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Abstract

Absence of presynaptic protein MUNC18-1 (gene: Stxbp1) leads to neuronal cell death at an immature stage
before synapse formation. Here, we performed transcriptomic and proteomic profiling of immature Stxbp7
knock-out (KO) cells to discover which cellular processes depend on MUNC18-1. Hippocampi of Stxbp1 KO
mice showed cell type-specific dysregulation of 2123 transcripts primarily related to synaptic transmission and
immune response. To further investigate direct, neuron-specific effects of MUNC18-1 depletion, a proteomic
screen was performed on murine neuronal cultures at two developmental timepoints before onset of neuron
degeneration. 399 proteins were differentially expressed, which were primarily involved in synaptic function
(especially synaptic vesicle exocytosis) and neuron development. We further show that many of the downregu-
lated proteins on loss of MUNC18-1 are normally upregulated during this developmental stage. Thus, absence
of MUNC18-1 extensively dysregulates the transcriptome and proteome, primarily affecting synaptic and
developmental profiles. Lack of synaptic activity is unlikely to underlie these effects, as the changes were ob-
served in immature neurons without functional synapses, and minimal overlap was found to activity-dependent
proteins. We hypothesize that presence of MUNC18-1 is essential to advance neuron development, serving as
a “checkpoint” for neurons to initiate cell death in its absence.
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(s )

Presynaptic protein MUNC18-1 is essential for neuronal functioning. Pathogenic variants in its gene,
STXBP1, are among the most common found in patients with developmental delay and epilepsy. To discern
the pathogenesis in these patients, a thorough understanding of MUNC18-1’s function in neurons is re-
quired. Here, we show that loss of MUNC18-1 results in extensive dysregulation of synaptic and develop-
mental proteins in immature neurons before synapse formation. Many of the downregulated proteins are
normally upregulated during this developmental stage. This indicates that MUNC18-1 is a critical regulator
of neuronal development, which could play an important role in the pathogenesis of STXBP1 variant
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Introduction

The presynaptic protein MUNC18-1 (encoded by the
gene Stxbp1) is implicated in SNARE-mediated fusion of
synaptic and dense-core vesicles (Verhage et al., 2000;
Puntman et al., 2021). Its absence not only arrests vesicle
exocytosis, it also triggers extensive cell-autonomous
neurodegeneration (Verhage et al., 2000; Heeroma et al.,
2004). Remarkably, MUNC18-1’s role in neuronal viability
is independent from its known function in vesicle exocyto-
sis. Viability but not vesicle exocytosis is rescued on ex-
pression of noncognate paralogs (Santos et al., 2017;
Puntman et al., 2021). Moreover, depletion of other pre-
synaptic proteins essential for synaptic transmission,
MUNC13 and VAMP2, does not result in degeneration
(Schoch, 2001; Varoqueaux et al., 2002). Lastly, degener-
ation in vitro occurs before neurons have formed synap-
ses and hence before synaptic transmission (Verhage et
al., 2000). It remains to be elucidated why neuronal viabil-
ity critically depends on MUNC18-1 expression.

Interestingly, neuronal cell death in Stxbp7 null mutant
[knock-out (KO)] brains follows a developmental pattern,
starting at lower brain areas that mature first and gradually
moves to higher brain areas that develop last (Verhage
et al., 2000). A histochemical time series of Stxbp1 KO
brains showed that neurogenesis, overall organization,
and early neuron differentiation are unaffected whereas
at later time points [embryonic day (E)18] Stxbp1 KO
neurons fall behind in maturation (Verhage et al., 2000;
Bouwman et al., 2004). E18 primary KO neurons can be
maintained in culture, but are smaller in size, demonstrate
reduced neurite outgrowth, and die after 3 d in vitro (DIV;
Broeke et al., 2010; Santos et al., 2017). Conversely, pri-
mary cultures of E14 brains can be maintained in culture
for 7 d (Santos et al., 2017). Together, these observations
suggest that MUNC18-1 becomes critically involved in a
process during neuron development which is distinct
from its established role in synaptic transmission and is
essential for neurons to survive.

To uncover which cellular processes become affected in
the absence of MUNC18-1, transcriptomic and proteomic
profiling was performed on Sitxbp7 KO mice shortly before
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the moment of cell death. We show that MUNC18-1 deple-
tion strongly impacts the hippocampal transcriptome, and
primarily affects transcripts related to synaptic transmis-
sion in neuronal cell types and immune response in non-
neuronal cells. Mass spectrometry proteomics on neuron-
specific primary cultures showed that loss of MUNC18-1 re-
sults in dysregulation of 399 proteins which are primarily in-
volved in synaptic function and neuron development. High
overlap was observed between downregulated proteins in
Stxbp1 KO neurons and proteins typically upregulated dur-
ing this developmental stage. The proteomic changes
showed minimal overlap to synaptic activity-dependent pro-
teins. Together, these data demonstrate that MUNC18-1
regulates expression levels of an extensive set of synaptic
and developmental proteins during neuronal development.

Materials and Methods

Animals

Munc18-1 KO mice were generated as described previ-
ously (Verhage, 2000). Briefly, exons 2-6 were replaced
with a neomycin resistance gene by homologous recom-
bination, resulting in complete depletion of MUNC18-1
expression. Since depletion of MUNC18-1 is lethal on
birth, KO mice were generated by crossing heterozygous
mice. On E18 of pregnancy, mice were killed, and pups of
either sex were obtained by caesarean section. Animals
were housed and bred according to Institutional and
Dutch governmental guidelines.

RNA isolation

Hippocampi from E18 wild-type (WT) and Stxbp1 KO lit-
termates were collected and snap-frozen in liquid nitro-
gen. Tissue was homogenized on ice. RNA isolation was
performed using TRIzol and RNeasy Micro kit (QIAGEN).
RNA sample quality was assessed on a NanoDrop 2000
spectrophotometer (ThermoScientific).

Neuronal cultures

Cortices were obtained from littermate-matched E18
wild-type and Munc18-1 KO embryos and collected in
HBSS (Sigma) containing 7 mm HEPES (Invitrogen).
Tissue was incubated in Hanks’-HEPES with 0.25% tryp-
sin (Invitrogen) for 20min at 37°C. After three washes,
cortices were triturated with fire polished Pasteur pipettes
and neurons were counted in a Fuchs-Rosenthal cham-
ber. Neurons were plated on 35-mm poly-L-ornithine/
laminin-coated wells in prewarmed Neurobasal (Invitrogen)
supplemented with 2% B27 (Invitrogen), 1.8% HEPES, 0.25%
Glutamax (Invitrogen) and 0.1% Pen/Strep (Invitrogen). Cells
were plated at a density of 800,000/well (WT) or 1,000,000/
well (KO).

RNA sequencing

Sequencing library preparation was performed using
TruSeq stranded mRNA library preparation kit with poly A
selection (lllumina Inc.). Cluster generation and paired-
end sequencing was performed 125 cycles in one lane by
lllumina HiSeq system, executed by SNP&SEQ Technology
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Platform at Uppsala Biomedical Centre. Base calls were con-
verted to fastq format. Trimmomatic command was used to
remove TruSeq3 adaptors. Quality control was performed
using multiQC (see: multigc_report_afterTrimmingAdaptors.
html for QC report). Trimmed reads were mapped to mm10
(mouse) reference genome and quantified using Salmon.
Differential expression analysis was performed using DESeq2
(R package). An FDR adjusted threshold of 0.005 was used
to discriminate significantly regulated proteins.

Samples were clustered using hierarchical dendro-
gram and principal component analysis (PCA; Extended
Data Fig. 1-2). Whereas most samples clustered ac-
cording to genotype, two samples (WT3 and KO5) ex-
tremely deviated from other samples and these outliers
were excluded.

qPCR

A total of 500 ng RNA was reversed transcribed into
cDNA using sensiFAST cDNA Synthesis kit (Bioline) ac-
cording to manufacturer’s instructions. cDNA was
quantified using SensiFAST SYBR No-ROX (Bioline) in a
LightCycler 480 (Roche Life Sciences), using 10uM pri-
mers shown in Extended Data Table 1-1. The following
program was used: 5-min incubation at 95°, 4.8C/s
ramp rate, followed by 50 cycles of 10 s 95° (4.8 C/s),
20 s 60° (2.4 C/s), 1 s 72° (4.8 C/s). Primers showed
clean melting curves. Cp values were determined using
the second derivative maximum method. Samples were
quantified in duplicates and average values were used.
cDNA levels were normalized to 18S and EEF.

Mass spectrometry-based proteomics

At 2 and 3 DIV, neuronal cultures were placed on ice
and washed two times with ice-cold PBS. Next, 500ul
PBS supplemented with protease inhibitor (PI) solution
was added to each well and cells were collected by gentle
scraping. Samples were centrifuged for 5 min at 3000 x g
at 4°C, after which the supernatant was removed. The
pellet was resuspended in 20-ul loading buffer (4% SDS,
100 mm Tris, pH 6.8, 0.04% bromophenol blue, 200 mm
DTT, 20% glycerol, and Pl in PBS). Samples were snap
frozen and stored at —80°C until further processed. An
SDS-PAGE LC-MS/MS approach was used for protein
identification as described previously (Gonzalez-Lozano
and Koopmans, 2019). SWATH data were searched
against a spectral library (peptides and proteins identified
from DDA data by MaxQuant) of DIV2 and DIV3 neurons,
using Spectronaut 13.7 (Bruderer et al., 2015) with default
settings. The resulting abundance values and qualitative
scores for each peptide in the spectral library were ex-
ported for further analysis.

R language was used for statistical computation. Only
peptides present in WT and KO samples and quantified
with high confidence (i.e., a g-value <102 over all sam-
ples in either group, allowing for one outlier within each
condition) were included. Spectronaut normalized peak
area was used to compute protein abundances, which
were Loess normalized using the ‘normalizeCycleLoess’
function from limma R package (Rouillard et al., 2016).
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The ‘eBayes’ and ‘topTable’ functions from limma R
package were implemented to perform empirical Bayes
moderated t-statistics with multiple testing correction
by FDR on log-transformed protein abundances. An
FDR adjusted threshold of 0.01 was used to discrimi-
nate significantly regulated proteins.

Bioinformatics

For all Gene Ontology (GO) and overlap analyses, the
first gene name was used in case peptides were mapped
to multiple genes. Fifteen significant hits shared the first
gene name with (at least) one other hit. As a result, the
total number of genes used for downstream analysis is
lower (384 vs 399). Cytoscape plug-in ClueGO (Bindea et
al., 2009) was used to perform GO analysis on RNAseq
and proteomic data, using the Biological Process GO
database updated on February 10, 2021. ClueGO anal-
yses were performed including the following settings:
Biological Process, GO term grouping, GO tree interval
was set 6-8, GO terms consisting of at least five genes
and min. 5% of the term. All detected transcripts/pro-
teins were used as background. The GO fusion option
was enabled, fusing GO terms that overlapped >50%
of their significant genes. GO terms were grouped ac-
cording to k scores, and named after the most signifi-
cant GO term. In Figures 1 and 2, only these grouped
terms are shown. Cell type specificity was assessed
using the Barres and BrainRich databases (Zhang et al.,
2014; Skene et al., 2018). Barres cell specificity was vi-
sualized in Rstudio using the triangle.plot function in
ade4 package, using transcript levels of isolated neuro-
nal, astroglial and microglial cell populations (Zhang et
al., 2014). Functional annotation of synaptic proteins
was done in the SynGO portal (https://syngoportal.org;
Koopmans et al., 2019). Sunburst plot was made visual-
izing SynGO term enrichment of biological processes.
MUNC18-1 interactors were identified using the STING
database. Interactors were included that showed high
confidence (>0.9), derived from experimental data and/
or databases.

Results

Stxbp1 KO hippocampal tissue shows cell type-
specific dysregulation of transcripts related to
synapse function, immune system, lipid metabolism,
and actin organization

To profile transcriptional effects of Stxbp7 depletion,
bulk RNA sequencing was performed on E18 hippocam-
pal tissue from WT and Stxbp1 KO littermates (Fig. 1A). In
contrast to lower brain areas, the hippocampus is still
intact at E18 showing comparable cell density to WT,
yet the first cells start to show markers of the apoptotic
cell death pathway (Extended Data Fig. 1-1; Verhage et
al., 2000; Bouwman et al., 2004). Sequencing detected
18 445 transcripts. Principal component analysis (PCA)
showed a clear separation between genotypes (Fig. 1B).
11.5% transcripts were differentially regulated were
significantly dysregulated in Stxbp7 KO. A total of 906
transcripts were significantly downregulated in the Stxbp1
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Figure 1. Cell type-specific transcripts related to synapse function, immune system, lipid metabolism, and actin organization are
changed in Stxbp1 KO hippocampi. A, Cartoon of experimental design. E18 hippocampi were dissected from WT and Stxbp1 KO
brains, RNA was isolated, and RNAseq was performed. Typical examples of WT and KO E18 hippocampi are shown in Extended
Data Figure 1-1. B, PCA of transcript abundance levels showing PC1 (78% variance explained) and PC2 (10% variance explained)
of control and Stxbp1 KO samples. N =4 independent replicates. Two outliers were excluded from analysis, see Extended Data
Figure 1-2. C, Volcano plot showing 2123 transcripts (906 downregulated, 1217 upregulated) significantly dysregulated in Stxbp1
KO hippocampi from controls. D, Several significant transcripts were validated using gPCR. Shown are Log2 Fold changes of tran-
scripts using RNAseq (x-axis) and gPCR (y-axis). Green dotted line indicates correlation of 1. N=6 independent replicates. Effect
sizes were highly comparable for the included transcripts, except for Stxbp1. This is explained by the fact that despite the deletion
of exons 2-6 in Stxbp1, a (nonfunctional) transcript is transcribed that is not detected by the gPCR primers (targeted within the de-
leted region). gPCR primers can be found in Extended Data Table 1-1. E, Triangle plot showing cell specificity using the Barres

November/December 2022, 9(6) ENEURO.0186-22.2022

eNeuro.org


https://doi.org/10.1523/ENEURO.0186-22.2022.f1-1
https://doi.org/10.1523/ENEURO.0186-22.2022.f1-2
https://doi.org/10.1523/ENEURO.0186-22.2022.t1-1

Research Article: New Research 5 of 14

eMeuro

continued

RNAseq database. Downregulated transcripts are depicted in blue, upregulated transcripts in orange. F, Bar graphs showing cell
specificity using BrainRich. Upregulated transcripts are shown left, downregulated transcripts right. G, GO enrichment analysis of
the significant hits. Shown are the Bonferroni correct p-values and the number of transcripts associated with every GO term. H,
Triangle plots showing cell specificity of transcripts associated with GO term groups using the Barres RNAseq database.
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Figure 2. Proteins related to synapse function and neuron development are most severely affected in primary Stxbp1 KO neurons.
A, Cartoon of experimental design. Primary neuronal cultures were generated from E18 WT and Stxbp1 KO cortices. Neurons were
harvested at DIV2 and DIV3 and analyzed using mass spectrometry. Quality control measures are shown in Extended Data Figure
2-1. B, PCA of peptide abundance levels showing PC1 (19.7% variance explained) and PC2 (16.5% variance explained). N =6 inde-
pendent replicates. C, Volcano plots showing significantly dysregulated proteins in Stxbp7 KO neurons at DIV2 (142 proteins, 82
downregulated, 60 upregulated) and DIV3 (399 proteins, 233 downregulated, 166 upregulated). Volcano plots of regulated proteins
between DIV2 and DIV3 are shown in Extended Data Figure 2-2. D, Triangle plot showing cell specificity using the Barres RNAseq
database. Downregulated transcripts are depicted in blue, upregulated transcripts in orange. E, Overlap of significant proteins be-
tween DIV2 and DIV3. A total of 28 proteins were only significant at DIV2, 114 proteins significant at DIV2 and DIV3, and 285 only
significant at DIV3. F, FDR p-values at DIV2 and DIV3. For 379 proteins, p-values increased at DIV3, for 48 proteins p-values de-
creased. G, Log2 fold changes at DIV2 and DIV3. Downregulated proteins are depicted in blue, upregulated in orange. H, GO en-
richment analysis of the significant hits. Shown are the Bonferroni correct p-values and the number of transcripts associated with
every GO term. The proteins in significant GO terms can be found in Extended Data Table 2-1. I, Overlap of proteins involved in en-
riched GO terms between DIV2 and DIV3.
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KO, whereas 1217 transcripts were upregulated (Fig. 1C).
gPCR analysis validated effect directionality and magnitude
of several selected candidates (Fig. 1D). Together, depletion
of Stxbp1 results in a robust transcriptomic response in the
E18 hippocampus.

To identify cell types where the differentially regulated
genes are most likely expressed, two complementary
cell-specific databases were used (Fig. 1E,F). First, we
mapped all differentially regulated genes against the
Barres RNASeq cell-type expression database (Zhang et
al., 2014). Upregulated transcripts were mainly associ-
ated with microglia, whereas downregulated transcripts
were associated with neurons (Fig. 1E). Second, this pat-
tern was confirmed by comparison to expression pat-
terns of single-cell RNAseq (Skene et al., 2018). Here,
upregulated transcripts were enriched for several glial
and vascular cell types. Consistently, downregulated
transcripts were primarily associated to neuronal cell
types (Fig. 1F). Hence, effect directionality on Stxbp1 in-
activation differs between cell types.

Gene Ontology (GO) analysis was performed to un-
cover enriched functional gene groups (Fig. 1G). The
most significant group of GO terms were related to syn-
apse function, encompassing a total of 213 genes. In ad-
dition, many genes were associated with GO terms in
immune response (350 genes), lipid metabolism (92
genes), and actin organization (77 genes). Cell specificity
analysis for the different GO groups showed that synap-
tic genes were primarily expressed in neurons, as ex-
pected, whereas immune and lipid genes showed a
higher specificity toward glial cells. No cell specificity
class was found for actin organization (Fig. 1H). Taken
together, depletion of MUNC18-1 has differential effects
on cell types. Transcripts associated with neurons were
primarily downregulated, and associated with synapse
function. In contrast, transcripts associated with glial
cells were generally upregulated, and associated with
immune response and lipid metabolism.

Previously, micro-array analysis on E18 Stxbp1 KO and
WT cortices identified 5586 transcripts, of which 9% were
differently expressed (Bouwman et al., 2006). Most signifi-
cant GO terms in that study overlap with the present
Stxbp1 KO dataset, including synaptic transmission, ste-
roid metabolism, transmission of nerve impulse and cell-
cell signaling. Thus, the RNAseq data confirms earlier mi-
croarray results on Stxbp1 KO brains yet covers 3.3 times
more transcripts.

Proteome changes in Stxbp1 KO neuron cultures
relate to synapse function and neuron development
The presence of and crosstalk between different brain
cell types in the bulk RNA sequencing results compli-
cates interpretation of direct, neuron-intrinsic effects of
MUNC18-1 depletion. In order to study neuron-specific
protein regulation, mass spectrometry proteomics was
performed on neuronal cultures from WT and Stxbp7 KO
E18 brains (Fig. 2A). Additional advantages of this ap-
proach include the developmental resynchronization of
neurons allowing analysis at the same developmental
stage (Dotti et al., 1988). To examine proteomic changes
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around the moment when neurons become dependent
on MUNC18-1 for neuronal viability (Santos et al., 2017),
two time points (DIV2 and DIV3) were selected for pro-
teomic analysis.

In total, 3100 unique proteins were detected. PCA
showed that samples segregated based on genotype, but
not on time point (Fig. 2B). Samples derived from the
same primary culture generally clustered together. At
DIV2, 5% of the proteins were dysregulated in Stxbp7 KO
neurons, of which 82 were downregulated and 60 upregu-
lated (Fig. 2C). The number of dysregulated proteins in-
creased to 399 (13%) at DIV3; 233 downregulated and
166 upregulated. Compared with cell type transcript lev-
els, proteins were generally either neuron-specific or non-
specific for any cell type (Fig. 2D). The vast majority (80%)
of differentially expressed proteins at DIV2 were also dys-
regulated at DIV3 (Fig. 2E). However, at DIV3 many more
unique proteins (285) were dysregulated. Indeed, 379
(89%) of all significant proteins became more significant
at DIV3, whereas 48 (11%) proteins were less significant
at DIV3 compared with DIV2 (Fig. 2F). Log?2 fold changes
of dysregulated proteins did not profoundly differ be-
tween the two time points (Fig. 2G), suggesting that the
increase in significance is likely because of lower varia-
tion at DIV 3, as shown by the coefficient of variation
(Extended Data Fig. 2-1). GO analysis revealed that bio-
logical processes related to neuron development and
synaptic transmission were most prominently affected in
KO neurons (Fig. 2H; Extended Data Table 2-1). In addi-
tion, proteins related to actin organization, translation,
ATPase transporter activity and DNA break repair were
also significantly dysregulated. None of the biological
processes was unique for either time point, yet many
proteins within these biological processes were only sig-
nificant at DIV3 (Fig. 2/). In contrast to the bulk RNAseq
results, no biological processes related to immune re-
sponse or lipid metabolism were found, indicating that
non-neuronal cell types most likely contributed to these
processes in the bulk results. In addition to genotype
effects, we also investigated protein level changes be-
tween DIV2 and DIV3 within WT or KO neurons (Extended
Data Fig. 2-2). In WT neurons, the transition from DIV2
to DIV3 resulted in upregulated of one protein (MFGES).
KO neurons showed upregulation of 24 proteins. GO
analysis did not reveal any specific biological process
being regulated between DIV2 and DIV3. In sum,
Stxbp1 KO neurons show extensive remodeling of their
proteome compared with WT neurons, which primarily
affects proteins related to neuron development and
synaptic function. Between DIV2 and DIV3, an increas-
ing number of proteins involved in these processes be-
come significantly dysregulated.

Limited regulation of proteins involved in known cell
death pathways in Stxbp1 KO neurons

Between DIV2 and DIV3 Stxbp1 KO neurons show ex-
tensive cell death, ultimately involving, but not driven by,
apoptosis (Verhage et al., 2000; Law et al., 2016; Santos
et al., 2017). However, GO analysis of the proteomics da-
taset did not reveal evident cell death-related biological
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Figure 3. Dysregulated proteins in Stxbp7 KO neurons at DIV3 show minimal overlap with cell death. A, Overlap of significant pro-
teins at DIV3 and proteins significantly regulated during apoptosis (Arntzen and Thiede, 2012). A total of 94 proteins were unique for
apoptosis (38 not detected in Stxbp7 KO dataset), five proteins shared between the two datasets, and 379 unique for Stxbp1 KO
neurons. B, Overlap of significant proteins at DIV3 and proteins annotated to apoptosis in the KEGG pathway database. Of the 109
proteins annotated to apoptosis, 13 were detected in Stxbp7 KO neurons. Two proteins were significantly downregulated. C,
Overlap of significant proteins at DIV3 and dysregulated proteins on excitotoxicity (Hoque et al., 2019). A total of 147 proteins were
unique for excitotoxicity neuronal cell death (35 not detected in Stxbp7 KO dataset), 35 proteins shared between the two datasets,
and 349 unique for Stxbp1 KO neurons. As for this analysis, only first gene names are used, resulting in 15 duplicates, the total
number of significant Stxbp?1 KO proteins is lower (384 vs 399 in Fig. 2C). D, GO enrichment analysis of significant dysregulated
proteins on excitotoxicity. Shown are the Bonferroni correct p-values and number of proteins associated with each GO term. E,
Overlap of significant proteins at DIV3 and proteins significantly regulated during cell death (Arntzen and Thiede, 2012). A total of
985 proteins were unique for cell death (268 not detected in Stxbp7 KO dataset), 115 proteins shared between the two datasets,
and 269 unique for Stxbp1 KO neurons. F, GO enrichment analysis of significant dysregulated proteins on excitotoxicity. Shown are
the Bonferroni correct p-values and number of proteins associated with each GO term. Detailed information on the overlap can be

found in Extended Data Table 3-1.

processes. To further characterize overlap with pro-
teins typically regulated during cell death, proteins
significantly regulated in Stxbp?7 KO neurons were
compared with lists of proteins shown to be affected
during different types of cell death. First, we focused
on apoptosis-specific proteomic regulation in Stxbp1
KO neurons. Minimal overlap was observed between
the Stxbp1 KO dataset and apoptosis genes in the
KEGG pathway database as well as to apoptosis-
regulated proteins identified in a database of pub-
lished proteomic studies (Fig. 3A,B; Arntzen and
Thiede, 2012). Together, we found no indication for
prominent apoptosis-dependent protein regulation in
Stxbp1 KO neurons.

Next, regulated proteins were compared with proteins
regulated during neuronal excitotoxicity (Hoque et al.,
2019). The two datasets showed minimal overlap, with
91% of the proteins significant in Stxbp7 KO neurons not
regulated during excitotoxicity (Fig. 3C; Extended Data
Table 3-1). None of the GO terms affected during excito-
toxicity were shared with affected GO terms in Stxbp1 KO
neurons (Fig. 3D, compare to Fig. 2H). Thus, limited over-
lap is found between proteins regulated on excitotoxicity
and KO of Stxbp1. The lack of overlap in synaptic trans-
mission and neuron development GO terms indicates that
these biological processes are not generally affected in
neuronal cell death.

November/December 2022, 9(6) ENEURO.0186-22.2022

To further investigate overlap with other cell-death
pathways, the Stxbp7 KO dataset was compared with
1100 proteins associated with any type of cell death in (at
least) two independent research studies, as assembled
by Arntzen and Thiede (2012). A total of 115 proteins
showed overlap to Stxbp1 KO regulated proteins (Fig. 3E;
Extended Data Table 3-1). GO analysis of these shared
proteins did not reveal GO terms specific for any cell
death pathway, but did show GO processes related to
DNA repair and protein localization (Fig. 3F). Taken to-
gether, proteomic changes in Stxbp1 KO neurons very
limited overlap with apoptosis-induced changes, but
show some overlap with general cell-death protein regula-
tion. Further investigation of these shared regulated pro-
teins could provide new insights on cell death pathways
involved in Stxbp1 KO neurons.

The synaptic proteome is severely affected on
depletion of MUNC18-1

MUNC18-1 is known for its role in SNARE-mediated
vesicle fusion in the synapse (Verhage et al., 2000). To
better characterize the changes in the synaptic proteome
on MUNC18-1 depletion, dysregulated proteins were an-
alyzed in the synaptic gene knowledge base SynGO
(Koopmans et al., 2019). A total of 114 dysregulated pro-
teins were annotated as a synaptic protein (Fig. 4A), of
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Figure 4. Depletion of MUNC18-1 leads to downregulation of 114 synaptic proteins enriched in presynaptic vesicle release. A, A
total of 114 of the significant proteins in Stxbp7 KO neurons were annotated in SynGO. Eight synaptic proteins were only significant
at DIV2, 43 synaptic proteins significant at DIV2 and DIV3, and 63 synaptic proteins only significant at DIV3. Overlap to the RNAseq
SynGO genes is shown in Extended Data Figure 4-1. B, FDR p-values of significant synaptic proteins at DIV2 and DIV3. For 106
synaptic proteins p-values increased at DIV3, for eight synaptic proteins p-values decreased. C, A total of 85 synaptic proteins were
categorized in SynGO biological processes. Shown is a sunburst plot with color-coded enrichment significance of every GO term.
Left, SynGO annotation of MUNC18-1 in blue (including its parent terms). Right, Significant proteins associated with synaptic vesicle
exocytosis. The SynGO protein list can be found in Extended Data Table 4-1. D, Log2 fold changes of synaptic proteins within
SynGO terms. Downregulated proteins are depicted in blue, upregulated proteins in orange. E, Visual representation of affected
STXBP1 interactors identified by string database. Only high confidence interactors, derived from experiments and databases, were
included. Affected interactors are depicted in red, unaffected interactors in green and undetected interactors in gray. F, Visual repre-
sentation of affected STXBP1 interactors identified by co-IP experiments. Co-IP correlation strength to MUNC18-1 is depicted in
purple gradient. Undetected interactors are depicted in gray, unaffected interactors in white, and the log2 Fold Change of affected
interactors is depicted in blue-orange gradient. G, Overlap of significant proteins at DIV3 and proteins significantly regulated during
synaptic silence (24-h TTX treatment) or overactivation (24-h bicuculine treatment; Schanzenbacher et al., 2018). Nine proteins are
regulated on TTX treatment as well as on depletion of MUNC18-1, whereas bicuculine treatment shares one protein with Stxbp1 KO
neurons. As for this analysis only first gene names are used, resulting in 15 duplicates, the total number of significant Stxbp7 KO
proteins is lower (384 vs 399 in Fig. 2C).

which 102 were down and 12 upregulated (Extended Data  4B). A total of 85 of the 114 synaptic proteins were anno-
Table 4-1). The vast majority (88%) of the dysregulated tated to a biological process (Fig. 4C). GO enrichment
synaptic proteins found at DIV2 were also significantly  analysis showed that biological processes in the presy-
regulated at DIV3, and 63 more synaptic proteins became  napse were most prominently affected. Affected biologi-
dysregulated at DIV3. In concordance, 88% of the synap-  cal processes showed a high overlap to the functional
tic proteins were more significant at DIV3 than DIV2 (Fig.  annotation of MUNC18-1 in the synapse (Fig. 4C, left).
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Indeed, 16 proteins implicated in synaptic vesicle exocy-
tosis, including SNARE partners STX1, SNAP25, and
VAMP2, were dysregulated in KO neurons. Fold changes
were highly comparable between proteins in different bio-
logical processes (Fig. 4D). Taken together, Stxbp1 inacti-
vation dysregulates expression of 114 synaptic proteins,
and are strongly related to the known function of Stxbp1
in the synapse, i.e., presynaptic vesicle exocytosis.

Next, we assessed whether MUNC18-1 deficiency affects
expression of potential interaction partners. Interactors were
identified using the STRING protein-protein interaction data-
base (Jensen et al., 2009) and from previous co-immunopre-
cipitation (co-IP) experiments (Gonzalez-Lozano et al.,
2020). Of the 20 annotated potential interaction partners in
the STRING database (>0.9 confidence), nine were de-
tected in our dataset of which six were dysregulated (Fig.
4E). Previous co-IP experiments identified 21 interaction
partners, of which 11 were detected in our dataset (Fig. 4F).
Seven were dysregulated. Thus, the majority of detected
MUNC18-1 interactions partners are dysregulated in Stxbp1
KO neurons.

Stxbp1 KO brains are synaptically silent (Verhage et al.,
2000). To investigate whether the effects observed in
Stxbp1 KO neurons are directly caused by a block of syn-
aptic transmission, significant hits were compared with
proteomic changes on synaptic silencing by TTX treat-
ment or overactivation by bicuculline (BIC) treatment
(Schanzenbéacher et al., 2018). A total of 97% of the signif-
icant hits on depletion of MUNC18-1 does not overlap
with proteomic changes on synaptic silencing or overacti-
vation (Fig. 4G; Extended Data Table 3-1). Together, the
proteome dysregulation in Stxbp7 KO neurons shows
minimal similarities to proteome changes on altered syn-
aptic activity.

Similar to the proteomic analysis, gene sets related to
synaptic transmission were also among the most affected
biological processes in Stxbp1 KO hippocampal transcrip-
tomes. Hence, we next investigated the overlap in synaptic
genes between the proteomic and transcriptomic datasets.
One third of the SynGO-annotated dysregulated RNA tran-
scripts were detected in the proteomic analysis (Extended
Data Fig. 4-1A). A total of 40% of these transcripts were
also significantly dysregulated on protein level in Stxbp1
KO neurons. Conversely, nearly all (98%) of the SynGO-an-
notated significant proteins were detected by RNAseq,
and 31% of these were significantly dysregulated on tran-
script level (Extended Data Fig. 4-1B). SynGO functional
annotation of the 36 genes that showed dysregulation at
both protein and transcript level did not show enrichment
of synaptic categories (Extended Data Fig. 4-1C). Taken to-
gether, limited overlap was observed between dysregula-
tion of synaptic proteins in Stxbp7 KO neuronal cultures
and synaptic transcripts in Stxbp1 KO hippocampi.

Loss of MUNC18-1 downregulates proteins implicated
in neuron development

To further understand the dysregulation of neuron
development in Stxbp1 KO neurons, we studied this biolog-
ical process in more detail. Stxbp1 KO neurons showed sig-
nificantly altered expression levels of 96 proteins involved in
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neuron development (Fig. 5A). Thirty proteins were dysre-
gulated at both time points, while 63 were specific for
DIV3. The vast majority (77%) were downregulated com-
pared with control neurons (Fig. 5B), typically between 0
and 1 fold change (log2), except two proteins (MUNC18-1
and syntaxin-1) that were drastically changed. Of these,
49% are SynGO-annotated (synaptic) proteins (Fig. 5C).
Within the GO cluster term neuron development, nine GO
terms were significantly enriched (Fig. 5D). Five terms con-
tained the word “projection,” which concerns a specific as-
pect of neuron development. Together, Stxbp1 inactivation
results in downregulation of proteins implicated in neuron
development, which extends beyond regulation of synaptic
proteins only. Within the general biological process of neu-
ron development, especially processes related to develop-
ment of (neurite) projections were affected.

The downregulation of this group of proteins in Stxbp1
KO neurons could indicate a halt in development. Hence,
we compared the proteins downregulated in Stxbp1 KO
neurons to a set of proteins typically upregulated in neu-
ronal development between DIV1 and DIV5 (Frese et al.,
2017). Comparable to Stxbp1 KO neurons, GO analysis of
this dataset revealed enrichment of the biological proc-
esses chemical synaptic transmission and neuron devel-
opment (Fig. 5E); 49% of the downregulated proteins in
Stxbp1 KO neurons were significantly different between
DIV1 and DIV5 (Fig. 5F; Extended Data Table 3-1). Of
these, 56% were annotated in the SynGO database, and
30% were GO annotated under neuron development. To
further understand the overlap in synaptic proteins, the
Frese dataset was annotated in the SynGO database (Fig.
5@G). Enriched synaptic biological processes were highly
comparable to Stxbp?1 KO neurons (compare Fig. 5G
and 4C), with an enrichment in presynaptic proteins in-
volved in synaptic vesicle exocytosis. Thirteen of the 14
detected proteins within this biological process were
downregulated in Stxbp1 KO neurons. Taken together, the
downregulation of developmental and synaptic proteins in
Stxbp1 KO neurons shows high overlap to proteins nor-
mally upregulated at this developmental stage.

Neuronal development requires the upregulation of
neurogenic transcription factors (TFs) and downregulation
of anti-neuronal TFs, activating genetic programs impor-
tant for further neuron differentiation (Vieira et al., 2018).
To investigate whether loss of MUNC18-1 affects TF ex-
pression levels, we examined whether TFs were among
the significant dysregulated proteins (Lambert et al.,
2018). The proteomic screen detected a total of 61 TFs, of
which seven were dysregulated in Stxbp7 KO neurons
(Extended Data Fig. 5-1). Five of these seven TFs, includ-
ing CREB1, are shown to be involved in critical processes
during neuron development (Rowlands et al., 1994; Lonze
and Ginty, 2002; Rottkamp et al., 2008; Hutnick et al.,
2009; Cohen et al., 2017). Together, loss of MUNC18-1
results in altered expression levels of several TFs impli-
cated in neuronal development.

Discussion
MUNC18-1 plays an essential role in neuronal viability
during development, independent of its known function in
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Figure 5. Downregulated proteins in Stxbp7 KO neurons show high overlap to proteins normally upregulated during this develop-
mental stage. A, A total of 96 proteins annotated to development are dysregulated in Stxbp7 KO neurons. Three developmental pro-
teins were only significant at DIV2, 30 developmental proteins significant at DIV2 and DIV3, and 63 development proteins only
significant at DIV3. B, Log2 fold changes of proteins associated with development. Downregulated proteins are depicted in blue,
upregulated proteins in orange. C, Overlap in proteins annotated in SynGO and GO development. A total of 49 proteins were only
annotated to development, 47 proteins to both development and SynGO, and 74 proteins were only annotated in SynGO. D, All indi-
vidual GO terms that were included in the neuron development cluster. Shown are the Bonferroni correct p-values. E, GO enrich-
ment analysis of significant upregulated proteins between DIV1 and DIV5 (Frese et al., 2017). Shown are the Bonferroni correct p-
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cance of every GO term. Right are depicted all proteins in the Frese dataset associated with synaptic vesicle exocytosis, color-
coded to dysregulation in Stxbp1 KO neurons. Significantly regulated transcription factors are shown in Extended Data Figure 5-1.
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SNARE-mediated vesicle fusion. In the present study, we
examined transcriptome and proteome changes on deple-
tion of MUNC18-1 during the critical time window preced-
ing neuronal cell death. We show that loss of MUNC18-1
results in extensive remodeling of transcriptomic and pro-
teomic profiles, and particularly affects proteins related to
synaptic transmission and neuron development.

The extensive downregulation of proteins implicated in
synaptic function and development suggests an impor-
tant role for MUNC18-1 in early neuron development.
Neurons undergo multiple well-coordinated stages of de-
velopment after early neurogenesis, which has been ex-
tensively studied in neurons in vitro (Dotti et al., 1988;
Frese et al., 2017). First, neurons form lamellipodia (stage
1; DIVO) that develop into short neurites (stage 2; DIV1).
One of the neurites develops into an axon (stage 3; DIV2-
DIV3), whereas the others become dendrites (stage 4;
DIV4). From this point, neurons already upregulate expres-
sion of synaptic proteins (Frese et al., 2017), but it is not
until DIV7 that neurons start to form synapses (stage 5).
Previous studies in brain slices and neurons in vitro have
shown that initial neurogenesis and brain organization do
not depend on MUNC18-1/STXBP1 (Verhage et al., 2000;
Bouwman et al., 2004; Santos et al., 2017). Furthermore,
Stxbp1 KO neurons initiate outgrowth of neurites which po-
larize into axons and dendrites (Heeroma et al., 2004;
Broeke et al., 2010; Santos et al., 2017). However, from
thereon development abates. KO neurons show reduced
speed of outgrowth at DIV3, resulting in lower total neurite
length which continues to exacerbate at DIV4 (Broeke et
al., 2010). Concordantly, neurite development was most
prominent among the developmental processes affected
at DIV2 and DIV3 in this study. In addition, a high overlap
was observed between the synaptic proteins downregu-
lated in absence of MUNC18-1 and synaptic proteins nor-
mally upregulated at this developmental stage (Frese et al.,
2017). Together, it is conceivable that the absence of
MUNC18-1 results in developmental delay between the
stages of neurite outgrowth and early synaptogenesis.

Concurrent with a delay in neuron development, Stxbp1
KO neurons in vitro die at DIV3-DIV4 (Santos et al., 2017).
Interestingly, the proteome profiling in this study did not
identify known cell death-related processes. Different and
not currently annotated cell death pathways might oper-
ate in Stxbp1 KO neurons. Moreover, it is plausible that
the degeneration occurs very fast, precluding the detec-
tion of cell death-related proteins in the total neuron pop-
ulation where every neuron dies at a slightly different time
point. Indeed, live-cell imaging of Stxbp1 KO neurons
showed that cell death occurred within hours after initial
onset (F. Feringa, unpublished observation). Considering
this rapid cell death together with the observed arrest in
development, MUNC18-1 might serve as a checkpoint
during development. To continue to the next develop-
mental phase, the presence of MUNC18-1 might be re-
quired, otherwise neurons are developmentally arrested
and redirected into cell death. Such cellular checkpoints
as quality control have been described in other processes
(Barnum and O’Connell, 2014; Sancho and Ouchi, 2015).
For instance, proliferating cells have incorporated a DNA
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damage checkpoint (Dasika et al., 2000). When this
checkpoint is activated, the cell cycle is arrested to allow
repairing the damaged DNA. If the cell is not capable in
repairing the DNA, programmed apoptotic cell death is
initiated. In neurons, it has been proposed that several
developmental stages require functional feedback to
move to the next stage (Ben-Ari and Spitzer, 2010).
Neurons failing to provide such feedback are develop-
mentally arrested. For instance, neuronal migration re-
quires expression of doublecortin (DCX). In absence of
DCX, migration is hindered and neurons remain imma-
ture (Ackman et al., 2009). Similar feedback loops have
been described for axon guidance and neuronal specifi-
cation (Ben-Ari and Spitzer, 2010).

The nature of such a MUNC18-1-dependent check-
point mechanism between the stage of neurite out-
growth and early synaptogenesis remains elusive. It is
unlikely that a lack of synaptic activity per se underlies
the developmental arrest. Proteome changes in Stxbp1
KO neurons show minimal overlap with proteins nor-
mally regulated during loss or overactivation of synaptic
activity (Fig. 4G). Moreover, in other models of synaptic
silence, for instance, in MUNC13-1/2 DKO or TeNT-
treated neurons, the absence of synaptic transmission
does not profoundly affect levels of synaptic proteins, syn-
aptic morphogenesis or neuron development (Varoqueaux
et al., 2002; Sando et al., 2017). Indeed, it has been shown
that neurite outgrowth, polarization and initial synapse for-
mation all develop independent from activity, while further
synapse specification is thought to be activity-dependent
(Studhof, 2018). Moreover, MUNC18-1’s critical role in
dense-core vesicle exocytosis is not sufficient to explain a
checkpoint function, as models that (specifically) block
dense-core vesicle release do not show indications for de-
velopmental arrest and/or neurodegeneration (Persoon et
al., 2019; Hoogstraaten et al., 2020). Hence, synaptic activ-
ity and dense-core vesicle release are not critical check-
points in neurons, excluding this as underlying checkpoint
of MUNC18-1 dependency.

Multiple alternative mechanisms are plausible. For in-
stance, it is possible that MUNC18-1 directly functions
as a transcriptional regulator or translational modifier. It
has been reported previously that MUNC18-1 localizes to
the nucleus and binds DNA (V. M. Sharma et al., 2005),
although this has not been confirmed by other studies.
The structure of MUNC18-1 does not contain established
DNA or RNA binding domains. Hence, evidence for a di-
rect role of MUNC18-1 in transcription/translation is lim-
ited. Alternatively, MUNC18-1-dependent regulation may
start at the protein level. For instance, it has already been
demonstrated that in absence of MUNC18-1, syntaxin-1
is trapped in the Golgi (Rowe et al., 1999; Arunachalam et
al., 2008). Although Stxbp7 KO neurons do not show gen-
eral impairments in Golgi exit (van Berkel et al., 2021), it is
plausible that specific synaptic proteins are also trapped
in the Golgi and remain mislocalized. This could initiate a
cascade of events involving feedback loops on either the
gene or RNA level to larger sets of proteins ultimately re-
sulting in developmental arrest. Alternatively, MUNC18-1
might directly control gene-programs during development,
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for instance, by affecting levels of key developmental TFs
(Extended Data Fig. 5-1).

It is currently unknown whether the proposed function
of MUNC18-1 as a checkpoint gene in neuron develop-
ment is shared with other proteins like its SNARE part-
ners. Neurons also critically depend on Syntaxin-1 and
SNAP25 for viability during early development (Delgado-
Martinez et al., 2007; Peng et al., 2013; Vardar et al.,
2016; Santos et al., 2017). Although mass spectrometry
analysis has not yet been performed in both KO models,
expression analysis of a selected set of proteins indicates
that depletion of Syntaxin-1 results in downregulation of
synaptic proteins similar as MUNC18-1 depletion (Vardar
et al., 2016). In SNAP25 KO neurons, protein dysregula-
tion is less apparent (Washbourne et al., 2002; Arora et
al., 2017). For other proteins involved in SNARE-mediated
fusion, such as VAMP2, MUNC13, RIM, and SYT1, no evi-
dence is found for critical roles in regulating expression
levels of synaptic and developmental proteins, and their
absence does not trigger neuronal degeneration (Geppert
et al., 1994; Schoch, 2001; Varoqueaux et al., 2002;
Kaeser et al., 2011). Hence, MUNC18-1’s role as a check-
point gene of synapse development is presumably shared
with Syntaxin-1, and potentially SNAP25, but not with
other key factors of the secretion machinery.

Inactivation of several other synaptic genes such as
MUNC13-1 +2, CAPS-1+2, Complexin-1+2 or CSP«
leads to lethality in vivo, yet primary neuronal cultures sur-
vive (Reim et al., 2001; Varoqueaux et al., 2002; Fernandez-
Chacon et al., 2004; Jockusch et al., 2007; M. Sharma et al.,
2012). None of these proteins is required for synapse forma-
tion. Conversely, inactivation for genes important for the ini-
tial steps of synapse formation, such as cell adhesion
molecules (CAMs), does not lead to reduced neuronal sur-
vival in vitro or profound effects on neuron development
(Sudhof, 2018). Interestingly, the effects of single CAM KOs
on synapse formation are relatively mild, potentially because
of redundancy (Robbins et al., 2010; Yim et al., 2013;
Sudhof, 2018). Indeed, stronger effects are often observed
when multiple CAM proteins are depleted (Ko et al., 2011;
L. Y. Chen et al.,, 2017). Thus, the essential role of
MUNC18-1, and potentially Syntaxin-1 and SNAP25,
during neuron development and synapse formation is
exceptional among synaptic proteins.

Heterozygous loss-of-function variants in STXBP1 are
among the most prevalent found in neurodevelopmental
disorders (Lépez-Rivera et al., 2020). Developmental delay
is a shared feature of all STXBP1 variant carries (Stamberger
et al., 2016; Abramov et al., 2021; Xian et al., 2022). Hence,
the uncovered role of MUNC18-1 in regulating (synaptic) de-
velopment could potentially play a role in the pathobiology
of these patients. To date, no evidence is found that hetero-
zygous levels of MUNC18-1 majorly affect neuronal viability
or brain development in vivo and in vitro (Verhage et al.,
2000; Toonen et al., 2006; Kovacevic et al., 2018; W. Chen
et al., 2020). In patients, no clear signs of neurodegeneration
or brain structural abnormalities are observed (Di Meglio et
al., 2015; Stamberger et al., 2016; Abramov et al., 2021)
Thus, it is unlikely that patients’ neurons fail to pass the pro-
posed checkpoint during development. It is, however,
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possible that heterozygous MUNC18-1 levels already have
an effect on the regulation of (synaptic) development, pro-
ducing a milder phenotype than KO neurons but still contrib-
ute to the pathobiology in patients.
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