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Abstract: Understanding the molecular basis of major depression is critical for identifying new
potential biomarkers and drug targets to alleviate its burden on society. Leveraging available GWAS
data and functional genomic tools to assess regulatory variation could help explain the role of major
depression-associated genetic variants in disease pathogenesis. We have conducted a fine-mapping
analysis of genetic variants associated with major depression and applied a pipeline focused on gene
expression regulation by using two complementary approaches: cis-eQTL colocalization analysis and
alteration of transcription factor binding sites. The fine-mapping process uncovered putative causally
associated variants whose proximal genes were linked with major depression pathophysiology. Four
colocalizing genetic variants altered the expression of five genes, highlighting the role of SLC12A5
in neuronal chlorine homeostasis and MYRF in nervous system myelination and oligodendrocyte
differentiation. The transcription factor binding analysis revealed the potential role of rs62259947
in modulating P4HTM expression by altering the YY1 binding site, altogether regulating hypoxia
response. Overall, our pipeline could prioritize putative causal genetic variants in major depression.
More importantly, it can be applied when only index genetic variants are available. Finally, the
presented approach enabled the proposal of mechanistic hypotheses of these genetic variants and
their role in disease pathogenesis.

Keywords: major depression; genetic variants; eQTL; colocalization analysis; transcription factors;
genetic regulation

1. Introduction

Major Depression (MD) is the leading cause of impairment around the world [1]. It is
mainly treated with both psychotherapy and drugs, but the latter is only effective in 40% of
the patients [2]. Currently, there are no available biomarkers or tests that can aid in either
MD diagnosis or personalized treatment. As a complex disease, multiple genetic variants
(GVs) have been associated with MD in Genome-Wide Association Studies (GWAS), most
of them falling within non-coding regions of the genome [3,4].

Functional follow-up studies to unravel the regulatory mechanisms by which these
GVs play a role in the disease are key to understanding the molecular underpinnings of the
disease and identifying biomarkers or new drug targets. Some authors propose that the
efforts should be centered on the interpretation of GWAS signals to identify the causal GVs,
meaning those with a biological effect on a disease, and their regulatory potential, instead
of pursuing more GWAS [5].

In this study, we have focused on the GWAS meta-analysis on MD performed in
2019 by Howard et al. [3]. Full-genome summary statistics are not publicly available for
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this GWAS, so we have leveraged available data on index GVs. Ninety-seven loci were
identified as significantly associated with MD, and these underwent the classic post-GWAS
analysis: a gene-set enrichment analysis, the computation of polygenic risk score, and
genetic correlation with other traits, as well as drug-gene interaction analysis. In line with
previous GWAS findings, most GVs lie in non-coding regions, thus having no obvious
direct effect on a gene.

A necessary step forward to disentangle the role of GVs identified in GWAS requires
the evaluation of functional regulatory variation. Here, we have pursued two comple-
mentary analytical approaches geared toward the use of index GVs: (1) identification of
candidate susceptibility genes using expression quantitative trait loci in cis (cis-eQTLs),
which are enriched among disease-associated loci [6], and (2) characterization of tran-
scription factor (TF) binding sites modified by GVs, which are key to understanding their
potential impact on regulatory mechanisms [6–8].

In the present study, we aim to advance the understanding of MD molecular under-
pinnings. We have designed and applied a regulatory variation analysis pipeline and
conducted a functional enrichment analysis of the GVs, either acting as eQTLs or altering
the transcription factor binding site (TFBS), along with the proximal (pGenes) and regulated
genes (eGenes). Our findings provide biological insights into the functional role of MD
GVs and enable the proposal of mechanistic hypotheses.

2. Materials and Methods
2.1. MD GWAS Dataset and LD expansion

In order to obtain a comprehensive and reliable set of genetic variants (GVs) associated
with major depression (MD), we focused our analysis on the GWAS meta-analysis from
Howard et al. [3]. This meta-analysis evaluated 807,553 European individuals (246,363 cases
and 561,190 controls) and identified 102 genetic variants (GVs) associated with MD. We
retrieved these data from the summary statistics available at GWAS Catalog [9] (Accession
Study: GCST007342, note that the full-genome summary statistics for this GWAS were
not publicly available; downloaded in December 2020). We filtered the GVs by genome-
wide significance (p-value ≤ 5 × 10−8 and proceeded with the analysis with this set. We
then fine-mapped MD-associated GVs to prioritize the causal ones using the Probabilistic
Identification of Causal SNPs (PICS) algorithm [10]. In brief, PICS takes the most significant
variant per association locus and performs LD expansion using the 1000 Genomes Project
linkage disequilibrium (LD) information data for the study population and then identifies
the GVs more likely to be causal (PICS probabilities). Using the PICS2 Data portal, we
downloaded the precomputed PICS GVs for this study. This data constituted our full
dataset of GVs.

2.2. GVs Annotation: VEP, CADD and ENCODE

We annotated the full set of GVs with Variant Effect Predictor (VEP) [11] and Combined
Annotation Dependent Depletion (CADD) [12]. VEP annotates GVs’ consequence type
using the Sequence Ontology, its allele frequency from the 1000 Genomes Project Phase 3
along with the genomic coordinates, chromosome, and mapped gene at ±5000 bp distance
(from now on pGenes). Combined Annotation Dependent Depletion (CADD) assesses GVs’
potential pathogenicity by evaluating the PHRED-like scaled C-score; the recommended
cut-off ≥ 15 was set to identify potentially pathogenic variants.

We analyzed the GVs with the Encyclopedia of DNA Elements (ENCODE) [13] to
identify those potentially lying in transcription factor binding sites (TFBS). ENCODE
data analysis was performed using SNPNexus [14], an online platform that allows a
comprehensive annotation of GVs by integrating multiple tools.

2.3. Fine-Mapping and Colocalization of GWAS and cis-eQTLs

PICS2, in addition to GWAS PICS GVs, has precomputed PICS GVs for all Genotype-
Tissue Expression (GTEx) V8 best eQTLs per gene, per tissue type. We overlapped the
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extracted GWAS PICS for MD GVs with GTEx cis-eQTL PICS GVs, filtering both sets by a
PICS probability greater than 10% to narrow down the set to the most likely causal GVs
without being overly permissive, as previous applications of this method have done [15].
We performed a Fisher test to assess the enrichment of GVs in eQTL regions. Finally, to
identify colocalizing GWAS and eQTL GVs, we computed the products of PICS proba-
bilities following the colocalization posterior probability (CLPP) method, which assumes
independence of causal probabilities for GWAS and eQTL GVs [16]. The genes regulated
by these eQTLs from now on will be referred to as eGenes.

2.4. TF Binding Analysis with RSAT Variation Tools

We predicted those GVs affecting the TFBS using the Regulatory Sequence Analysis
Tools (RSAT) suite, which evaluates cis-regulatory elements. First, we used ENCODE
ChIP-seq data to keep only the GVs lying in TFBS and, therefore, have a more biologically
relevant set of GVs and reduce the number of tests. However, ChIP-seq data retrieve regions
of around 100–1000 bp, but the actual binding site corresponds to 9–15 bp [17,18]. Thus, we
proceeded with the RSAT analysis for a more robust and accurate assessment of the GVs
potentially altering the TFBS. RSAT provides tools that evaluate cis-regulatory elements to
predict GVs affecting the TFBS by modifying the transcription factor (TF) binding affinity.

RSAT modular structure allowed the concatenation and independent execution of
programs, each with a different goal. Before scanning the GVs and in order to account
for their different nucleotide composition, we created four sets of background models
according to the GV’s functional impact obtained with VEP (i.e., intergenic and UTR,
intronic, regulatory, and non-coding GVs). The subsequent steps were performed for
each set separately. The module create-background-model was executed using the sequences
obtained with fetch-sequences-from-UCSC, with the peak regions retrieved by ENCODE as
input. In parallel, the module retrieve-variation-sequence was used to obtain the flanking
sequence (30 bp per side) of the GVs of interest, using the dbSNP, genomic coordinates,
reference, and alternative allele.

To assess the TFBS alterations, position weight matrices (PSSM) for TFs expressed
in brain tissues (filtering them using GTEx expression data, ≥2 transcripts per million
(TPM)) [19] were retrieved from the following databases: JASPAR [20], ENCODE, HOCO-
MOCO [21], footprintDB [22], and hPDI [23]. In all cases, the non-redundant Homo sapiens
database version was used.

Finally, the module variation-scan was run with the previously built background
Markov models (order 2 to account for CpGs without overfitting), the PSSM matrices, the
GVs with their flanking sequences (see above), and the following parameters: weight of
predicted sites (>1), weight difference between variants (>1), p-value of predicted sites
(<1 e-3), and p-value ratio between variants (>10). The weight represents the binding
affinity and the p-value of a score is the probability of observing a score of at least weight
given a background model.

In addition, two control datasets, one randomizing TF motifs and one randomizing
GVs, were built to validate the results obtained running RSAT with the GVs of interest.
On the one hand, the TF’s PSSMs matrices were permuted using permute-matrix -perm 5 to
get randomized matrices with the same nucleotide composition and information content.
On the other hand, a control set of GVs (1:10) was built using vSampler [24] with the
following parameters: distance to closest transcription start site (TSS) deviation (±5000),
gene density deviation (±5 in 100 kbp), number of variants in LD (±50 and r2 = 0.1),
controlling for coding/non-coding match and variant type specificity, excluding for input
GVs and sampling across the chromosome. Both controls were analyzed with the described
RSAT pipeline.

We compared our set of GV-TF motif pair p-value ratios against the distribution of p-
value ratios for the given motif in both control datasets. A Wilcox test was used to evaluate
the results obtained from the controls because normality of p-value ratio distribution
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could not be assumed for most motifs after running a Shapiro–Wilk test. The alternative
hypothesis tested was “greater”.

In addition, to further confirm statistically significant GVs, a larger negative control
dataset of GVs (1:1000) was generated. Again, vSampler was used with relaxed parameters
to get a bigger control set (i.e., controlling for coding/non-coding match and variant
type specificity, excluding for input SNPs, and sampling across chromosomes). The same
non-parametric test was used to evaluate the results.

2.5. Identification of TF Active Regions with ChromHMM

We used chromatin state annotations from ChromHMM [25,26], available from EN-
CODE (v3), to evaluate whether GVs significantly altering the TFBS were lying in active
transcription sites of brain regions. Under a 18-state ChromHMM model, we consider the
following states annotations as active regulatory regions [26]: TssA, TssFlnk, TssFlnkU,
TssFlnkD, Tx, TxWk, EnhG1, EnhG2, EnhA1, EnhA2, EnhWk, ZNF/Rpts. The available
brain regions and cell types were: Brain Angular Gyrus, Brain Inferior Temporal Lobe,
Brain Cingulate Gyrus, Brain Anterior Caudate, Brain Substantia Nigra, Brain Dorsolateral
Prefrontal Cortex, Brain Hippocampus Middle, and Astrocytes. Additionally, the result-
ing TFs whose binding was altered were filtered by their expression in the specific brain
region using GTEx matched data when available; otherwise, data for all brain regions
were considered.

2.6. Retrieval of Regulation Evidence

We looked for evidence of gene expression regulation of TFs by matching GVs-TFs
pairs from the TF binding analysis using RSAT with eQTL PICS GVs. We further explored
the hTFtarget database [27] to identify specific mechanistic regulation evidence of those TFs
whose binding is altered by our set of GVs to regulate the expression of the target eGenes.
The hTFtarget database contains associations of TFs and their targets from chromatin
immunoprecipitation sequencing (ChIP-seq) in a specific tissue. We considered evidences
for mechanistic regulation when eQTL and ChIP-seq data tissues matched.

2.7. pGenes, eGenes, and GVs Characterization

We conducted a gene-set enrichment analysis using the tool g:Profiler via the R pack-
age gprofiler2 [28], which integrates different resources and annotates enriched terms
at the following levels: (1) biological processes, molecular functions, and cellular pro-
cesses annotated with the Gene Ontology (GO); (2) pathways from Reactome (REAC) and
WikiPathways; (3) miRNA annotations from MIRNA; (4) phenotypic features associated
to disease from Human Phenotype, which is mainly focused on rare Mendelian disorders.
In addition, we included DISGENET plus [29,30] association data (v16) in this analysis to
evaluate the annotation of complex diseases and phenotypic traits; note that the study by
Howard et al. was removed from this dataset to avoid circularity. Variant-set functional
enrichment analysis was performed using variant association data from DISGENET Plus.
We considered the set of known genes as the domain scope for the analysis. Furthermore,
we characterized tissue expression using GTEx gene expression data (v8).

We performed these analyses for the following two gene-sets: (1) genes mapped to
by MD-associated GVs (pGenes) and (2) genes regulated by cis-eQTLs (eGenes), and two
variant-sets: (1) causal GVs and (2) colocalizing GVs.

3. Results
3.1. Major Depression Associated Genetic Variants Lie in Non-Coding Regions of the Genome

The GWAS study by Howard et al., 2019, reported 102 risk loci associated with major
depression (MD), 97 with a p-value ≤ 5 × 10−8, which were the starting point of our
analysis. After LD expansion, we obtained a set of 5723 potentially causal genetic variants
(GVs) (Supplementary Scheme S1 and Table S1). We annotated these GVs with VEP [11]
and CADD [12] (Supplementary Figure S1). The identification of probable causal GVs
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using PICS fine-mapping GWAS data [10] revealed 172 GVs (PICS >10%) in LD with the
97 GWAS risk loci (Supplementary Table S2). These GVs are located in different regions of
the genome, but most of them are in non-coding regions, being mainly annotated as intronic
(30%), intergenic (30%), or located in non-coding transcript regions (17%) (Figure 1A). Only
two GVs lie in exonic regions (i.e., synonymous and nonsynonymous consequence types).
The median allele frequency of these GVs was 0.364 (with more deleterious consequence
types having lower allele frequencies) (Figure 1B). Only 4% (7) of the GVs were predicted
by CADD as potentially pathogenic (Figure 1C). The fine-mapped GVs were assigned
to 95 proximal genes (±5000 bps), from now on referred to as pGenes. pGenes were
classified based on their expression across tissues based on GTEx gene expression data [19].
Using hierarchical clustering, genes were divided into three roughly equally distributed
clusters that seem to correspond to constitutively, lowly expressed in all tissues, and highly
expressed in brain tissues (Supplementary Figure S2).
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Figure 1. MD GVs are mostly non-coding, common, and potentially not pathogenic. (A) GVs
distributed along the genome according to their consequence type predicted with VEP. (B) Allele
frequency density, according to GV’s consequence type, also predicted with VEP. (C) Pathogenicity
score (predicted by CADD) density per consequence type. Please note that a GV can have mul-
tiple consequence types; thus, the number of consequence types may not necessarily match the
total number of GVs. MD: major depression; GV: genetic variant; VEP: Variant Effect Predictor;
CADD: Combined Annotation Dependent Depletion; SNP: single nucleotide polymorphism; UTR:
untranslated region; NMD: nonsense- mediated decay.

The pGenes are functionally enriched in GO terms related to nervous system devel-
opment, neuron differentiation, synaptic signaling, and different cellular components of
the neuron such as dendrite, axon, or synapse (Supplementary Table S3); these biological
processes and molecular functions are involved in the pathophysiology of MD [31]. pGenes
are associated with an abnormal nervous system morphology and physiology according to
the Human Phenotype ontology. Disease enrichment analysis shows enrichment for the as-
sociation of both pGenes and causal GVs with major depressive disorder and other related
mental disorders such as schizophrenia or bipolar disorder (Figure 2 and Supplementary
Table S4). pGenes are also associated with comorbid phenotypes and conditions in MD,
such as smoking behavior, body mass index, and duration of sleep [32]. Notably, 37% of
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pGenes and 42% of GVs have no previous evidence of association with depression or other
mental disorders.
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Figure 2. pGenes are associated with mental disorders. Result of the disease enrichment analysis.
The ratio corresponds to the number of pGenes associated with each disease relative to all pGenes.
Dot size is proportional to the number of pGenes associated with each disease. Gene enrichment
analysis was performed using g:Profiler and the DISGENET plus database. pGenes: proximal genes.

Some of the pGenes are associated with processes related to MD pathogenesis, such as
TLR4, involved in immune response [33], ESR2, a regulator of estrogen response [34], TCF4,
with a role in nervous system development [35], DCC, in charge of axon guidance and
neuronal connectivity [36], PAX5, which interferes in mouse neural stem cells proliferation
and migration [37,38], and CYP7B1, that participates in the metabolism of the neurosteroids
DHEA and pregnenolone [39]. Among the potentially pathogenic GVs, according to CADD,
there are 3 intronic GVs lying in ZNF536, a gene involved in the negative regulation of
neuron differentiation [40], a relevant process in MD pathogenesis and treatment [41].
rs1021362 lies in SORCS3, a gene previously associated with stress response associated
with MD [37,42], rs3793577 lies in ELAVL2, whose silencing in animal models is associated
with reduced behavioral despair [43]; the remaining GVs have been previously associated
with major depression by several PheWAS studies [15].

3.2. Major Depression Causal Genetic Variants Regulate the Expression of Genes in Cis

The 172 fine-mapped GWAS GVs overlap with 13 GTEx PICS GVs (Scheme 1), reveal-
ing an enrichment of MD causal GVs in eQTLS (p-value = 7.392× 10−10). The colocalization
analysis to identify GVs associated with both MD GWAS and cis-eQTLs resulted in 5 GV–
eGenes pairs (i.e., genes whose expression is regulated by these GVs; rs10149470—BAG5,
rs10149470—RP11-894P9.2 [ENSG00000258851.1], rs12624433—SLC12A5, rs198457—MYRF,
rs301799—RP5-1115A15.1 [ENSG00000232912.5]), with a colocalization probability greater
than 10% (Table 1). BAG5 and SLC12A5 are involved in neuron projection [44,45] and MYRF
in central nervous system myelination [46]. In addition, all eQTLs have been previously
associated with MD and other mental disorders according to DISGENET plus [30,47,48]
(Supplementary Table S5). The eGenes BAG5, SLC12A5, and MYRF show higher expression
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levels in brain regions according to GTEx (Supplementary Figure S3). Little is known about
the function of the long non-coding RNAs RP11-894P9.2 and RP5-1115A15.1.
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Scheme 1. Fine-mapping and colocalization analysis of MD GVs. MD GWAS GVs have been
fine-mapped using PICS and overlapped with GTEx PICS GVs to ultimately perform a colocalization
analysis identifying 4 colocalizing GVs affecting the expression of 5 eGenes. MD: major depression;
GV: genetic variant; GWAS: genome-wide association studies; PICS: Probabilistic Identification of
Causal SNPs; GTEx: Genotype-Tissue Expression; eGenes: genes regulated by expression quantitative
trait loci; CLPP: colocalization posterior probability.

3.3. MD Associated GVs Affect the TFBS in Regulatory Regions of Genes Relevant for the Disease

The initial set of 5723 GVs associated with MD was first mapped to transcription factor
binding sites (TFBS) using Chip-Seq data from ENCODE. A total of 955 GVs were identified
as potentially altering the TFBS of 155 TFs (Scheme 2). The GVs’ functional impact was
assessed with VEP, and 4 sets were created: (a) intergenic and UTR GVs (333), (b) intronic
GVs (562), (c) regulatory GVs (303), and (d) non-coding GVs (389). In addition, we further
selected those transcription factors (TFs) that were expressed in brain tissues (≥2 TPM),
which left 115 TFs.

Using a pattern matching approach (variation-scan) [49], we identified GVs likely
affecting TFBS. As negative controls, we permuted TF motifs and randomly selected
variants matching GVs properties (see Methods). Using permuted motifs and randomly
selected variants (1:10) as negative controls, we obtained a total of 306 GVs significantly
altering the TFBS of 102 TFs (considering the 4 sets together). Ultimately, 289 GVs and
101 TFs passed the statistical analysis using randomly selected variants (1:1000) as negative
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control. From this final set, 171 GVs are predicted to disrupt the TFBS of 89 TFs, whereas
143 GVs are predicted to create a TFBS for 82 TFs (Supplementary Table S6). Most of
these GVs were not characterized as potentially pathogenic by CADD except for 11 GVs
(score ≥ 15).

Table 1. GWAS-eQTL Colocalizing GVs in MD. MD associated GVs colocalizing with eQTLs.
GWAS: genome-wide association studies; eQTL: expression quantitative trait loci; GV: Genetic
variant; MD: major depression; eGene: gene regulated by eQTL; PICS: Probabilistic Identification of
Causal SNPs.

GV eGene Tissue PICS Probability
GWAS

PICS Probability
eQTL

Colocalization
Probability

rs10149470 BAG5 Artery Tibial 0.9657 0.633 0.6112881

rs10149470 RP11-894P9.2 Colon Sigmoid 0.9657 0.633 0.6112881

rs10149470 RP11-894P9.2
Esophagus

Gastroesophageal
Junction

0.9657 0.633 0.6112881

rs10149470 RP11-894P9.2 Esophagus Muscularis 0.9657 0.584 0.5639688

rs10149470 RP11-894P9.2 Artery Aorta 0.9657 0.499 0.4818843

rs10149470 RP11-894P9.2 Breast Mammary Tissue 0.9657 0.4494 0.43398558

rs12624433 SLC12A5 Brain Putamen Basal
Ganglia 0.7355 0.303 0.2228565

rs10149470 RP11-894P9.2 Stomach 0.9657 0.1782 0.17208774

rs10149470 RP11-894P9.2 Adipose Subcutaneous 0.9657 0.1621 0.15653997

rs10149470 RP11-894P9.2 Colon Transverse 0.9657 0.1419 0.13703283

rs10149470 RP11-894P9.2 Adipose Visceral
Omentum 0.9657 0.1412 0.13635684

rs198457 MYRF Thyroid 0.9627 0.1258 0.12110766

rs10149470 RP11-894P9.2 Heart Left Ventricle 0.9657 0.1225 0.11829825

rs301799 RP5-1115A15.1 Whole Blood 0.6946 0.1542 0.10710732

A total of 270 GVs lie in active regulatory regions of the genome of brain-related tissues
and cell types according to the epigenome annotation from the ENCODE project based
on ChromHMM data (Supplementary Table S7) [25,26]. We then looked for evidence of
their impact on gene expression regulation by evaluating their annotation to GTEx eQTLs
fine-mapped via PICS. The only GV in this dataset of 270 GVs that also fulfills the criteria of
being causal and overlapping GWAS and eQTL PICs in the brain with a probability greater
than 10% was rs12624433, which is an eQTL for the gene SLC12A5. This GV is predicted to
significantly alter the TFBS of USF1, USF2, and MYC. Both rs12624433 and SLC12A5 have
been previously associated with major depression disorder and other mental disorders
such as bipolar disorder or schizophrenia [48].

In addition, we also inspected the hTFtarget database [27], looking for evidence
of a mechanistic association between the eGenes, considered the targets, and the TFs
whose binding site is being altered by the GVs. Focusing on brain regions, we have
evidence for two GV-TF-eGene/target associations (rs11227217: RAD21 -> ZNRD2-DT
[ENSG00000260233.3]; rs62259947: YY1 -> P4HTM).

The GV rs62259947 has been annotated as an eQTL downregulating the expression of
P4HTM in the Brain Cerebellar Hemisphere. We propose this effect is likely being mediated
by the GV significantly changing the affinity for YY1 binding (weight difference = 14.98
and p-value ratio = 5058.82) (see Methods), a TF known to participate in gene regulation
though looping of the DNA [50]. The eGene P4HTM has been associated with the hypoxia-
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inducible factor HIF1α mediating calcium signaling [51], and its null mutation reduces
behavioral despair [52] (Figure 3).
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with MD that significantly alter TFBS. Methodologies are referred to in bold and along with them are
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site; RSAT: Regulatory Sequence Analysis Tools; GV: genetic variant; MD: major depression; LD:
linkage disequilibrium; ENCODE: Encyclopedia of DNA Elements; VEP: Variant Effect Predictor;
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PSSM: position weight matrix; PICS: Probabilistic Identification of Causal SNPs.
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Figure 3. The GV rs62259947 might disrupt the binding of YY1, thus affecting the expression
of P4HTM and resulting in behavioral alterations. rs62259947 is an eQTL downregulating the
expression of P4HTM and is predicted to disrupt the binding of the TF YY1. This is represented
by the sequence logo of the binding site with the nucleotide change highlighted in grey. YY1 is
involved in neurogenesis and, in turn, controls the expression of P4HTM, which is mediated by
HIF1α regulates calcium signaling and is also associated with behavior. GV: genetic variant; eQTL:
expression quantitative trait loci; TF: transcription factor; KO: knockout.

4. Discussion

Despite the large volume of genetic information available, the pathogenesis and
etiology of MD are not yet fully understood, probably because most GVs lie in non-coding
regions with no obvious direct effect on a gene or function. In this context, leveraging
multiple omics data is key for moving forward in the understanding of the influence of
genomic variants in MD disease development. On top of that, full-genome summary
statistics are not readily available due to study sharing policies (especially for private–
public research partnerships) hampering the usage of most post-GWAS data analysis
tools. This study aims to unravel the role of MD GVs in genetic regulation by focusing on
regulatory variation following two complementary approaches: cis-eQTLs and TF binding
alterations. Both are key to identifying potentially causal genes and understanding gene
expression regulation [6,8], as reported by supporting evidence for its association with
other mental disorders [53–55] and with MD in particular [56–58]. The regulatory variation
analysis pipelines we have implemented involve fine-mapping, cis-eQTL colocalization,
transcription factor binding analysis, and chromatin accessibility data, specially designed to
perform well when full-genome summary statistics are not available [59]. These pipelines
are in line with other approaches that leverage available omics data, and as such, they
could be applied to other complex disorders with a similar genetic architecture and similar
data access issues [53,60,61].

Multiple GVs have been associated with MD, most of them characterized as not
potentially pathogenic in addition to being common and mostly in non-coding regions of
the genome according to CADD and VEP, respectively (Figure 1). The fine-mapping of MD
GVs identified 172 causal GVs and 95 pGenes (Supplementary Table S2). The functional
enrichment analysis of pGenes stands along with hypotheses of MD pathogenesis such
as alterations in neurogenesis and neuroplasticity or the circadian rhythm theory [31].
Additionally, these are also enriched for other phenotypes frequently co-occurring with
MD, such as alterations of body mass index or smoking [32]. While most pGenes (63%)
and GVs (58%) have previous evidence for association with MD, our study pinpoints
novel pGenes and GVs (Supplementary Table S3 and S4). Additionally, existing literature
supports the role of pGenes in processes related to MD pathogenesis, such as immune
response, nervous system development, response to stress, or behavioral despair.
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MD causally associated GVs are those most likely to be causal and functioning as
eQTLs and, indeed, proved to be significantly enriched in cis-eQTLs from GTEx, in line
with previous findings on MD and other psychiatric disorders [53,62]. The colocalizing
eGenes are involved in processes relevant to MD, such as neuron projection [63], and have
been associated with MD and related phenotypes according to DISGENET plus [47,48].
BAG5 is constitutively expressed in all tissues, while MYRF and SLC12A5 show higher
levels in brain tissues (Supplementary Figure S2). BAG5 has been previously identified as
associated with MD [64]. We characterize SLC12A5, involved in chloride homeostasis in
neurons, as a pGene, also, and its downregulation has been described as an effect of stress
leading to the activation of the hypothalamic–pituitary–adrenal axis, which ultimately
can lead to MD-like symptoms [31,65]. However, rs12624433 is an eQTL in the Brain
Putamen basal ganglia associated with the upregulation of SLC12A5. Thus, more research
is needed to unravel the exact mechanism by which rs12624433 exerts its role in the
regulation of the expression of SLC12A5. This eGene has been described as a potential
drug target for mental disorders, but considerations should be taken given its important
role in brain development; besides, it is highly influenced by exercise and environmental
factors [65]. rs198457 mediates the downregulation of MYRF expression, which plays a
role in myelination and oligodendrocyte differentiation [46]. These, in turn, require thyroid
hormones for their differentiation and maturation [66]. Furthermore, oligodendrocytes
have been stated as crucial for psychological functions likely involved in mental disorders
such as MD [67].

The analysis of TF regulation with RSAT enabled a precise prediction of TF binding
alterations. Although TF expression is not highly tissue-specific [7,68], for this type of
analysis, it is key to pick meaningful sets of TFs and GVs [69]. We focused on TF expressed
in brain-related tissues as it has been previously reported that genes involved in depression
are highly expressed in brain regions [4,32,37,47]. Our analysis resulted in the prediction
of 270 GVs lying in active regulatory regions of the genome of brain-related tissues based
on chromatin accessibility data. These GVs alter the binding of 101 TFs, roughly equally
distributed as disrupting or creating a binding site. The activating or repressing role of
these TFs is hard to interpret since it will always depend on the sequence context and the
cofactors involved [68]. Thus, further analysis is required to elucidate the impact of these
GVs on gene expression regulation. Our pipeline enabled us to filter and prioritize the
large number of candidate GVs by combining different omics data and ultimately propose
mechanistic hypotheses.

By using eQTL data, we were able to identify the GV rs12624433, which regulates the
expression of SLC12A5. This GV, previously referred to as colocalizing, is predicted to alter
the binding of the TFs USF1, USF2, and MYC; these belong to the bHLH family involved in
neural development [70]. USF1 and USF2 generally exert activating effects [71], with USF1
being a risk gene for Alzheimer’s disease and relevant for brain cholesterol metabolism
involving its transport from astrocytes to neurons [72].

Additionally, we found mechanistic evidence for 2 GV-TF-eGene/target associations
(rs11227217: RAD21→ ZNRD2-DT; rs62259947: YY1→ P4HTM) when combining pattern
matching results, chromatin accessibility data, GTEx eQTLs PICS, and hTFtarget data. Vari-
ant rs11227217 is more than 20 kbp away from ZNRD2-DT, but RAD21 is a member of the
cohesion complex, which enables genes and enhancers to interact via loop formation [73,74].
NRD2-DT is a lncRNA, and interestingly, our findings include several IncRNAs in the set
of pGenes as well as related with regulatory variations, either colocalizing with cis-eQTLS
(RP11-894P9.2 and RP5-1115A15.1) or with mechanistic evidence for its association with
gene expression regulation (ZNRD2-DT). Although not their exact role in MD pathophysi-
ology is not clear, ncRNAs have been described as promising biomarkers and drug targets
for MD [75,76].

Regarding the association rs62259947: YY1 → P4HTM, P4HTM has been related
to neurological disorders and social behavior (Figure 3) [51,52]. It is involved in Ca2+

signaling mediated by the hypoxia-inducible factor HIF1α altering astrocytes gliotransmis-
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sion [51]. Indeed, hypoxia has been associated with mental disorders in general and MD
in particular [77–80]. In addition, P4HTM null mutation results in a reduction in fear and
depression [52]. In turn, rs62259947 downregulates the expression of P4HTM and changes
the binding affinity of YY1 in the Brain Cerebellar Hemisphere. Additionally, YY1 regulates
transcription by forming loops, although its specific role as activator or repressor is not yet
fully understood [50]. Furthermore, P4HTM and HIF1α have been reported as potential
drug targets for MD [52,81]. rs11227217 and RAD21 are associated with red blood cell and
reticulocyte count, respectively, by PheWAS [15]. Indeed, red blood cell parameters have
been described as altered in patients with mental disorders [82].

5. Conclusions

Overall, we have successfully developed and applied a regulatory variation analysis
pipeline including fine-mapping, colocalization, TF regulation analysis, and chromatin
accessibility data, which overcomes the limitation of the lack of full-genome summary
statistics. We have identified causal GVs, pGenes, and eGenes and proposed hypotheses for
their role in MD pathogenesis, highlighting the role of chloride homeostasis and myelina-
tion. We also found mechanistic evidence involving hypoxia response mediated by altered
TF binding. Our findings include GVs and genes supported by the literature on MD and
mental disorders, as well as novel molecular mechanisms underlying MD pathogenesis.
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eGenes genes regulated by eQTLs
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REAC Reactome
RSAT Regulatory Sequence Analysis Tools
TF transcription factor
TPM transcripts per million
TFBS transcription factor binding site
VEP variant effect predictor

References
1. World Health Organization: Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression

(accessed on 21 December 2021).
2. Preskorn, S.H. Drug Development in Psychiatry: The Long and Winding Road from Chance Discovery to Rational Development.

In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2018; Volume 250, pp. 307–324. [CrossRef]
3. Howard, D.M.; Adams, M.J.; Clarke, T.-K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.;

Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the impor-
tance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [CrossRef] [PubMed]

4. Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.;
Andlauer, T.M.F.; et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major
depression. Nat. Genet. 2018, 50, 668–681. [CrossRef] [PubMed]

5. Cano-Gamez, E.; Trynka, G. From GWAS to Function: Using Functional Genomics to Identify the Mechanisms Underlying
Complex Diseases. Front. Genet. 2020, 11, 424. [CrossRef] [PubMed]

6. Umans, B.D.; Battle, A.; Gilad, Y. Where Are the Disease-Associated eQTLs? Trends Genet. 2020, 37, 109–124. [CrossRef] [PubMed]
7. Hu, H.; Miao, Y.-R.; Jia, L.-H.; Yu, Q.-Y.; Zhang, Q.; Guo, A.-Y. AnimalTFDB 3.0: A comprehensive resource for annotation and

prediction of animal transcription factors. Nucleic Acids Res. 2018, 47, D33–D38. [CrossRef] [PubMed]

https://www.gtexportal.org/home/datasets
http://rsat.sb-roscoff.fr/retrieve-matrix_form.cgi
http://bioinfo.life.hust.edu.cn/hTFtarget#!/download
https://doi.org/10.5281/zenodo.6838470
https://doi.org/10.5281/zenodo.6838470
https://www.who.int/news-room/fact-sheets/detail/depression
http://doi.org/10.1007/164_2018_169
http://doi.org/10.1038/s41593-018-0326-7
http://www.ncbi.nlm.nih.gov/pubmed/30718901
http://doi.org/10.1038/s41588-018-0090-3
http://www.ncbi.nlm.nih.gov/pubmed/29700475
http://doi.org/10.3389/fgene.2020.00424
http://www.ncbi.nlm.nih.gov/pubmed/32477401
http://doi.org/10.1016/j.tig.2020.08.009
http://www.ncbi.nlm.nih.gov/pubmed/32912663
http://doi.org/10.1093/nar/gky822
http://www.ncbi.nlm.nih.gov/pubmed/30204897


Genes 2022, 13, 1259 14 of 16

8. Perdomo-Sabogal, Á.; Nowick, K. Genetic Variation in Human Gene Regulatory Factors Uncovers Regulatory Roles in Local
Adaptation and Disease. Genome Biol. Evol. 2019, 11, 2178–2193. [CrossRef]

9. Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.;
Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary
statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [CrossRef]

10. Taylor, K.E.; Ansel, K.M.; Marson, A.; Criswell, L.A.; Farh, K.K.-H. PICS2: Next-generation fine mapping via probabilistic
identification of causal SNPs. Bioinformatics 2021, 37, 3004–3007. [CrossRef]

11. McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect
Predictor. Genome Biol. 2016, 17, 122. [CrossRef]

12. Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the
human genome. Nucleic Acids Res. 2019, 47, D886–D894. [CrossRef]

13. The ENCODE Project Consortium. An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature 2012, 489,
57–74. [CrossRef] [PubMed]

14. Oscanoa, J.; Sivapalan, L.; Gadaleta, E.; Ullah, A.Z.D.; Lemoine, N.R.; Chelala, C. SNPnexus: A web server for functional
annotation of human genome sequence variation (2020 update). Nucleic Acids Res. 2020, 48, W185–W192. [CrossRef] [PubMed]

15. Ghoussaini, M.; Mountjoy, E.; Carmona, M.; Peat, G.; Schmidt, E.M.; Hercules, A.; Fumis, L.; Miranda, A.; Carvalho-Silva, D.;
Buniello, A.; et al. Open Targets Genetics: Systematic identification of trait-associated genes using large-scale genetics and
functional genomics. Nucleic Acids Res. 2020, 49, D1311–D1320. [CrossRef] [PubMed]

16. Hormozdiari, F.; van de Bunt, M.; Segrè, A.V.; Li, X.; Joo, J.W.J.; Bilow, M.; Sul, J.H.; Sankararaman, S.; Pasaniuc, B.; Eskin, E.
Colocalization of GWAS and eQTL Signals Detects Target Genes. Am. J. Hum. Genet. 2016, 99, 1245–1260. [CrossRef] [PubMed]

17. Landt, S.G.; Marinov, G.K.; Kundaje, A.; Kheradpour, P.; Pauli, F.; Batzoglou, S.; Bernstein, B.E.; Bickel, P.; Brown, J.B.; Cayting, P.
ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012, 22, 1813–1831. [CrossRef]
[PubMed]

18. Jayaram, N.; Usvyat, D.; Martin, A.C.R. Evaluating tools for transcription factor binding site prediction. BMC Bioinform. 2016,
17, 547. [CrossRef] [PubMed]

19. GTEx Portal. Available online: https://www.gtexportal.org/home/datasets (accessed on 22 December 2021).
20. Fornes, O.; Castro-Mondragon, J.A.; Khan, A.; Van Der Lee, R.; Zhang, X.; Richmond, P.A.; Modi, B.P.; Correard, S.; Gheorghe, M.;
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76. Żurawek, D.; Turecki, G. The miRNome of Depression. Int. J. Mol. Sci. 2021, 22, 11312. [CrossRef] [PubMed]
77. Bian, Z.; Li, H.; Liu, Y.; Cao, Y.; Kang, Y.; Yu, Y.; Zhang, F.; Li, C.; Kang, Y.; Wang, F. The Association Between Hypoxia

Improvement and Electroconvulsive Therapy for Major Depressive Disorder. Neuropsychiatr. Dis. Treat. 2021, 17, 2987–2994.
[CrossRef] [PubMed]

78. Li, G.; Zhao, M.; Cheng, X.; Zhao, T.; Feng, Z.; Zhao, Y.; Fan, M.; Zhu, L. FG-4592 Improves Depressive-Like Behaviors through
HIF-1-Mediated Neurogenesis and Synapse Plasticity in Rats. Neurotherapeutics 2019, 17, 664–675. [CrossRef] [PubMed]

79. Ding, F.-S.; Cheng, X.; Zhao, T.; Zhao, Y.; Zhang, G.-B.; Wu, H.-T.; Zhu, L.-L.; Wu, K.-W. Intermittent hypoxic preconditioning
relieves fear and anxiety behavior in post-traumatic stress model mice. Sheng Li Xue Bao 2019, 71, 537–546.

80. Shibata, T.; Yamagata, H.; Uchida, S.; Otsuki, K.; Hobara, T.; Higuchi, F.; Abe, N.; Watanabe, Y. The alteration of hypoxia inducible
factor-1 (HIF-1) and its target genes in mood disorder patients. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 43, 222–229.
[CrossRef] [PubMed]

81. Kang, I.; Kondo, D.; Kim, J.; Lyoo, I.K.; Yurgelun-Todd, D.; Hwang, J.; Renshaw, P.F. Elevating the level of hypoxia inducible
factor may be a new potential target for the treatment of depression. Med. Hypotheses 2020, 146, 110398. [CrossRef]
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