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ABSTRACT

Using a risk stratification model to guide clinical practice often requires the choice of a cutoff—called the deci-

sion threshold—on the model’s output to trigger a subsequent action such as an electronic alert. Choosing this

cutoff is not always straightforward. We propose a flexible approach that leverages the collective information in

treatment decisions made in real life to learn reference decision thresholds from physician practice. Using the

example of prescribing a statin for primary prevention of cardiovascular disease based on 10-year risk calcu-

lated by the 2013 pooled cohort equations, we demonstrate the feasibility of using real-world data to learn the

implicit decision threshold that reflects existing physician behavior. Learning a decision threshold in this

manner allows for evaluation of a proposed operating point against the threshold reflective of the community

standard of care. Furthermore, this approach can be used to monitor and audit model-guided clinical decision

making following model deployment.
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INTRODUCTION

Physician informaticists are increasingly involved in the deployment

of risk stratification models for clinical decision support. They may

be asked if the predictive performance, such as the sensitivity and

specificity, of a machine learning–derived model is appropriate for

guiding the allocation of an intervention in their health system.1 If

so, the corresponding threshold on the predicted score from the risk

stratification model’s receiver-operating characteristic (ROC) curve

becomes the operating point, which is the risk score cutoff that trig-

gers a subsequent action, such as generating an alert for the early de-

tection and treatment of sepsis.2

Medical decision analysis, one of the most recognized

approaches for determining an operating point, calculates a decision

threshold above which patients should be treated by finding the spe-

cific probability of disease at which expected benefits outweigh

expected harms from an intervention.3,4 Typically, the probability

of disease for a particular patient is estimated by a physician, but

leveraging advances in precision medicine, this probability can be

replaced by the risk score generated by a risk stratification model.

However, calculating a decision threshold using this procedure

requires measuring the ratio of economic utility values for harms

and benefits of treatment as an input. A significant limitation is that

these utility values can be difficult to obtain in practice.5,6 A differ-

ent approach to choosing an operating point is using a clinical prac-

tice guideline, which may suggest risk-stratified treatment

thresholds. However, the bases of how threshold recommendations

are developed are often unreported, making it difficult to determine

if these thresholds are appropriate for use.7 Alternatively, the con-

cept of a standard of care established by what other physicians have

done or would do in similar situations has long been used in the le-

gal context.8 Echoing this notion, it is possible to obtain a decision

threshold by having physicians respond to a series of clinical

vignettes where risk scores are known.9–13

We recognized an opportunity to augment such evaluation be-

yond hypothetical clinical cases using real data from the collective
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practice of many physicians recorded by the electronic health re-

cord.14 We hypothesized that clinician behavior—reflecting how

physicians across an organization balanced harms, benefits, costs,

patient preferences, and resource constraints to make shared clinical

decisions with actual patients in individual situations15—could be

used to learn the latent decision threshold that was used in prac-

tice.16 This learned threshold could then be used as a reference17 to

understand how a potential operating point compares to the current

community standard of care when deploying or monitoring a risk

stratification model. Our objective was to demonstrate the feasibil-

ity of a flexible mathematical approach that uses observational data

to learn the underlying decision threshold implicit in physician prac-

tice. To illustrate the approach with a clinical example, we fit an

equation that best captured clinical decision making from observa-

tional data, extracted decision thresholds from this equation, com-

pared these empirical results with guideline-recommended

thresholds, and assessed the stability of learned decision thresholds

after the release of the risk stratification model to the public.

METHODS

As an example, we learned decision thresholds for statin treatment

based on the 2013 pooled cohort equations (PCEs),18 which predict

10-year atherosclerotic disease risk and have well-described decision

thresholds.19 We constructed a retrospective cohort from adult pri-

mary prevention patients who did not have a history of atheroscle-

rotic disease or diabetes (as the decision to initiate statin treatment

for these conditions is not conditional on the PCE risk score), under-

went lipid screening by a primary care provider at Stanford Medi-

cine before 2013, and otherwise met criteria to have their 10-year

risk of atherosclerotic disease calculated. We ascertained whether

patients were prescribed a statin within 180 days after lipid screen-

ing. We additionally ensured that the PCEs were generalizable to

our cohort as evidenced by similar predictive performance; this en-

sured that it was meaningful to compare learned decision thresholds

from our cohort to thresholds listed in guidelines. To calculate pre-

dictive performance, we first determined if patients developed major

atherosclerotic disease within the following 10 years or before being

lost to follow-up, whichever occurred first, and then calculated Har-

rell’s C-statistic, which can be used to measure discrimination in

censored survival data.20 Our study utilized de-identified data from

the Stanford Medicine Research Repository, and research on this

dataset was classified as nonhuman subjects research by our institu-

tional review board.

Our method to learn a decision threshold begins by developing a

mathematical equation that fits the decision to prescribe a statin us-

ing the 10-year risk of atherosclerotic disease provided by the PCEs

(Figure 1). The formulation of the equation is inspired by expected

utility theory, in which a decision to treat is made if the net utility

from treatment is >0.21 For example, a provider will likely choose

to prescribe a statin if the decreased risk of atherosclerotic disease

outweighs potential adverse side effects such as myalgias, increased

risk of diabetes, and other factors such as monetary costs. The

expected utility increases as disease probability increases.22 Simi-

larly, we assume that the probability of treating a patient increases

as disease probability increases. Thus, we search for a monotonic

function that best describes the relationship between probability of

treatment and PCE score across our cohort in the general form of

the decision-making equation:

PðtreatmentÞ ¼ functionmonotonic PCEScoreð Þ

We test 2 alternative equations from this general form using real-

world data. In the first, we use a linear transformation of the PCE

risk score and leverage the standard logistic function to link this ex-

pression to the treatment probability:

PðtreatmentÞ ¼ logistic b1 � PCEScoreð Þ þ b2ð Þ

where b1 and b2 are coefficients that are learned from the data. In

seminal studies of decision making under risk, the relationship be-

tween utility and disease state may take the shape of a concave func-

tion.23,24 Following this observation, we develop a second form of

the decision-making equation that uses a logarithmic transformation

of the PCE risk score to reflect a concave relationship:

PðtreatmentÞ ¼ logistic b1 � log PCEScoreð Þ þ b2ð Þ

We determine which equation empirically best describes real

world decision making by calculating the Brier score, a measure of

model fit to the observed data, for each equation and then selecting

the equation which has the best score. This decision-making equa-

tion is then used to identify decision thresholds as follows: for a

specified predicted probability of treatment, we use the equation

coefficients to solve for the corresponding risk score. In our exam-

ple, we examine 2 specific treatment probabilities, though other

probabilities could have been chosen using different motivations.

The first threshold we calculate corresponds to the PCE risk score in

which the fitted decision-making equation predicts a 50% probabil-

ity of treatment. This threshold corresponds to the point at which

clinicians are indifferent between treating and not treating. This

same threshold has been described in vignette-based studies of deci-

sion thresholds.10,16 Because the equation predicts that half of

patients with risk scores at this point are treated with statins, we

refer to this threshold as the aggregate majority vote threshold.

The second threshold we examine is where the probability of treat-

ment is equal to the overall treatment proportion in the cohort.

Figure 1. Hypothetical example of a decision-making equation. A decision-

making equation (green line) predicts the probability of observing a decision

to treat, shown here on the y-axis, as a monotonic function of the predictions

from a risk stratification model, shown here on the x-axis.
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For example, if 30% of all patients in the cohort are prescribed sta-

tins, this threshold would correspond to the PCE risk score in which

the fitted decision-making equation predicts a 30% probability of

treatment. While this threshold does not have a decision-theoretic

interpretation, it may serve as a useful reference to identify the risk

score at which the treatment probability exceeds the overall treat-

ment rate in the population. We refer to this threshold as the aggre-

gate treatment rate threshold. We then compare these empirically

derived thresholds with thresholds stated in guidelines.

Finally, to evaluate the sensitivity of these learned decision

thresholds to the release of the risk stratification model in 2013, we

generate a cohort of patients screened for atherosclerotic cardiovas-

cular disease risk after 2013 and examine whether there are differen-

ces in the equation fit or learned thresholds.

RESULTS

There were 4705 patients seen at Stanford Medicine between 2009

and 2013 who underwent primary prevention risk assessment

(Table 1). Of these patients, 1045 (22.2%) were prescribed a statin.

The PCEs had similar discriminative ability (C-statistic ¼ 0.71) in

this cohort compared with the original cohorts in which they were

constructed.18 The median 10-year risk score calculated by the PCEs

was 2.4% in those not treated and 6.1% in those treated with

statins.

As expected, we found that increasing 10-year atherosclerotic

disease risk was associated with higher rates of prescribing statins

(Figure 2). The log transformed decision-making equation better fit

observed clinician decision making than the linear one (Brier score

0.159 for the log transformation vs 0.165 for the linear transforma-

tion). In the log-transformed equation, the proportion of the popula-

tion treated with statins (22.2%) corresponded to an aggregate

treatment rate threshold of 3.6% 10-year risk. The 50% probability

of treatment corresponded to an aggregate majority vote threshold

of 23.0% 10-year risk. The linear equation, which did not describe

observed decision making as well as the log-transformed equation,

produced similar decision thresholds of 5.9% and 20.7%,

respectively.

The PCEs are essentially a predictive model whose continuous

risk score is converted to a treatment recommendation by setting an

operating point on its ROC curve (Figure 2). Based on the observed

decision-making behavior from 2009 to 2013, an operating point

set near the aggregate treatment rate threshold would capture

patients in the borderline (5%) and intermediate (7.5%) risk catego-

ries of the treatment guidelines. An operating point set near the ag-

gregate majority vote threshold would capture patients in the high-

risk category, in which guidelines use a cutoff of 20% and document

the large benefits associated with high-intensity statin therapy for

these patients.

We then constructed a cohort of patients who had risk assess-

ments performed after the publication of the PCEs in 2013 (Table

1). This cohort included 23 291 patients, of whom 4851 (20.8%)

were treated with statins. We found a similar pattern of decision

making (Figure 3) after the risk stratification model was released,

with the recalculated log-transformed decision-making equation

having similar performance (Brier score ¼ 0.148). The aggregate

treatment rate threshold was 3.9% and the aggregate majority vote

threshold was 23.7%, which were 0.3% and 0.7% higher than the

thresholds from the pre-2013 cohort, respectively.

DISCUSSION

We found that an analysis of past, aggregate physician behavior can

translate the combination of revealed patient preferences, clinical

judgment, and decision rules used in practice into reference operat-

ing points on the ROC curve of a risk prediction model. To our

knowledge, this is the first example describing how empirical deci-

sion thresholds learned from past clinician behavior of ordering an

intervention could inform the deployment and monitoring of a risk

stratification model. For the PCEs, our data-derived thresholds dem-

onstrate how collective physician behavior before 2013 generally

concurred with the decision thresholds later determined by an expert

guideline panel. In particular, the aggregate majority vote threshold

we found was located near the cutoff for the high-risk category for

statin treatment, suggesting that physician practice tends to agree

that benefits outweigh harms for patients in this risk category. In

other evaluations, decision thresholds located near this high-risk cut-

off were found to provide net benefit compared with lower thresh-

olds, especially as patients become older.25 On the other hand, it is

interesting to note that the aggregate treatment rate threshold was

located between 3.0% and 4.0%, which was the range suggested by

a cost-effectiveness analysis that incorporated patient preferences.26

One major limitation of learning decision thresholds from aggre-

gate decision making is that past clinical behavior could be flawed.

For example, physicians may not be informed of the most recent clini-

cal evidence or guidelines in the literature, meaning that the standard

of practice in a given community may not align with national or inter-

national standards. There may be systematic bias in treatment for a

particular group, or there may be such high prevalence of diagnostic

errors that the learned decision thresholds are not meaningful as ob-

jective measurements of decision making. In addition, a preference

that is shared by many patients toward or against a treatment could

shift the aggregate majority vote threshold, even when clinical evi-

dence suggests a different threshold. Deploying a learned threshold as

an operating point could then institutionalize behaviors that conflict

with efforts toward health equity or guidelines generated by experts

who have reviewed the clinical evidence.

However, our approach to learn decision thresholds fulfills a

unique role, especially as a reference that summarizes current behav-

ior prior to deployment of a risk stratification model. The choles-

terol management guidelines in effect before the PCEs27 used a

strategy based on tiered cholesterol targets to recommend medical

therapy. When the PCEs were released as a new risk-based frame-

work in 2013, our method could have been used to translate the

Table 1. Baseline characteristics of the Stanford Medicine primary

prevention population both before and after 2013

Characteristic Pre-2013 Post-2013

Age, y 55.4 6 9.2 56.0 6 9.5

Female 2757/4705 (59) 13 812/23 291 (59)

Race

White 3603/4705 (77) 13 871/23 291 (60)

Black or African American 60/4705 (1) 935/23 291 (4)

Asian 530/4705 (11) 4904/23 291 (21)

Other or unknown 512/4705 (11) 3581/23 291 (15)

Systolic blood pressure, mm Hg 126 6 17 125 6 17

Antihypertensive medication 1209/4705 (26) 6900/23 291 (30)

Total cholesterol, mg/dL 196 6 35 197 6 35

Values are mean 6 SD or n/n (%). Patients were excluded from the cohort

if they had a history of atherosclerotic cardiovascular disease or diabetes.
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existing community standard of practice into reference decision

thresholds for the new risk stratification model. Such context could

have been useful to communicate with physicians who were wary of

how to reconcile these new risk scores with their practice.28 One

particular benefit of the approach that we describe is that it can be

used even when a risk stratification algorithm does not already exist.

With the proliferation of risk stratification models in health care,29

there will be many novel use cases in which understanding current

clinical practice could be useful for model implementers.

The proposed method can also be used to monitor patterns of de-

cision making after the deployment of a risk stratification model to

identify changes and biases in clinician behavior. For example, we

observed only minor changes in learned decision thresholds after

2013, suggesting that physician behavior in practice was similar

even when a new algorithm to calculate cardiovascular risk was rec-

ommended. This observation could simply reflect low adoption of

the PCEs after 2013. However, even if physicians avoided using the

new risk stratification model, our method would still be able to use

the net decisions resulting from those other heuristics to find the cor-

responding risk score for the risk stratification model of interest. In

other words, a decision threshold can be learned for a risk stratifica-

tion model even when it is not being used in practice. The method

could even be extended to evaluate differences in decision-making

patterns among individual physicians,10,16,30 helping to clarify sour-

ces of clinical variation.

The method could also be used to assess how decision making

differs across relevant subgroups while controlling for the risk of the

outcome.11,13 Such threshold tests have been investigated to measure

discrimination introduced by machine learning models.31–34 Observ-

ing a difference in learned thresholds may be evidence of a differen-

Figure 2. Decision thresholds derived from the decision-making equation. (A) The fitted decision-making equation (dark gray line) captures the relationship be-

tween the risk score and the decision to prescribe a statin (light gray circles are treatment rates for patients binned to the nearest whole number risk score per-

cent). The proportion of the cohort treated with a statin (lower dashed line) corresponds to the aggregate treatment rate threshold of 3.6% 10-year risk (blue line),

while the 50% probability of statin treatment (upper dashed line) corresponds to the aggregate majority vote threshold of 23.0% 10-year risk (red line). (B) The re-

ceiver-operating characteristic curve demonstrates the relationship between sensitivity and specificity at various potential thresholds. To make decisions based

on the output of the pooled cohort equations, a continuous risk score is converted to a dichotomous recommendation by setting an operating point on the re-

ceiver-operating characteristic curve. Published clinical guidelines set operating points at 5%, 7.5%, and 20% 10-year risk (white circles), which are located near

the aggregate treatment rate threshold (blue circle) and aggregate majority vote threshold (red circle) learned from the decision-making equation.

Figure 3. Comparison of fitted decision-making equations for the pre- and

post-2013 cohorts. The fitted decision-making equation for the pre-2013 (gray

line) and post-2013 cohorts (magenta line) closely overlap over the range of

observed pooled cohort equation risk scores. This results in similar derived

decision thresholds before and after publication of updated clinical guidelines

in 2013.
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tial standard of care and could generate hypotheses for further

auditing to identify disparities in care processes and model deriva-

tion.35 The combination of a learned decision threshold and a mea-

sure of calibration error for each subgroup36 could be quite

informative to characterizing sources of bias. For example, when ex-

amining for racial disparities in treatment, if the risk stratification

model underestimates risk systematically for one group, it may ap-

pear that there is a different threshold being used for that group

even though actual risk could be the same. Future work in this direc-

tion may help audit progress toward health equity when using risk

stratification models to guide care.

We derived 2 different decision thresholds from the decision-

making equation. It may be helpful to consider different thresholds

when intending to understand if a risk stratification model reduces

errors either due to omissions or commissions of care.37 For example,

in order to identify low-risk patients exposed to potential side effects

and unnecessary costs from treatment, an operating point could flag

deviances in care when patients with risk scores lower than a specified

threshold are prescribed interventions. This kind of anomaly detec-

tion could use a learned decision threshold calculated at a predefined

low treatment probability, such as 5%. On the other hand, to analyze

omissions in care, an operating point near the aggregate majority vote

threshold could identify high-risk patients who have not yet been pre-

scribed a potentially beneficial treatment. The use of 2 different

thresholds has a parallel in the threshold approach to clinical decision

making.4 In that theory, patients with disease probability below the

“testing” threshold should not be treated, while those with disease

probability above the “test-treatment” threshold should be treated,

and patients with disease probabilities in between these thresholds

should undergo further testing to determine the next course of action.

Similarly, more information may be useful to determine the next step

for a patient with a risk score generated by a risk stratification model

that is between 2 relevant decision thresholds. Otherwise, a risk strati-

fication model that uses an operating point between these thresholds

may trigger excessive alarms with lower value information, resulting

in overridden alerts38 and provider fatigue.39

Our approach differs from other methods to evaluate the choice

of decision thresholds by permitting flexibility for the multiple com-

ponents of decision making that are not often explicitly measured,

such as patient risk tolerance and individualized estimates of harms

and benefits, and leveraging a descriptive approach to learn from

real-world decisions. In contrast, normative theories like medical de-

cision analysis requires an upfront measurement of utility values to

complete the decision modeling process.3,40 Multicriteria decision

analysis extends this by querying stakeholders on multiple factors

relevant to decision making.41 However, these criteria also need to

be determined in a transparent and reliable way, and a strategy to

combine measurements across multiple criteria to choose a decision

threshold is nontrivial. A different approach, decision curve analy-

sis,5 is useful to highlight the range of decision thresholds in which

the model contributes predictive value but is not able to determine

on its own if a clinician or patient would think those thresholds are

reasonable given real-world context,42 which our method directly

observes. Similar to clinical vignettes, experiments in collective intel-

ligence capture clinician decision making but can be based on real-

world cases.43 However, these studies are difficult to operationalize

in practice outside of research settings since multiple physicians

would have to evaluate the same patient case, which is rarely done

outside of second opinions. Our approach uses individual clinical

decisions but benefits from the aggregation of similar clinical scenar-

ios that occur naturally in practice.

One important contribution of our method is the flexibility in

the choice of mathematical equation to fit treatment decisions. Prior

studies that learned decision thresholds from clinical vignettes used

linear functions of risk scores.10,16,44 However, we found that the

logarithmic transformation generated a better descriptive equation

for real-life statin prescribing as evidenced by the best Brier score.

Other nonlinear monotonic functions may in fact produce better de-

scriptive decision-making equations.45 For example, one formula-

tion of decision making under risk is the exponential utility

function, which includes a parameter to capture the degree of risk

aversion.24 A drawback of our illustrated approach is that logistic

regression would not be able to fit data to this particular monotonic

function in a straightforward manner. Another approach to decision

making under risk is prospect theory, which suggests that harms

may be weighed more heavily than benefits by decision makers in

real life.46,47 However, it is not always clear how the output of a

risk stratification model relates separately to the harms and benefits

of the treatment that it is paired with in practice. The application of

prospect theory to decision making with a risk stratification model

warrants further investigation in the future. Nonetheless, the ap-

proach that we have described can be generalized to any monotonic

function of predicted risk given that a procedure to fit the equation

to data exists, and an implementer may consider using the equation

that best describes real-life decision making measured by an objec-

tive scoring function such as the Brier score in order to learn deci-

sion thresholds.

Overall, learned decision thresholds can provide useful empirical

information about the community standard of care to evaluate the

context of a potential operating point when using a risk stratifica-

tion model to guide care.
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