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Abstract: Oriental melons have a relatively short shelf life as they are harvested during the summer
season and susceptible to cold-induced injuries. Typical chilling injury when stored at 4 ◦C is
expressed as browning of the fruit suture. To prolong the shelf life and reduce browning of the fruit,
the effects of modified atmosphere packaging (MAP), X-tend modified atmosphere (MA)/modified
humidity (MH) bulk packaging (XF), and polyethylene (PE) packaging, on oriental melons were
investigated during storage at 4 ◦C and 10 ◦C for 14 days and under retail display conditions at 20 ◦C.
The O2 concentrations in PE packages stored at 4 ◦C and 10 ◦C ranged from 17.4 to 18.5%, whereas
those in XF packages were reduced to 16.3–16.6%. The CO2 content of XF package (4.2–4.6%) was
higher than that of PE package (1.4–1.9%) stored at 4 ◦C or 10 ◦C. Relative humidity (RH) saturated in
the PE packages but not in the XF packages after seven days of storage. Furthermore, PE packages
performed better at maintaining melon weight and firmness than XF packages during storage at 10 ◦C
for 14 days and under retail display conditions at 20 ◦C. PE and XF packages effectively reduced
the browning index of the peel and white linear sutures of oriental melons compared with the
unpackaged control during cold storage at 4 ◦C, and this observation was maintained at the retail
display condition at 20 ◦C. The enhanced CO2 levels, reduced O2 levels, and optimal RH values that
were provided by the MAP, prevented the browning symptoms, and improved the marketability and
shelf life of oriental melons.
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1. Introduction

The oriental melon (Cucumis melo var L.) is an important agricultural commodity and famous
summer fruit in Korea. The oriental melon has light yellow smooth skin and white flesh, with a white
suture between the yellow skin, holding a completely different appearance and taste compared with
other melons including honeydew and cantaloupe [1]. The oriental melon has high sugar content,
calcium, and vitamin C [2]. It is commonly cultivated directly in the open field, in the middle of April,
or planted after growing seedlings, in the end of May. The melons are normally harvested from May to
August, which is the rainy season with high temperatures. Therefore, it is difficult to maintain the
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quality of the oriental melon at room temperature, during storage, and shipping. The Cucumis melo
var L makuwa oriental melon has a shelf life after harvest of only ~10 days at room temperature due
to its typical climacteric behavior and thin pericarp [3]. The oriental melon quality during storage
at room temperature (23 ◦C) is affected by softening, senescence, browning, and overall decay of the
fruit [1,4,5]. Due to its unique appearance and taste, oriental melons are exported from Korea to other
countries [6]; therefore, low temperature storage strategies are necessary to extend their shelf life.
However, under low temperature storage, oriental melons can develop cold injuries (CIs), such as
soaking and Alternaria rot [7]. Browning of the peel and “suture” are the main factors that lead to
oriental melon postharvest loss. Peel browning increases with low melon storage temperatures [8],
with the optimal oriental melon storage conditions being within 7–10 ◦C and high relative humidity
(RH) of 90–95% [2]. Ethanol application has reduced the internal ethylene concentration of harvested
oriental melons and maintained postharvest storage quality [1,9], whereas heat treatment at 38 ◦C for
48 h also prevented CIs outcome [7]. Furthermore, melon fruit senescence and decay can be controlled
by methyl jasmonate [10], chitosan [11], and modified atmosphere packaging (MAP) [12].

MAP is a technology used to extend the shelf life of fruits and vegetables. Packaging with plastic
films results in the creation of a modified atmosphere compared with the exterior environment, with
higher CO2 and water vapor levels, and lower O2 levels, due to respiration and reduction of moisture
loss from the commodity [13]. Reduced O2 or elevated CO2 levels inside the package can reduce
ethylene production, delay ripening and softening, and slow various compositional changes associated
with ripening. The use of MAP alleviates CIs in horticultural crops such as sweet corn [14] and sweet
cherries [15]. X-tend films (StePac L.A., Tefen, Israel) were developed to modify the atmosphere and
humidity inside the package and prolong the product quality; therefore, extending the shelf life of fresh
products, such as melon, broccoli, green onions, mango, and honeysuckle fruits [16–18]. Porat et al. [19]
demonstrated that the use of a MAP “bag-in-box” packaging with X-tend film reduces the incidence
of rind disorder symptoms in citrus fruits. Moreover, X-tend films was developed to have higher
permeability to water vapor by possessing microperforations, which will allow it to achieve enough
in-pack relative humidity that will prevent the accumulation of condensed water on the produce [20].
This MAP and modified humidity packaging (MHP) was reported to effectively reduce CI symptoms
in mangoes and tomatoes [21,22].

MAP in combination with low temperature storage is an effective way to improve the shelf life of
crops. This study aimed to determine the effects of MAP using polyethylene (PE) film and MA/MH
film on the quality attributes, CI, shelf life, and decay of oriental melons during storage at optimal
(10 ◦C) and chilled temperature (4 ◦C) temperatures, and under retail display condition (20 ◦C).

2. Materials and Methods

2.1. Sample Preparation

Oriental melons (Cucumis melo var L. cv “Smart”) were harvested in August 2018 at optimum
maturity from a plantation located in Sungju, South Korea, and used a day after harvest. For the
experiment, fined whole fruit without defeat were selected and washed and dried to remove the
extra water. Fruits were assessed for total soluble solids, color, firmness, elasticity, and weight before
storage under different packaging conditions. For film processing, low-density polyethylene (PE)
film (0.03 mm thickness; Tebangparteck, Yangju, Korea) and Xtend MA/MH bulk package (XF) with
antifog (815-ST2, StePac, Israel) were used. The control melons were stored in a standard cardboard
box without film treatment. The fruits were stored at 4 ◦C and 10 ◦C for 14 days and transferred to
20 ◦C for another five days to mimic the process of commercial melon distribution from producer
to local market (temperature and relative humidity data throughout the experiment is available in
Figure S1). After transferring to market display conditions (20 ◦C), the storage bags were opened.
Physicochemical and sensory parameters were evaluated and compared among the three packaging
groups that contained 12 fruits at the beginning of the experiment (Day 0).
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2.2. In-Package Temperature, Humidity, and Headspace Gas Composition

The headspace gas composition (O2 and CO2 concentration) inside each package was monitored
daily using a CheckMate 3 gas analyzer (PBI Dansensor, Ringsted, Denmark). In detail, first, the
septum was attached on the packaging film at a placed with free space of packaging. To monitor the
gas composition, the needle connecting to the analyzer pierced through the septum on the packing
film. The needle was withdrawing when the measurement was finished. To monitor the temperature
and humidity in the packages, data loggers (Watch dog, Spectrum Technology, Fort Worth, TX, USA)
were placed inside the packages of each treatment and set to record temperature and RH every 30 min.

2.3. Weight Loss of Oriental Melon Fruit

Oriental melons were weighed at the beginning and at the end of the experiment. The weight loss
(WL) percentage was calculated according to the following equation: WL(%) = ((IW − FW)/IW) × 100,
in which the final weight (FW) was related to the initial weight (IW) of each sample.

2.4. Firmness Analysis

Firmness was measured at three points on the shoulder of each of 10 oriental melons from each
group using a texture analyzer (TA Plus Lloyd Instruments, Ametek, Largo, FL, USA) connected to
a computer, by applying a plunger of 5 mm in diameter. Texture analyzer was set up to Puncture
methods which measured the hardness. In detail, the amount of force required to compress the radial
pericarp surface of each oriental melon at a constant speed of 2.4 mm/s was recorded. The fruit firmness
value was expressed as force per unit (N), firmness. The reported values represented the average value
of 10 samples, with three measurements per sample, of each group.

2.5. Total Soluble Solids

The total soluble solid (TSS) content of the oriental melons was measured using a digital
refractometer (PAL-1, Atago, Tokyo, Japan). Each whole oriental melon was cut in half, and each half
was further divided into three parts. The juice from slices was extracted manually and put into the
refractometer. The value of soluble solids content was expressed as Brix. The reported values represent
the average value of 10 samples per group.

2.6. Surface Color Analysis

The surface color of each oriental melon was measured at three points on the peel with a reflectance
colorimeter (Chroma Meter CR-400, Konica Minolta, Tokyo, Japan) using the Hunter color system.
The color of each oriental melon was expressed as Hue value. The reported values represent the
average of 12 samples per group.

2.7. Determination of Browning Injury Index and Marketability

The browning of oriental melon peels and white linear sutures were measured in 15 individual
fruits by an experienced investigator. The browning index assessment was performed using the
following visual appearance scoring scale in relation to the portion of the fruit that was under
investigation: 0, no symptoms; 1, 2–5% symptom; 2, 5–25% symptoms; 3, 25–50% symptoms; and 4,
>50% symptoms. The browning index was determined using the following equation: (

∑
(symptom

scale × number of fruit at each scale))/(total number of fruit in the treatment).
Fruit marketability was assessed according to overall visual quality score: 5, excellent; 4, good;

3, fair; 2, bad; and 1, severe bad. The marketable limit was set as 3, and fruits with lower scores were
considered unmarketable. Marketability data are presented as the percentage of marketable fruits that
were affected within each treatment. The experiment was repeated thrice and the standard error of the
mean for each parameter was calculated.
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2.8. Light and Scanning Electron Microscopy for Tissue Structure Analysis

Tissue analysis was performed as previously described [23] with some modifications. Briefly,
melon tissues were fixed in 2.5% glutaraldehyde (v/v in a 0.1 M phosphate buffer) at pH 7.2 in the
presence of 4% sucrose (w/v) for 24 h. After three rinses (30 min, each) with the above indicated buffer,
the specimens were post-fixed with 1% OsO4 (w/v) in the same buffer with 4% sucrose (w/v) for 4 h.
They were then rinsed thrice (30 min, each) with the buffer, dehydrated in alcohol series, transferred
to propylene oxide, and embedded in Epon epoxy resin. Semi-thin sections (2.5 µm) were prepared
with an ultra-microtome and placed on glass slides. The Periodic Acid–Schiff (PAS) polysaccharide
specific reaction was carried out, with tissues structures being shown in red color. Sections for staining
were first plunged in 1% periodic acid (w/v) for 30 min, then in Schiffs reagent for 40 min, and in
5% sodium bisulfite (w/v) for 35 min. Sections were then rinsed in distilled water, dried on a warm
plate, and mounted in Histomount. Negative control was performed by omitting the oxidation step
with periodic acid. The samples were observed with a light microscope (Axioscop 2, Carl Zeiss, Jena,
Germany). Cuticle thickness was measured with ImageJ. In order to examine the morphological
characters, live tissues were examined on a SEM (SU-3500, Hitachi, Tokyo, Japan) operating at low
vacuum mode [23].

2.9. Quantification and Composition of Epicuticular Wax

Oriental melon surface was peeled with a potato peeler; with a thickness of about 3–4 mm.
Yellow peel and white suture tissue were separated with scissor. The surface area of each tissue was
calculated by ImageJ. Two oriental melons were peeled for one biological replication. Chloroform
(5 mL) was placed into a 20 mL glass vial (Fisher Scientific, Pittsburgh, PA, USA) and epicuticular
wax was extracted by placing each individual sample into the chloroform and mildly agitating for 5 s.
Afterwards, the organic solvent was evaporated with a nitrogen stream heated to 40 ◦C. After drying,
5 mL of 100 mg/L n-tetracosane (internal standard) in chloroform was added to reconstitute the
extracted wax. The extract (0.3 mL per vial) was then transferred to Reacti-vials (Thermo Fisher
Scientific) and subsequently evaporated under a gentle stream of nitrogen. The extract was then
redissolved in a mixture of 150 µL bis-N,N-(trimethylsilyl) trifluoroacetamide (BSTFA) containing
1% trimethylchlorosilane (TMCS; Sigma-Aldrich, St. Louis, MO, USA) for derivatization. The vials
were incubated at 75 ◦C for 70 min before the extract was injected into a gas chromatograph (Nexis
GC-2030, Shimadzu, Japan) coupled to a GCMS (GCMS-QP 2020 NX, Shimadzu, Kyoto, Japan) for
quantification. A capillary column (DB-5, Agilent, Santa Clara, CA, USA; 30 m, 0.25 mm, 0.25 m) was
used for separation. Oven temperature was initially maintained at 150 ◦C for 1 min, then increased by
12 ◦C·min−1 to reach 300 ◦C, which was maintained for 7 min. Both injector and detector temperatures
were set to 270 ◦C. The flow rate of the helium carrier gas was 1.2 mL/min. The following mass
spectrophotometry parameters were employed: inlet temperature, 250 ◦C; ion source temperature,
300 ◦C; and mass scan range was from 40 to 650.

Compound identification was based on NIST library and authentic standards including C7-C40
saturated alkanes standard mixture (Supelco, Bellefonte, PA, USA) and hexacosanol. Quantifications
for some wax compounds were expressed as equivalent concentration using the standard alkanes
(C30 for triterpenes) or hexacosanol (all alcohols).

2.10. Statistical Analysis

Experiments were performed in a completely randomized design. The data were analyzed by
analysis of variance (ANOVA) using the Prism version 5.03 statistics software (GraphPad Software,
San Diego, CA, USA), and significant differences were compared by one-way ANOVA following
Tukey’s HSD tests for each experiment at p < 0.05. Pearson’s correlation analysis was conducted using
MetaboAnalyst (https://www.metaboanalyst.ca).

https://www.metaboanalyst.ca
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3. Results and Discussion

3.1. O2 and CO2 Concentrations

Oriental melons were harvested at optimal maturity and stored in a MAP of PE film or XF, at 4 ◦C
or 10 ◦C, for 14 days. The initial atmosphere of both PE and XF packages was maintained throughout
the experiments and contained ~20.9% O2 and ~0.1% CO2. During the cold storage period, O2 and
CO2 concentration were relatively stable after four days of storage, regardless of the temperature.
The O2 concentration in the PE film packages stored at 4 ◦C and 10 ◦C ranged between 17.5–18.5% and
17.4–17.9%, respectively, whereas O2 levels in the XF packages were lower (16.3–16.4% and 16.5–16.6%,
respectively, Figure 1A). In contrast, XF showed a significantly higher CO2 concentration (4.2–4.6%)
than that in PE (1.4–1.9%) packages, regardless of the temperature (Figure 1B). Overall, two MAP had
significantly lower O2 and higher CO2 concentrations than that in unpackaging group (21% of O2

and 0.03% of CO2, data not shown here). In general, 3–8% CO2 and 2–5% O2 are recommended for
MAP storage of fruits and vegetables [24]. Furthermore, a previous study suggested that the optimal
controlled atmosphere for oriental melons was 2–3% O2 and 5–10% CO2 [2].
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Figure 1. Oxygen (A) and carbon dioxide (B) concentration inside the “box-in-bag” packaging of
oriental melons. The melons were packaged using polyethylene film (PE) or Xtend film (XF) and stored
at 4 ◦C and 10 ◦C for 14 days. Data are presented as the mean ± SE of three replicates. Different letters
indicate significant difference among treatments within the same storage temperature and storage time
by Tukey’s HSD test with p < 0.05.

3.2. RH and Weight Loss

The RH within the PE packages was saturated under storage at both 4 ◦C and 10 ◦C within three
days. In contrast, XF packages prevented water condensation inside and maintained high RH (~98%)
during cold storage (Figure 2). The RH in the control was maintained at 87.2–93.0% from day 3 to day
11 of storage and increased up to 95% at day 14. Water condensation occurred inside PE packages;
thus, no water loss occurred (Figure 2, RH changes in the two storage temperatures evaluated are
available in Figure S1).

The fruit weight loss is presented in Figure 2. Control samples of oriental melons stored at
4 ◦C presented the highest loss in weight, with 3.67% and 4.5% of weight loss at day 14 and day
14 plus additional five days at retail display condition (14 + 5), respectively. However, PE and XF
packaging treatment with refrigerated storage significantly reduced weight loss during the study
period compared with the control samples. Minor weight loss was observed in samples packed in PE,
irrespective of the storage condition at 4 ◦C or 10 ◦C (0.2% and 0.07%, respectively) during the 14 days.
Although both PE and XF film packaging reach the same level of RH, weight loss rate (%) of the
oriental melons was significantly lower in XF than in PE packaged samples during refrigerated storage
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at days 7 to 14. Permeability of the XF films to moisture and gases could be directly responsible to the
weight loss. PE acted as a complete barrier to prevent moisture loss, whereas XF showed permeability
to moisture at all storage temperatures, even at the retail display condition at 20 ◦C, because of its
microperforation. These results indicated that weight loss is mainly a consequence of water content
movement through the microperforation in the XF packaging, although water vapor was condensed
on the PE packaging. Since PE acted as a barrier to water vapor release and helped maintain a high RH
level, and consequently prevented weight loss of the fruits. It has been reported that MAP could extend
the shelf life of fresh products by reducing their weight loss [25,26]. Nevertheless, when kept at 20 ◦C
after 14 days of low temperature storage, the oriental melons showed significant weight loss, which
could be attributed to higher respiration and transpiration rates at this marketing display temperature.
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Figure 2. Relative humidity (A) and weight loss (B) inside the “box-in-bag” packaging of oriental
melons. The melons were packaged using 0 polyethylene film (PE), Xtend film (XF), or no film treatment
(control), and stored at 4 ◦C or 10 ◦C for 14 days. At day 14 + 2 the melons showed relatively lower
weight loss compared with day 14, mostly due to the water condensing on the fruit and the box film,
underestimating the actual weight loss of the fruit. Data are presented as mean ± SE of three replicates.
Different letters indicate significant difference among treatments within the same storage temperature
and storage time by Tukey’s HSD test with p < 0.05.

3.3. Fruit Quality: Firmness, Total Soluble Solids (TSS), and Surface Color

To evaluate the quality and shelf life of oriental melons, the fruits were stored at 4 ◦C or 10 ◦C for
14 days and then transferred to retail display conditions at 20 ◦C for another five days. Oriental melons
stored in MAP at 10 ◦C for seven days showed the highest firmness, which decreased with storage
time. Generally, fruits packed in XF or PE maintained their firmness better than their corresponding
control fruits upon being transferred to 20 ◦C for five days (Table 1). In agreement with prolonged
fruit quality, a previous study showed that MAP reduced the activity of enzymes involved in cell wall
degradation [27].

For TSS content, significant differences among treatments at storage temperatures of 4 ◦C or 10 ◦C
for 14 days were noticeable (Table 1). However, the trends of the different storing approaches were not
consistent. Under retail display condition (20 ◦C) for two days, generally unpacked fruit showed higher
TSS than MAP fruits, but the trend was not consistent throughout the storage duration. An increase
in TSS content, particularly of sugars, may indicate ripening of the fruits, whereas the delay of this
process could be due to the packaging process. An increase in TSS may also result from the breakdown
of other complex sugars such as pectin, which is decomposed by the enzymes of the fruit.

The changes in fruit surface color over the storage period were measured as Hue value from both
suture (Table 1) and peel (Figure S2G,H). The Hue value change of the suture was more obvious than
that of the peel. Thus, Table 1 only shows Hue value of peel, whereas suture of Hue value changes is
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presented in Figure S2. Surface color evaluations showed significant Hue value differences in white
sutures on fruits between 4 ◦C and 10 ◦C stored oriental melon at days 14 + 2 and 14 + 5. The unpacked
fruit control showed lower Hue value than both MAP fruits at retail display condition (20 ◦C) after
14 days of cold storage. The suture of control had slightly yellowing showing lower hue value (88.3)
compared to PE and XF packaged fruit, 92.0 and 90.8, respectively at 14 + 5 days. Similar report
showed apples stored in MA packs presented better color than fruits stored in air showing the higher
L* and hue values and lower a*value after 6 month cold storage [28]. Lightness (L*) and green to red
(a*) from Hunter’s L*a*b* values were mostly significantly different in both peel or suture between
treatment conditions, at either 4 ◦C or 10 ◦C storage. Lightness gradually decreased during storage
time, but MAP treatments significantly inhibit lightness reduction of the peel or suture. This effect of
MAP was more obvious in samples stored at 4 ◦C than in those stored at 10 ◦C. Decreasing lightness
of the peel and suture at 4 ◦C maybe related with CI, similar to browning. Taken together, storage
temperature and MAP have significant impact on skin and suture color of the oriental melons (Figures
S2 and S3, Table 1). These results indicated that modified the atmospheric condition, and the high
humidity inside the packages slowed down the ripening and softening processes. However, previous
reports described that XF10 liners had no significant effects on other fruit quality parameters, including
decay, juice TSS and acid content, and citrus fruit taste [19].

Table 1. Firmness, soluble solid content, and Hue under modified atmosphere film of oriental melon
during 4 ◦C and 10 ◦C storage.

Storage Time
(Days)

Storage Temperature
(◦C) Treatment Firmness (N) TSS Hue of Suture

0 4
Control 19.45 ± 0.62 a 11.60 ± 0.10 a 96.70 ± 0.33 a

PE 19.45 ± 0.62 a 11.60 ± 0.10 a 96.70 ± 0.33 a

XF 19.45 ± 0.62 a 11.60 ± 0.10 a 96.70 ± 0.33 a

0 10
Control 19.45 ± 0.62 a 11.60 ± 0.10 a 96.70 ± 0.33 a

PE 19.45 ± 0.62 a 11.60 ± 0.10 a 96.70 ± 0.33 a

XF 19.45 ± 0.62 a 11.60 ± 0.10 a 96.70 ± 0.33 a

7 4
Control 14.01 ± 0.45 a 12.17 ± 0.09 b,c,d 94.77 ± 0.36 a

PE 18.54 ± 0.37 b,c 12.27 ± 0.13 d,e 95.57 ± 0.40 a

XF 16.57 ± 0.56 b 12.77 ± 0.03 e 95.80 ± 0.32 a

7 10
Control 18.93 ± 0.37 c 11.60 ± 0.15 a 94.92 ± 0.55 a

PE 19.26 ± 0.34 c 11.70 ± 0.15 a,bc 95.62 ± 0.46 a

XF 19.86 ± 0.82 c 11.70 ± 0.07 ab 95.79 ± 0.34 a

14 4
Control 19.52 ± 0.41 b 11.60 ± 0.06 a,b 91.35 ± 0.75 a

PE 18.06 ± 0.74 a,b 11.27 ± 0.09 a 95.60 ± 0.52 b

XF 19.09 ± 0.45 b 11.73 ± 0.12 a,b,c 94.35 ± 0.42 b

14 10
Control 17.67 ± 0.50 a,b 12.20 ± 0.03 c 91.66 ± 1.04 a

PE 16.61 ± 0.52 a 11.70 ± 0.17 a,b,c 93.60 ± 0.36 a,b

XF 17.82 ± 0.33 a,b 12.00 ± 0.09 b,c 94.76 ± 0.42 b

14 + 2 4
Control 14.00 ± 0.46 a 12.03 ± 0.09 b 88.22 ± 0.62 a

PE 16.74 ± 0.44 a,b,c,d 12.17 ± 0.03 b 92.71 ± 0.66 b

XF 14.46 ± 0.59 a,b 11.23 ± 0.13 a 91.90 ± 0.83 b

14 + 2 10
Control 15.00 ± 0.37 a,b,c 13.30 ± 0.06 c 92.70 ± 0.79 b

PE 17.93 ± 0.43 d 11.00 ± 0.06 a 93.77 ± 0.46 b

XF 17.01 ± 0.69 c,d 12.50 ± 0.13 b 92.88 ± 0.60 b

14 + 5 4
Control 14.86 ± 0.65 a 12.00 ± 0.40 b 88.32 ± 1.13 a

PE 16.74 ± 0.31 a,b 11.27 ± 0.15 a,b 92.06 ± 0.56 b,c

XF 16.35 ± 0.55 a,b 11.07 ± 0.18 a 90.83 ± 0.88 ab

14 + 5 10
Control 16.22 ± 0.32 a 11.20 ± 0.13 a,b 91.98 ± 0.70 b,c

PE 18.22 ± 0.53 b 10.40 ± 0.03 a 94.69 ± 0.38 c

XF 15.05 ± 0.46 a 12.00 ± 0.09 b 94.40 ± 0.37 c

Control, non-film treatment; PE film, 0.03 mm polyethylene; X-tend Film, manufactured from blends of polyamides
with other polymeric and non-polymeric compounds. Data represents the means ± standard deviation (n = 30).
Different letters indicate significant difference among treatments within the same storage temperature and storage
time by Tukey’s HSD test with p < 0.05.
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3.4. Browning of the Fruit Suture and Tissue Structure

In our experiments, browning was observed in the control fruit during cold storage. In contrast,
only one or two of the 15 MAP treated fruits showed less than 5% of fruit surface browning during
14 days of cold storage. Browning increased after 14 days at 4 ◦C and 10 ◦C followed by five days
of storage at 20 ◦C (Figure 3); however, MAP with either PE or XF packaging considerably reduced
peel and sutures browning compared with control samples. Storage temperature also affected oriental
melon browning process. Notably, fruits stored at 4 ◦C showed severe peel and white liner suture
browning compared with fruits stored at 10 ◦C. Consistent with these results, lower temperatures have
been found to induce browning in muskmelons [8].
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Figure 3. Effect of modified atmosphere packaging on peel browning symptom of white linear sutures
(A) and peel (B) of oriental melons. The fruits were packaged in a commercial box made of polyethylene
(PE) or Xtend film (XF) and stored at 4 ◦C or 10 ◦C for 14 days (14). Afterwards, the melons were
transferred to 20 ◦C condition for five days (14 + 5). Fruits stored in a standard commercial box were
used as controls.

In addition, browning symptom of the suture was more severe than browning of the fruit peel
tissue. For the same storage period, the incidence of suture browning was up to 5–10 times higher than
fruit yellow peel. Fruit browning is the main contributor to the postharvest loss of oriental melons.
The white linear sutures (2.25 ± 0.56 µm, n = 26) of oriental melons, unlike the peels (19.98 ± 6.00 µm,
n = 26), have an epidermis layer with much less cuticular cells (Figure 4A,B,D,E). In other words, the
peel had an 8.88 times ticker cuticle layer. Cross section of both browning damaged fruit peel and
suture tissues showed very compact cell size and shrinking cell morphology (Figure 4C,F), suggesting
severe water loss in the hypodermis layer. Interestingly, even in the browning area on the fruit peel
surface, epidermis cells were not substantially shirked compared with the hypodermis layer (Figure 4C).
This result suggests that well-developed cuticle layer on the surface effectively prevents water loss.
The browning of oriental melon peels and white linear sutures may have been caused by cell membrane
impairment in the hypodermis layer, which suffered water loss during the long-term low temperature
storage (Figure 4). Disruption of the cell membrane integrity could have caused lipid peroxidation by
exposing cell membrane lipids to more O2. Even if a similar water loss has occurred in the same suture
tissue in both 4 ◦C and 10 ◦C stored samples, lower temperature stored fruit showed more severe
browning symptom at 4 ◦C. This may be caused by the imbalance of the antioxidant system of the
fruit [29]. Fruit cuticle is the outer physical barrier that protects it from external stresses and helps
maintain its internal structure and water content. A recent review paper on fruit cuticles reported a
strong relationship between the cuticle features and susceptibility to fungal diseases [30].



Foods 2020, 9, 1329 9 of 16
Foods 2020, 9, x FOR PEER REVIEW 9 of 17 

 

 
Figure 4. Anatomical analysis of oriental melon peel and suture. Light microscope images of yellow 
peel tissue: (A), normal tissue; (B), amplified of image (A); and (C), browning symptom tissue. Light 
microscope images of white linear suture tissue: (D), normal tissue; (E), amplified of image (D); and 
(F), browning symptom tissue. 

3.5. Epicuticular Wax and Specific Water Loss in Oriental Melon Sutures 

The water loss in the white linear suture area was particularly marked, which could be due to 
the reduced thickness of the cuticle layer. Moreover, it may relate with the epicuticular wax difference 
on the fruit surface. The yellow peel tissue of the oriental melon has a completely different texture 
feeling as compared with the sutures surface, with the yellow peel surface being oily and greasy, 
whereas the white suture surface has a non-greasy feeling. As shown in Figure 5, long chain alkanes, 
long chain alcohols and fatty acids were identified as the major epicuticular wax component on 
oriental melon surface. Total wax concentration of yellow fruit peel was significantly higher than that 
of white suture (26.95 vs. 7.25 µg cm−2). Long chain alkanes were accounted for 59.8% and 70.2% of 
total wax components on yellow peel and white suture, respectively. Among them, hentriacontane 
(C31 alkane) was the major alkane of total waxes on both yellow peel and white suture (21.8 and 21.6% 
of total wax components, respectively), followed by nonacosan (C29 alkane; 14.8% and 18.9% of total 
wax components, respectively). In yellow peel, long chain alcohols were account for 31% of total wax 
components, and included octacosanol (C28 alcohol), heptacosanol (C27 alcohol), and hexacosanol (C26 
alcohol) as the major alcohols (8.6%, 7.1%, and 6.9% of total wax components, respectively). In white 
suture, long chain alcohols account for 17% of total wax components, and included docosanol (C22 
alcohol), octacosanol (C28 alcohol), and tetracosanol (C24 alcohol) as major alcohols (3.4%, 3.2%, and 
2.9% of total wax components). Fatty acids were account for 9.2% and 12.8% of total wax components 
on yellow peel and white suture, respectively. Oleic acid was the major fatty acid on yellow peel 
(4.8% of total wax components), whereas stearic acid was the major fatty acid on white suture (7.4% 
of total wax components). This result was consistent with a recent study on smooth surface melon, 
such as honeydew [31]. A correlation between the epicuticular wax and water content loss were 
reported for several fruits, including mulberries and peppers [32,33]. In blueberries, the organellar 
membrane structure was disrupted upon cuticular wax removal [34]. Chu et al. [34] also reported 
that wax removal decreased the activities of antioxidant enzymes and the antioxidant content of 
peppers, and accelerated accumulation of reactive oxygen species (ROS) and lipid peroxidation, 
especially at the later period of storage. In addition, epicuticular wax crystals can change 
hydrophobicity of a plant surface and its susceptibility of food pathogen [35,36]. In this study, the 
difference in epicuticular waxes between yellow peel and white suture was found out. These results 
suggest that differential susceptibility to browning on oriental melon surface by area was due to the 

Figure 4. Anatomical analysis of oriental melon peel and suture. Light microscope images of yellow
peel tissue: (A), normal tissue; (B), amplified of image (A); and (C), browning symptom tissue. Light
microscope images of white linear suture tissue: (D), normal tissue; (E), amplified of image (D); and (F),
browning symptom tissue.

3.5. Epicuticular Wax and Specific Water Loss in Oriental Melon Sutures

The water loss in the white linear suture area was particularly marked, which could be due to the
reduced thickness of the cuticle layer. Moreover, it may relate with the epicuticular wax difference on
the fruit surface. The yellow peel tissue of the oriental melon has a completely different texture feeling
as compared with the sutures surface, with the yellow peel surface being oily and greasy, whereas
the white suture surface has a non-greasy feeling. As shown in Figure 5, long chain alkanes, long
chain alcohols and fatty acids were identified as the major epicuticular wax component on oriental
melon surface. Total wax concentration of yellow fruit peel was significantly higher than that of white
suture (26.95 vs. 7.25 µg cm−2). Long chain alkanes were accounted for 59.8% and 70.2% of total wax
components on yellow peel and white suture, respectively. Among them, hentriacontane (C31 alkane)
was the major alkane of total waxes on both yellow peel and white suture (21.8 and 21.6% of total
wax components, respectively), followed by nonacosan (C29 alkane; 14.8% and 18.9% of total wax
components, respectively). In yellow peel, long chain alcohols were account for 31% of total wax
components, and included octacosanol (C28 alcohol), heptacosanol (C27 alcohol), and hexacosanol
(C26 alcohol) as the major alcohols (8.6%, 7.1%, and 6.9% of total wax components, respectively).
In white suture, long chain alcohols account for 17% of total wax components, and included docosanol
(C22 alcohol), octacosanol (C28 alcohol), and tetracosanol (C24 alcohol) as major alcohols (3.4%, 3.2%,
and 2.9% of total wax components). Fatty acids were account for 9.2% and 12.8% of total wax
components on yellow peel and white suture, respectively. Oleic acid was the major fatty acid on
yellow peel (4.8% of total wax components), whereas stearic acid was the major fatty acid on white
suture (7.4% of total wax components). This result was consistent with a recent study on smooth surface
melon, such as honeydew [31]. A correlation between the epicuticular wax and water content loss were
reported for several fruits, including mulberries and peppers [32,33]. In blueberries, the organellar
membrane structure was disrupted upon cuticular wax removal [34]. Chu et al. [34] also reported that
wax removal decreased the activities of antioxidant enzymes and the antioxidant content of peppers,
and accelerated accumulation of reactive oxygen species (ROS) and lipid peroxidation, especially at
the later period of storage. In addition, epicuticular wax crystals can change hydrophobicity of a plant
surface and its susceptibility of food pathogen [35,36]. In this study, the difference in epicuticular
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waxes between yellow peel and white suture was found out. These results suggest that differential
susceptibility to browning on oriental melon surface by area was due to the difference in epicuticular
waxes. In addition to major wax components, unknown triterpenes were also detected (Figure S4
and Table S2); they were significantly higher on yellow peel surface (25.47 µg cm−2) than on white
suture (4.03 µg cm−2). In plant belonging to the Cucurbitaceae family, cucurbitacins are known as
triterpenes [37,38]. Although the unknown triterpenes showed 93% similarity to glutinol from NIST
library, further studies are needed to examine the identification and role of triterpenes presented on
oriental melon surface for physiological change at postharvest.
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Figure 5. Comparison of epicuticular wax on oriental melon peel and sutures. Data are presented as
mean ± SD of three replicates. Asterisks (**) indicate significant difference of total epicuticular wax
between peel and suture by Student’s t-test with p < 0.01.

To visualize the trace of weight loss from fruit suture, the surface image of oriental melon was taken
using scanning electron microscope. Intact suture surface did not show any microcrack (Figure 6A)
while browning area on suture surface showed microcrack (Figure 6B). The observed microcracks were
probably occurred by water loss for its the lower levels of cuticle layer thickness and epicuticular wax
deposit. These results also confirm that browning of suture surface was accelerated as dehydration.
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3.6. Marketability Change by Modified Atmosphere/Modified Humidity Packeging (MAP/MHP)

An evaluation of the percentage of marketable fruit, upon transfer to 20 ◦C for two days after 14
days of refrigerated storage (4 ◦C), showed that unpackaged controls started with 37.5% of marketable
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fruit, whereas in PE or XF packed fruit, the initial percentage of marketable fruits were 85.7% and
79.1%, respectively (Figure 7A). Fruit analysis at day 14 + 5 also showed that PE (65%) and XF
(60%) packaging achieved more than twice marketable fruit compared with unpacked fruit (28.6%).
The marketability of unpackaged control fruits dramatically decreased under retail display conditions
after cold storage compared with PE and XF packed fruits. However, there was no notable difference
of marketability between PE and XF packed fruits stored under the same conditions for 14 + 2 and
14 + 5 days. However, the melons decayed more frequently within the PE-treated group than in the
XF-treated group (Figure 7C,D), with about 25% more decayed fruit being observed in PE than XF.
Unfortunately, we did not evaluate decay incidence from the treatments this study. It is possible that
excessive humidity in the PE could promote decay of the fruit. Thus, MAP/MHP in XF packages
provides an advantage for fruits that are sensitive to excess condensed water inside the package.
According to our previous study [21], tomatoes treated with XF packaging showed numerically lower
decay rate than with PE packaging; however, the differences were not statistically significant.Foods 2020, 9, x FOR PEER REVIEW 12 of 17 
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microperforation for oriental melon to achieve an optimized gas/humidity atmosphere. MAP can be 
used for both packaging and storage purposes with low cost. Thus, MAP could be helpful to 
ameliorate CI of oriental melon during cold storage for long distance transportation. 

3.7. Correlation between Modified Atmospherepakaging (MAP) and Cold Injuries (CI) 

To determine the CI reducing effect of MAP on oriental melon stored at 4 °C, correlation analyses 
were conducted using brown index to quantify CI. Significant correlations are listed in Table S1 and 
also presented in Figure 8. Browning was mostly observed on white sutures of the fruit, and was 

Figure 7. Effect of modified atmosphere packaging on overall appearance of oriental melons.
Marketability of oriental melons that were stored at 4 ◦C (A) or 10 ◦C (B) for 14 days (14) and
transferred to 20 ◦C for another two or five days (14 + 2 or 14 + 5). Representative images from oriental
melon stored at 4 ◦C (C,E) or 10 ◦C (D,F) for 14 days, and transferred to 20 ◦C for another five days.
Red arrows in C indicate mold damage by fungi.
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To store oriental melons for long periods or transporting them long distances, low temperature
storage is necessary to reduce their metabolism, including respiration and ethylene production,
and thus maintain its freshness [39]. However, oriental melons stored at low temperatures (3–7 ◦C)
are susceptible to CI. Overall, fruits stored at 10 ◦C showed better marketability than that stored at
4 ◦C, since oriental melon fruits at 4 ◦C storage showed lower CI, such as browning (Figure 7C,D),
which consequently leads to poor overall appearance and low marketability. Moreover, below the
browning tissue symptom, the fruits showed brown tissue color with compromised firmness upon
4 ◦C and 10 ◦C control (Figure 7E,F). These results showed that MAP reduced browning symptom on
peel and white linear suture and improved oriental melon marketability. In agreement, prior results
showed that MAP prevents CI symptoms in tomatoes [21] and XF packaging reduced CI development
in oranges after six weeks of cold storage at 2 ◦C and five days under retail display conditions [19].

Parat et al. [19] mentioned some potential disadvantages of MAP. For example, MAP may
enhance anaerobic respiration and the development of off-flavor, and excessive humidity may increase
decay incidence. Parat et al. [19] also reported that different perforation size in XF films could
significantly affect the gas composition in the “bag-in-box”, implying that is still possible to optimize
microperforation for oriental melon to achieve an optimized gas/humidity atmosphere. MAP can be
used for both packaging and storage purposes with low cost. Thus, MAP could be helpful to ameliorate
CI of oriental melon during cold storage for long distance transportation.

3.7. Correlation between Modified Atmospherepakaging (MAP) and Cold Injuries (CI)

To determine the CI reducing effect of MAP on oriental melon stored at 4 ◦C, correlation analyses
were conducted using brown index to quantify CI. Significant correlations are listed in Table S1 and
also presented in Figure 8. Browning was mostly observed on white sutures of the fruit, and was found
to be strongly correlated with Hunter’s a* value at 4 ◦C suture (r = −0.969, p < 0.001, n = 15), as well
as with the L* value at 4 ◦C suture (r = −0.961, p < 0.001, n = 15). Browning of suture at 4 ◦C was
also strongly correlated with the L* value at 4 ◦C peel (r = −0.961, p < 0.001, n = 15). The marketable
fruit percentage was strongly correlated with the L* value at 4 ◦C peel (r = −0.965, p < 0.001, n = 15),
as well as with the a* value at 4 ◦C suture (r = −0.963, p < 0.001, n = 15). Visual color is one of the most
important visual attributes to consumers. When browning symptom visually shows on the surface of
oriental melon fruit the lightness is dramatically reduced (Figure 7C,D).

Altogether, the L* value changes on the peel and suture of oriental melon may be related with the
browning process by CI (Figure 9). To date, no quantitative method is available to measure accurately
the browning of oriental melon induced by cold storage. To the best of our knowledge, this study
is the first to identify quantitative parameters of measuring CI-related browning of oriental melon.
MAP decreased O2 and increased CO2 and humidity inside the packaging, resulting in reduced
metabolism, weight loss, and CI degree. The water loss on the peel tissue may have a negative
influence on the membrane structure and disruption of cellular compartmentalization [40]. A previous
study on kiwifruit reported that gradual cooling had higher superoxide dismutase, catalase, ascorbate
peroxidase, and peroxidase activities than the fruit treated by direct cooling during storage [29].
Based on this report, higher antioxidant activity may contribute to reduced CI symptoms. In our
study, we directly store oriental melon at 4 ◦C, which may have attributed to lower antioxidant activity.
Moreover, during the cold storage of oriental melon, ROS production might have been promoted by
the impaired energy state of the cells and/or could have contributed for disruption of cell membrane
integrity [41]. Indeed, membrane lipid peroxidation may be one of the first event of cold injury [41],
and lipid peroxidation was reported as a CI symptom [29,39]. Our previous report showed that optimal
package atmosphere conditions in MAP could lead to increased antioxidant levels, which in turn
could improve the freshness of tomatoes by reducing CI during cold storage, even at retail display
conditions [21]. In the present study, thicker cuticle layer with higher epicuticular wax deposits on the
yellow peel of oriental melon can possibly explain why the peel tissue is less susceptible to browning
than the white linear suture during cold storage. The higher water loss on the white linear suture tissue
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may also lead to cell membrane disruption and lipid peroxidation, ultimately resulting in browning
symptom during cold storage. In addition, the yellow peel tissue of oriental melon contains antioxidant
carotenoids, including lutein and β-carotene [42], which may have an important role on reducing lipid
peroxidation. It has been reported that grapefruits with high accumulation of lycopene were highly
resistant to CI upon subsequent postharvest cold storage [43]; however, mechanistic details that could
explain this observation still remain to be elucidated.
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Figure 9. Modified atmosphere packaging (MAP)-mediated cold injury preventing effect on oriental
melon during refrigerated (4 ◦C) storage. L* and a* indicate lightness and degree of redness from red to
green, respectively.

4. Conclusions

Preventing CI is critical for extending the shelf life and maintaining the postharvest quality of
oriental melons during storage, transport, and retailing. This study provided experimental data that
revealed that suture specific browning, as a CI symptom, is associated with impaired cuticle layer and
reduced epicuticular wax protection. This study also showed that MAP with PE or XF can effectively
prevent browning symptoms and prolong the freshness of oriental melon by using a modified storage
environment with elevated CO2 (1.8–4.6%) and reduced O2 contents (16.2–18.5%) during cold storage.
Moreover, optimal RH adjusted by MAP may influence the oriental melon quality, demonstrating to be
ideal for its storage by minimizing weight loss and maintaining firmness. In contrast, MAP had little
influence on TSS. Furthermore, MAP effectively reduced the browning index and improved melon
marketability compared with standard, unpackaged conditions. Altogether, this study showed that
the use of PE and XF packing materials can modify the packaging atmospheric conditions to maintain
the quality of oriental melons during cold storage and retail display conditions.
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