100% lysis
of RHAMM165�173-loaded T2 cells at higher E:T ratios and up to
40% lysis of K562tA2 cells (Figure 2c, middle). The lysis of T2
cells loaded with Survivin95�104 by CTL clone SK1 was between
25 and 90% at increasing E:T ratios. K562tA2 cells were lysed
with a maximum of about 40% (Figure 2c, right).

Furthermore, the functional avidities of the CTL clones toward
the peptides PR-3169�177, Survivin95�104 and RHAMM165�173

were assessed by the recognition of serially diluted amounts of
the respective peptides (10�5–10�16

M) loaded onto T2 cells in
an IFN-g ELISA. The PR-3-specific CTL clone displayed a rather
high avidity toward the PR-3169�177 peptide with a half-
maximum IFN-g secretion of 10�10 (Figure 2d, left). The
RHAMM- and the Survivin-reactive CTL clones have a relatively
low avidity with a half-maximum IFN-g secretion of about
10�7–10�6 (Figure 2d, middle, right).

On the basis of our findings that FLT3-expressing cell lines
upregulate the LAA PR-3, RHAMM, WT-1, PRAME and Survivin,
we were led to question whether our CTL clones reactive against
PR-3, Survivin and RHAMM were able to recognize leukemic
blasts. Hence, we co-cultivated the three CTL clones with
primary blasts of an HLA-A2þ patient with FLT3-ITDþ AML.
Blasts of an HLA-A2� AML patient served as negative ctrl. As
shown in Figure 2e, the CTL clones performed high IFN-g
secretion only in the presence of HLA-A2þ , FLT3-ITDþ blasts,
but not in the presence of HLA-A2� blasts.

Leukemia-reactive CTL clones are generated by
stimulation with blast-derived DC
On the basis of our findings, we were led to question whether
FLT3-ITDþ leukemic blast-derived DCs (DCAML) were capable
of inducing a primary CTL response. In this approach, we

stimulated HLA-A2� CD8þ T lymphocytes from a healthy donor
with allogeneic DCAML of a 71-year-old HLA-A2þ female
patient with FLT3-ITDþ AML. The expression of the LAA PR-3,
Survivin, WT-1, PRAME and RHAMM by these DCAML has been
documented by RT–PCR (Supplementary Figure 1A). The
dependency of this expression on the FLT3 kinase activity could
be shown indirectly by the downregulation of IFN-g secretion by
the respective clones following treatment of DCAML with
SU5416, a known inhibitor of the FLT3 kinase activity
(Supplementary Figure 1B). After two stimulations, we did an
IFN-g ELISpot assay with T2 cells pulsed with the AML-
associated peptides PR-3169�177, Survivin95�104, WT-1126�134,
PRAME300�309 or RHAMM165�173, HIVpol476�484, as well as
with K562tA2 and K562 to test the specificity of the different
T-cell populations in the 96-well plates. There were no T cells
specific for one of the peptides tested, so we cloned T cells
recognizing K562A2, but not K562 (data not shown). The
reactivity pattern of three of the resulting CTL clones (CTLAML) is
shown in Figure 3. The three CTLAML clones showed high
reactivity against the HLA-A2þ leukemia cell lines K562tA2 and
BV173, but no recognition of K562 (Figure 3a) in an IFN-g
ELISpot. Furthermore, we wanted to know whether the
recognition of the CTLAML clones is specifically restricted to
HLA-A2þ leukemic blasts and not to PBMC of a healthy donor.
As depicted in Figure 3b, there was only low or no reactivity
against HLA-A2þ PBMC and HLA-A2� blasts. In contrast,
there was a marked IFN-g secretion when co-cultivated with
HLA-A2þ leukemic blasts (Figure 3b).

DCs transfected with FLT3-ITD are recognized by CTL
clones against PR-3, RHAMM and Survivin, as well as
by CTLAML clones
We wanted to know whether downregulation of the FLT3 kinase
is also leading to a lower recognition of FLT3þ cells by our
isolated CTL clones. As we do not have any FLT3þ cell lines, we
used HLA-A2þ DCs from a healthy donor. For testing the FLT3-
WT and the constitutively active mutant variant FLT3-ITD, the

Figure 3 CTL clones stimulated with HLA-A2þ ITDþ DCAML recognize leukemia cell lines and blasts. CD8þ T cells from a healthy HLA-A2�

donor were primed with allogeneic HLA-A2þ DCAML and specific T cells were cloned. (a) In an IFN-g ELISpot, the three CTLAML clones were
co-incubated with K562tA2, K562 and HLA-A2þ BV173 cells, and the resulting spots were counted. (b) An IFN-g ELISpot was performed using
allogeneic HLA-A2� PBMC and blasts, as well as HLA-A2þ blasts as targets and the three CTLAML clones as effector cells.
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DCs were nucleofected with FLT3-WT- or FLT3-ITD-mRNA. To
analyze if FLT3 was active in DCs transfected with FLT3-WT, we
compared recognition of DCs either treated or not treated with
FL by the CTL clones directed against PR-3, RHAMM, Survivin
and the CTLAML clones. As depicted in Figure 4, there was no or
only little IFN-g secretion of the different CTL clones in the
presence of untreated FLT3-WT DCs. The CTL clones directed
against PR-3, RHAMM and Survivin showed high reactivity
against DCs treated with FL (Figure 4a). In contrast, only one of
the CTLAML clones (clone no. 3) secreted some IFN-g when
incubated with DCs treated with FL (Figure 4b). The three
peptide-specific clones and the CTLAML clone no. 3 displayed
high FL-independent recognition of ITDþ DCs. To see the effect
of downregulation of FLT3-WT, we used the FLT3-siRNA that
we already used in RS4;11 cells (Figure 1b). Following treatment
of the DCs with FLT3-siRNA, no recognition could be observed
by any of the clones independently of FL. With these experi-
mental settings, we were able to further confirm our hypothesis
that the expression of the LAA PR-3, RHAMM and Survivin is
regulated by active FLT3.

In contrast to CTLAML clone no. 3, which also seems to have
an FLT3-dependent recognition, the CTLAML clone nos 8 and 12
did not show any reactivity against DCs nucleofected with
FLT3-WT or FLT3-ITD.

CTL clones against PR-3, RHAMM and Survivin
recognize DCs transfected with Bcr-Abl-WT, but not
DCs transfected with Bcr-Abl-KD
Our findings concerning the upregulation of different LAA by the
active FLT3 kinase are in accordance with the observations
about the immunogenicity of the Bcr-Abl kinase made by our

group.20 It has been shown that the tyrosine kinase activity of
Bcr-Abl leads to enhanced expression of some CML-associated
antigens, for example, PR-3. In the meantime, we could also
detect an upregulation of RHAMM and Survivin in Bcr-Ablþ

cells. As we now have T-cell clones against these LAA, which
recognize cells expressing FLT3, we wanted to know whether
these clones are also reactive against Bcr-Abl-WTþ cells. For
comparison of the active and inactive form of Bcr-Abl, we
transfected DCs with Bcr-Abl-WT-mRNA or a kinase-deficient
Bcr-Abl-mRNA (KD) as described before.20

The reactivity of the different peptide-specific T-cell clones
and the CTLAML clones against the transfected DCs were
documented by analyzing their IFN-g release (Figure 5). The
pattern of T-cell-derived IFN-g release shows a high reactivity of
the different peptide specific CTL clones and the CTLAML clone
no. 3 against Bcr-Abl-WTþ DC, but not against Bcr-Abl-KDþ

DCs. Interestingly, this was also true for the two other CTLAML

clones that did not recognize FLT3-WT-transfected DCs (Figures
4b and 5).

DISCUSSION

Cytotoxic T lymphocytes have the potential to eliminate
malignant stem cells, even if they are quiescent. Immunother-
apeutic approaches are being developed based on antigen-
specific T lymphocytes, such as antigen vaccination or adoptive
T-cell transfer. As FLT3-ITD is partially expressed by CD34þ /
CD33� AML progenitors, sequences from FLT3-ITD itself may
serve as ideal leukemia-specific epitopes for leukemia-specific T
lymphocytes.32 Indeed, from one patient with FLT3-ITDþ , AML
leukemia-specific CTL clones have been isolated that recognize

Figure 4 Reactivity of CTL clones directed against PR-3, RHAMM and Survivin, as well as CTLAML clones towards DCs nucleofected with
FLT3-WT plus and minus FLT3-siRNA or FLT3-ITD. All approaches were carried out with and without the addition of FL. (a, b) HLA-A2þ DCs from
a healthy donor were nucleofected with FLT3-WT-mRNA or FLT3-ITD-mRNA and co-cultivated with the different CTL clones with and without the
addition of FL. Furthermore, the FLT3-WTþ DCs were additionally transfected with FLT3-siRNA. The supernatants were tested in an IFN-g ELISA.
(a, b) show the results of the ELISA with the CTL clones directed against PR-3, RHAMM and Survivin, as well as with the CTLAML clone nos 3, 8 and
12.
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an HLA-A1-restricted peptide sequence derived from the
FLT3-ITD sequence.19 However, the strong variation in length
of ITD duplications between AML patients implies the problem
to find T-cell epitopes for every single patient to design an
individual immunotherapy. In AML, several shared antigens
have been identified, which can potentially serve as targets for
cytotoxic T lymphocytes, such as PR-3, RHAMM, WT-1, PRAME
and Survivin.24–29 Until now, the expression pattern of these
AML-associated antigens and their relevance for the CTL-
mediated elimination of AML stem cells is not entirely under-
stood. As the FLT3-ITD is active in early progenitor AML cells,
we asked the question as to whether some of the shared antigens
are dependent on the activated form of the mutant FLT3 kinase.

In this study, we analyzed the expression of PR-3, RHAMM,
WT-1, PRAME and Survivin in an FLT3-WTþ leukemia cell line
with and without the addition of FL. There was a weak basic
expression of the five LAA analyzed. The addition of FL,
however, resulted in a stronger LAA expression being the first
hint for an existent association between FLT3 activity and LAA
regulation. This could be confirmed by the downregulation of
FLT3 activity, with FLT3-siRNA subsequently lowering the
expression of the LAA analyzed. To test the influence of a
constitutively active mutant variant of FLT3, we analyzed the
LAA expression in an FLT3-ITDþ leukemia cell line. These
cells showed a high level of LAA corresponding to that of the
FLT3-WTþ leukemia cell line treated with FL. The inhibition of
the constitutively active FLT3-ITD by SU5614, a known
inhibitor of the FLT3-ITD activity,30 showed an effect analogous
to that achieved after treatment of FLT3-WTþ cells with FLT3-
siRNA. These data document for the first time that the expression
of PR-3, RHAMM, WT-1, PRAME and Survivin is upregulated
upon activation of the FLT3 kinase.

We next asked the question as to whether the upregulation of
LAA by the activation status of FLT3 influenced the T-cell-
mediated lysis of leukemia cells. First, we established a panel of
allo-HLA-A2-restricted CTL clones specific for PR-3, RHAMM
and Survivin. To effectively stimulate and select T cells against
these self-antigens, we took advantage of an HLA mismatch
between DCs and T cells by using DCs from an HLA-A2þ donor
as stimulator cells and T cells from an HLA-A2� donor as

responder cells.33,34 For further experiments, we expanded
those CTL clones that displayed a fine specificity against the
respective peptides as shown by IFN-g release and lytic activity.
The selected CTL clones HK5, JG9ES and SK1 recognized the
K562tA2 leukemic cell line expressing PR-3, RHAMM and
Survivin. As assumed, FLT3-ITDþ AML blasts were also
recognized by these CTL in an HLA-A2-restricted manner. To
answer the important question as to whether T-cell recognition
of myeloid cells is dependent on the FLT3-modulated expression
level of their antigens, we used myeloid DCs as target cells. The
herein generated monocyte-derived DCs transfected with
FLT-WT were not recognized by the antigen-specific CTL clones
HK5, JG9ES and SK1. FMS-like tyrosine kinase 3-WTþ DCs
were recognized upon FL stimulation, indicating that the
activation of the FLT3 kinase raised the expression level of
PR-3, RHAMM and Survivin above a certain threshold, which
further enabled the T cells to recognize their targets. Similarly,
CTL recognition could be induced when FLT3-WTþ DCs were
transfected with the constitutively active FLT3-ITD. The
correlation between FLT3 activity and the upregulation of
CTL-defined LAA points to the significance of these antigens for
the physiological as well as the therapeutic relevance of
immune responses against acute leukemias.35 Exemplarily, the
expression of RHAMM and PRAME have been shown to be
associated with a favorable clinical outcome in AML patients
and to induce T-cell responses.29 Peptide vaccination trials
performed with RHAMM, PR-3 and WT-1 peptides resulted in
measurable immunological and clinical responses in patients
with different hematological diseases.29,36–40

As a second approach to prove the immunological relevance
of FLT3-regulated antigens for targeting AML cells, we generated
DCs from AML blasts known to be able to stimulate leukemia-
reactive autologous T lymphocytes.41,42 Following stimulation
of allogeneic HLA-A2� CD8þ T cells with HLA-A2þ DCAML,
we isolated three different leukemia-reactive CTL clones. All of
the three established CTLAML clones recognized FLT3-ITDþ

AML blasts in an HLA-A2-restricted manner. None of the HLA-
A2-restricted epitopes of the known LAA PR-3, RHAMM,
Survivin, PRAME and WT-1 was recognized by the CTLAML

clones. Of note, one of the three CTLAML clones (CTL no. 3)

Figure 5 Reactivity of CTL clones directed against PR-3, RHAMM and Survivin, as well as CTLAML clones towards DCs nucleofected with
Bcr-Abl-WT or Bcr-Abl-KD. The CTL clones were co-incubated with the respective DCs and an IFN-g ELISA was performed using the resulting
supernatant.
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secreted IFN-g when stimulated with DCs harboring the active
form of the FLT3 kinase, such as FLT3-ITD-transfected DCs or
FL-stimulated FLT3-WTþ DCs. This indicates that FLT3-regu-
lated antigens are able to stimulate primary T-cell responses
towards myeloid leukemia cells.

On the basis of our previous findings that the expression level
of some LAA, such as PR-3 and PRAME, is not only induced by
activated FLT3, but also by the constitutively active Bcr-Abl
kinase,20 we next analyzed the recognition pattern of the herein
described AML-reactive CTL clones in response to monocyte-
derived DCs transfected with Bcr-Abl-WT or Bcr-Abl-KD. We
first analyzed the IFN-g secretion by the PR-3-specific CTL clone
HK6 in response to HLA-A2-matched Bcr-Abl-WTþ DCs versus
Bcr-Abl-KDþ DCs. As postulated, the PR-3-specific CTL clone
released IFN-g in the presence of Bcr-Abl-WTþ DC, but not in
the presence of Bcr-Abl-KDþ DCs. Similarly, the RHAMM- and
Surivin-specific CTL clones both released high amounts of IFN-g
only in the presence of Bcr-Abl-WTþ DCs. Interestingly, all
three CTLAML clones with yet undefined antigen specificity
reacted strongly with Bcr-Abl-WTþ DCs and only to a low
extent with Bcr-Abl-KDþ DCs. Therefore, CTL clone nos 8 and
12 seem to recognize a LAA, which is regulated by the Bcr-Abl,
but not by the FLT3 kinase. In contrast, the antigen recognized
by CTL clone no. 3 is regulated by both the FLT3 and the Bcr-
Abl kinase. In summary, there are common as well as
differential antigen patterns induced on the activation of the
Bcr-Abl and FLT3 kinases. Our findings raise the question as to
whether the same and/or other LAAs are upregulated by
additional tyrosine kinases, for example, the NPM/Alk kinase.

In conclusion, antigens upregulated by kinases activated in
leukemia cells may be promising targets for the development of
T-cell-based immunotherapies against myeloid leukemia of
different origins. As the broad clinical application of adoptive
T-cell transfer is limited owing to the laborious procedure of
T-cell isolation and characterization, we will pursue an
alternative methodology whereby primary human T-cell popu-
lations are transduced with the LAA-reactive TCR of interest.
The herein presented CTL clones against FLT3- and Bcr-Abl-
regulated antigens, respectively, for example, PR-3 and
RHAMM, may serve as a source for leukemia-reactive TCR.
The TCR gene transfer is a convenient method to produce
antigen-specific T cells, further allowing that an individualized
therapy will be available for a mass of patients with FLT3þ or
Bcr-Ablþ myeloid leukemias.
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Carreras Leukemia Foundation (DJCLS R 07/34f to HB), the
Deutsche Forschungsgemeinschaft (SFB-456 to HB and DHB;
DFG BE 1579/4-1 to HB) and from the Helmholtz Alliance
‘Immunotherapy of Cancer’ (to HB and DHB). BB and HC
designed and performed research, collected and analyzed data
and wrote the paper; JD and BK performed research; HK revised
the paper; DHB provided vital tools; JA and CP supervised
research; and HB designed and supervised research, reviewed
data and wrote the paper.

References

1 Birg F, Courcoul M, Rosnet O, Bardin F, Pebusque MJ, Marchetto S
et al. Expression of the FMS/KIT-like gene FLT3 in human acute
leukemias of the myeloid and lymphoid lineages. Blood 1992; 80:
2584–2593.

2 Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S,
Rockwell P et al. Expression of the hematopoietic growth factor
receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996; 87:
1089–1096.

3 Small D. FLT3 mutations: biology and treatment. Hematol Am Soc
Hematol Educ Program 2006; 1: 178–184.

4 Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C
et al. Analysis of FLT3 length mutations in 1003 patients with acute
myeloid leukemia: correlation to cytogenetics, FAB subtype, and
prognosis in the AMLCG study and usefulness as a marker for the
detection of minimal residual disease. Blood 2002; 100: 59–66.

5 Seedhouse CH, Pallis M, Grundy M, Shang S, Russell NH. FLT3-
ITD expression levels and their effect on STAT5 in AML with and
without NPM mutations. Br J Haematol 2009; 147: 653–661.

6 Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T et al.
Internal tandem duplication of the FLT3 gene is preferentially seen
in acute myeloid leukemia and myelodysplastic syndrome among
various hematological malignancies. A study on a large series of
patients and cell lines. Leukemia 1997; 11: 1605–1609.

7 Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S
et al. Activating mutation of D835 within the activation loop
of FLT3 in human hematologic malignancies. Blood 2001; 97:
2434–2439.

8 Tong FK, Chow S, Hedley D. Pharmacodynamic monitoring of
BAY 43-9006 (Sorafenib) in phase I clinical trials involving solid
tumor and AML/MDS patients, using flow cytometry to monitor
activation of the ERK pathway in peripheral blood cells. Cytometry
B 2006; 70: 107–114.

9 Stopeck A, Sheldon M, Vahedian M, Cropp G, Gosalia R, Hannah
A. Results of a phase I dose-escalating study of the antiangiogenic
agent, SU5416, in patients with advanced malignancies. Clin
Cancer Res 2002; 8: 2798–2805.

10 Fiedler W, Serve H, Dohner H, Schwittay M, Ottmann OG,
O’Farrell AM et al. A phase 1 study of SU11248 in the treatment of
patients with refractory or resistant acute myeloid leukemia (AML)
or not amenable to conventional therapy for the disease. Blood
2005; 105: 986–993.

11 O’Farrell AM, Foran JM, Fiedler W, Serve H, Paquette RL,
Cooper MA et al. An innovative phase I clinical study demon-
strates inhibition of FLT3 phosphorylation by SU11248 in acute
myeloid leukemia patients. Clin Cancer Res 2003; 9: 5465–5476.

12 Giles FJ, Stopeck AT, Silverman LR, Lancet JE, Cooper MA,
Hannah AL et al. SU5416, a small molecule tyrosine kinase
receptor inhibitor, has biologic activity in patients with refractory
acute myeloid leukemia or myelodysplastic syndromes. Blood
2003; 102: 795–801.

13 Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K et al.
Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and
clinical activity in patients with relapsed or refractory acute
myeloid leukemia. Blood 2004; 103: 3669–3676.

14 Knapper S, Burnett AK, Littlewood T, Kell WJ, Agrawal S, Chopra R
et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as
first-line treatment for older patients with acute myeloid leukemia
not considered fit for intensive chemotherapy. Blood 2006; 108:
3262–3270.

15 Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD
et al. Patients with acute myeloid leukemia and an activating
mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase
inhibitor, PKC412. Blood 2005; 105: 54–60.

16 DeAngelo DJ, Stone RM, Heaney ML, Nimer SD, Paquette RL,
Klisovic RB et al. Phase 1 clinical results with tandutinib
(MLN518), a novel FLT3 antagonist, in patients with acute
myelogenous leukemia or high-risk myelodysplastic syndrome:
safety, pharmacokinetics, and pharmacodynamics. Blood 2006;
108: 3674–3681.

17 Levis M, Pham R, Smith BD, Small D. In vitro studies of a FLT3
inhibitor combined with chemotherapy: sequence of administra-
tion is important to achieve synergistic cytotoxic effects. Blood
2004; 104: 1145–1150.

FLT3-regulated antigens
B Brackertz et al

8

Blood Cancer Journal



18 Porter DL, Collins Jr RH, Hardy C, Kernan NA, Drobyski WR,
Giralt S et al. Treatment of relapsed leukemia after unrelated donor
marrow transplantation with unrelated donor leukocyte infusions.
Blood 2000; 95: 1214–1221.

19 Graf C, Heidel F, Tenzer S, Radsak MP, Solem FK, Britten CM et al.
A neoepitope generated by an FLT3 internal tandem duplication
(FLT3-ITD) is recognized by leukemia-reactive autologous CD8+ T
cells. Blood 2007; 109: 2985–2988.

20 Scheich F, Duyster J, Peschel C, Bernhard H. The immunogenicity
of Bcr-Abl expressing dendritic cells is dependent on the Bcr-Abl
kinase activity and dominated by Bcr-Abl regulated antigens.
Blood 2007; 110: 2556–2560.

21 Scheibenbogen C, Letsch A, Thiel E, Schmittel A, Mailaender V,
Baerwolf S et al. CD8 T-cell responses to Wilms tumor gene
product WT1 and proteinase 3 in patients with acute myeloid
leukemia. Blood 2002; 100: 2132–2137.

22 Neudorfer J, Schmidt B, Huster KM, Anderl F, Schiemann M,
Holzapfel G et al. Reversible HLA multimers (Streptamers) for the
isolation of human cytotoxic T lymphocytes functionally active
against tumor- and virus-derived antigens. J Immunol Methods
2007; 320: 119–131.

23 Meyer zum Buschenfelde C, Nicklisch N, Rose-John S, Peschel C,
Bernhard H. Generation of tumor-reactive CTL against the tumor-
associated antigen HER2 using retrovirally transduced dendritic
cells derived from CD34+ hemopoietic progenitor cells. J Immunol
2000; 165: 4133–4140.

24 Dengler R, Munstermann U, al-Batran S, Hausner I, Faderl S,
Nerl C et al. Immunocytochemical and flow cytometric detection
of proteinase 3 (myeloblastin) in normal and leukaemic myeloid
cells. Br J Haematol 1995; 89: 250–257.

25 Miwa H, Beran M, Saunders GF. Expression of the Wilms’ tumor
gene (WT1) in human leukemias. Leukemia 1992; 6: 405–409.

26 Miyagi T, Ahuja H, Kubota T, Kubonishi I, Koeffler HP, Miyoshi I.
Expression of the candidate Wilm’s tumor gene, WT1, in human
leukemia cells. Leukemia 1993; 7: 970–977.

27 Rosenfeld C, Cheever MA, Gaiger A. WT1 in acute leukemia,
chronic myelogenous leukemia and myelodysplastic syndrome:
therapeutic potential of WT1 targeted therapies. Leukemia 2003;
17: 1301–1312.

28 Carter BZ, Milella M, Altieri DC, Andreeff M. Cytokine-regulated
expression of survivin in myeloid leukemia. Blood 2001; 97:
2784–2790.

29 Greiner J, Schmitt M, Li L, Giannopoulos K, Bosch K, Schmitt A
et al. Expression of tumor-associated antigens in acute myeloid
leukemia: Implications for specific immunotherapeutic
approaches. Blood 2006; 108: 4109–4117.

30 Yee KW, O’Farrell AM, Smolich BD, Cherrington JM,
McMahon G, Wait CL et al. SU5416 and SU5614 inhibit kinase
activity of wild-type and mutant FLT3 receptor tyrosine kinase.
Blood 2002; 100: 2941–2949.

31 Fukuda S, Singh P, Moh A, Abe M, Conway EM, Boswell HS et al.
Survivin mediates aberrant hematopoietic progenitor cell

proliferation and acute leukemia in mice induced by internal
tandem duplication of Flt3. Blood 2009; 114: 394–403.

32 Pollard JA, Alonzo TA, Gerbing RB, Woods WG, Lange BJ,
Sweetser DA et al. FLT3 internal tandem duplication in CD34+/
CD33� precursors predicts poor outcome in acute myeloid
leukemia. Blood 2006; 108: 2764–2769.

33 Conrad H, Gebhard K, Kronig H, Neudorfer J, Busch DH,
Peschel C et al. CTLs directed against HER2 specifically cross-
react with HER3 and HER4. J Immunol 2008; 180: 8135–8145.

34 Kronig H, Hofer K, Conrad H, Guilaume P, Muller J, Schiemann M
et al. Allorestricted T lymphocytes with a high avidity T-cell
receptor towards NY-ESO-1 have potent anti-tumor activity. Int J
Cancer 2009; 125: 649–655.

35 Greiner J, Ringhoffer M, Taniguchi M, Li L, Schmitt A,
Shiku H et al. mRNA expression of leukemia-associated
antigens in patients with acute myeloid leukemia for the
development of specific immunotherapies. Int J Cancer 2004;
108: 704–711.

36 Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H et al.
Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T
lymphocytes by WT1 peptide vaccine and the resultant cancer
regression. Proc Natl Acad Sci USA 2004; 101: 13885–13890.

37 Heslop HE, Stevenson FK, Molldrem JJ. Immunotherapy of
hematologic malignancy. Hematol Am Soc Hematol Educ Program
2003; 1: 331–349.

38 Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J
et al. Leukemia-associated antigen-specific T-cell responses
following combined PR1 and WT1 peptide vaccination in patients
with myeloid malignancies. Blood 2008; 111: 236–242.

39 Schmitt M, Schmitt A, Rojewski MT, Chen J, Giannopoulos K, Fei F
et al. RHAMM-R3 peptide vaccination in patients with acute
myeloid leukemia, myelodysplastic syndrome, and multiple
myeloma elicits immunologic and clinical responses. Blood
2008; 111: 1357–1365.

40 Greiner J, Dohner H, Schmitt M. Cancer vaccines for patients with
acute myeloid leukemiaFdefinition of leukemia-associated anti-
gens and current clinical protocols targeting these antigens.
Haematologica 2006; 91: 1653–1661.

41 Choudhury BA, Liang JC, Thomas EK, Flores-Romo L, Xie QS,
Agusala K et al. Dendritic cells derived in vitro from acute
myelogenous leukemia cells stimulate autologous, antileukemic
T-cell responses. Blood 1999; 93: 780–786.

42 Kremser A, Dressig J, Grabrucker C, Liepert A, Kroell T, Scholl N
et al. Dendritic cells (DCs) can be successfully generated from
leukemic blasts in individual patients with AML or MDS: an
evaluation of different methods. J Immunother 2010; 33: 185–199.

This work is licensed under the Creative Commons
Attribution-NonCommercial-Share Alike 3.0 Unported

License. To view a copy of this license, visit http://creativecommons.
org/licenses/by-nc-sa/3.0/

Supplementary Information accompanies the paper on Blood Cancer Journal website (http://www.nature.com/bcj)

FLT3-regulated antigens
B Brackertz et al

9

Blood Cancer Journal

http://www.nature.com/bcj

	FLT3-regulated antigens as targets for leukemia-reactive cytotoxic T lymphocytes
	Introduction
	Materials and methods
	Cell culture
	Generation of CTL clones
	IFN-gamma ELISpot assay
	Enzyme-linked immunosorbent assay
	Cytotoxicity assay
	siRNA treatment
	RNA isolation and reverse transcription-polymerase chain reaction
	Flow cytometry

	RESULTS
	The LAA PR-3, RHAMM, Survivin, WT-1 and PRAME are upregulated by the FLT3 receptor tyrosine kinase
	CTL clones against the LAA PR-3, RHAMM and Survivin recognize and lyse leukemia cell lines and primary AML blasts

	Figure 1 Influence of the FLT3 kinase on the expression of the LAA PR-3, RHAMM, WT-1, PRAME and Survivin.
	Figure 2 CTL clones against PR-3, RHAMM, and Survivin, respectively, recognize the corresponding peptide epitopes.
	Leukemia-reactive CTL clones are generated by stimulation with blast-derived DC
	DCs transfected with FLT3-ITD are recognized by CTL clones against PR-3, RHAMM and Survivin, as well as by CTLAML clones

	Figure 3 CTL clones stimulated with HLA-A2+ ITD+ DCAML recognize leukemia cell lines and blasts.
	CTL clones against PR-3, RHAMM and Survivin recognize DCs transfected with Bcr-Abl-WT, but not DCs transfected with Bcr-Abl-KD

	DISCUSSION
	Figure 4 Reactivity of CTL clones directed against PR-3, RHAMM and Survivin, as well as CTLAML clones towards DCs nucleofected with FLT3-WT plus and minus FLT3-siRNA or FLT3-ITD.
	Figure 5 Reactivity of CTL clones directed against PR-3, RHAMM and Survivin, as well as CTLAML clones towards DCs nucleofected with Bcr-Abl-WT or Bcr-Abl-KD.
	Conflict of interest
	Acknowledgements
	References




