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Solitary pulmonary nodules are the main manifestation of pulmonary lesions. Doctors often make diagnosis by observing the lung
CT images. In order to further study the brain response structure and construct a brain-computer interface, we propose an isolated
pulmonary nodule detection model based on a brain-computer interface. First, a single channel time-frequency feature extraction
model is constructed based on the analysis of EEG data. Second, a multilayer fusion model is proposed to establish the brain-
computer interface by connecting the brain electrical signal with a computer. Finally, according to image presentation, a three-
frame image presentation method with different window widths and window positions is proposed to effectively detect the

solitary pulmonary nodules.

1. Introduction

Pulmonary nodules are the main pulmonary lesions.
Malignant pulmonary nodules may be transformed into lung
cancer, which is a serious threat to human health [1, 2]. It
needs many years of clinical practice for professional doctors
to make accurate diagnosis. Recently, with the development
of human brain research, the research of a brain-computer
interface (BCI) has become more and more popular. Van-
steensel et al. [3] realize cognitive control based on BCI.
Tan and Nijholt [4] establish a human-computer interaction
channel. Jin et al. [5] optimize the representation of BCI
stimulation targets. Myrden et al. [6] use BCI technology to
realize bilateral transcranial Doppler ultrasound. The validity
of P300 in an EEG signal is verified by Duvinage et al. [7]. Lin
and Yang [8] establish an EEG and blinking relationship to
control wheelchair movement. Do et al. [9] apply BCI

technology to gait correction. Gu et al. [10] establish a semi-
supervised network to realize BCI online. Sun and Zhou [11]
review the development of BCI and predict the development
of EEG feature extraction and classification. Mikolajewska
and Mikofajewski [12] establish a brain-computer interface
from the perspective of children for analysis. Nijholt [13]
introduces a competition and coordination mechanism to
realize BCI learning. Kumar et al. [14] extract features from
EEG signals and apply them to the medical field. Jeunet
et al. [15] propose the standard of BCI sequence. Liu et al.
[16] establish a correlation model between the P300 signal
and time to realize BCI. Thomas et al. [17] establish a deep
learning network to realize BCI learning. Dong et al. [18]
establish an SVM algorithm to analyze multiple EEG data.
Guy et al. [19] use P300 to analyze literacy signals to assist
patients. Schwemmer et al. [20] use a deep neural network
to simulate people’s expectations of events. Abbasi [21]
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serves the paralyzed through BCI. Wan et al. [22] analyze the
performance of BCI from the perspective of EEG. Sengupta
et al. [23] establish a semisupervised neural network to real-
ize the medical auxiliary treatment system. Wang et al. [24]
propose an algorithm to enhance the useful signal strength
of EEG. All the above algorithms are studied from different
layers, and good results are obtained. However, there are
few researches in the field of image recognition based on BCI.

Currently, the main problems and difficulties of image
recognition based on BCI are as follows: (1) Based on the
brain structure, it is difficult for people to stay focused for a
long time, making EEG information overlapping. (2) There
is a large amount of EEG data, so it is difficult to select effec-
tive features. (3) Because of the particularity of the medical
image, how to build an effective response mechanism is an
important issue.

In view of the above problems and difficulties, in this
paper, we propose a detection algorithm of solitary pulmo-
nary nodules based on a brain-computer interface. (1) The
time-frequency feature fusion model is constructed to
enhance the signal identification. (2) A multifeature network
based on deep learning is proposed. (3) Through the training
of doctors and ordinary people, an effective response mecha-
nism is proposed.

2. Algorithm

To solve the above problems, we design the algorithm flow as
shown in Figure 1. First, the image is blocked and displayed
according to specific rules. Then the time-frequency feature
fusion model is constructed to enhance the signal identifica-
tion. An effective feature extraction method based on the
stacking fusion model is proposed. A complete brain-
computer interface is constructed to detect solitary pulmo-
nary nodules.

2.1. Time-Frequency Feature Fusion. EEG signals have
multiple frequencies, from which useful information needs
to be extracted. The MEMD (multivariable electromagnetic
mode decision) algorithm can ensure that signals from differ-
ent sources get decomposition results matching each other in
terms of quantity and frequency. It has advantages in
processing multichannel EEG signals [25].

MEMD can expand the single variable EMD in many
dimensions, realize the joint analysis of multiple vibration
components of high-dimensional signals, and avoid the
modal aliasing problem of standard EMD. The specific algo-
rithm is described as follows.

Data sampling. calculate the set {P"(t)}f:1 of
mappings of the input signal V along the direction vector
x. Find the time point t* corresponding to the maximum
value in {P*()},_,. Obtain the multivariate envelope curve
{e ()i

Calculate the mean value of envelope curve: m(t).
Calculate d(t) =x(t) — m(¢t) until stop if d(¢t) meets IMF
criteria. Otherwise, it will iterate.
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Hilbert transform [26] is applied to each channel of the
obtained brain-computer signal to decompose the signal:

Yi(t)=

L () (1)

!
T ) t—

Zi (1) = u (1) + jY (1), (2)

where « is the Cauchy value and u(t) is the input signal.
Rewrite Equation (2) as follows:

Z, (1) = ay (1)), (3)
where a;(t) is the amplitude and 0,(¢) is the phase.

6, (t) = arctan (Y"(t)),

u(t)
(1) dekt(t).

Each component of the EEG signal is expressed as

x(t) =Re {iak(t)eﬁk@)}. (5)

k=1

The Hilbert spectrum is defined as

H(w,t) =Re {i a (1)) ’“k“)‘“}. (6)
k=1

Solve the Hilbert energy spectrum (IES) and the Hilbert
marginal spectrum (MS).

IES(f) = szHZ(w, )dw,
;
MS(w) = J H(w, t)dw,

0

(7)

where w, and w, correspond to different frequency bands of
EEG.

Calculate the mobility parameter Mob in the Hjorth
parameter.

The mean value and standard deviation are calculated as
the feature F, in the time domain, and the feature F, in the
frequency domain is calculated in the same way.

Sample entropy is introduced to characterize the nonlin-
ear dynamic coupling characteristics of EEG signals.
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FIGURE 1: The algorithm flow chart.

The input sequences u(i) and v(i) are reconstructed into
vectors:

{X(i) = [u(i), - u(i+m—1)],
Y(i) = [v(i), - v(i + m = 1)], 9)
i€[l,N-m+1].

Calculate the distance

d(i,j)=|u(i+k)-v(j+k)| k=0---m-1, (10)
and statistical proportional mean
1 N-m
Bm = —— Bm N
(r) N_ m prt 1 (1’)
- (11)
N(d<R)
Bm = N

where N(-) is the number of qualified pixels and R is the con-
ditional threshold. The cross sample entropy can be defined

C(m, 1) =-In (B;;zg)) (12)

Characterize the relative complexity of two sequences.
To characterize the phase coupling relationship, we cal-
culate

-5 iexpo(el —92»‘. (13)

Similarly, calculate the frequency locking value:

5= iexpmwl —w,)Ar), (14)

where N is the sampling frequency, 0, and 0, are the phase

information, and w, and w, are the frequency information.
The single channel time-frequency characteristics of the
EEG signal are as follows:

F={F,-F,-Q,-S}. (15)

F is used as an EEG signal feature for the following
calculation.

2.2. Multilayer Deep Learning Network. An EEG signal has
many signals, so it is difficult to extract useful information
by a single learning framework. A stacking algorithm [27]
can realize the efficient utilization of training data. The main
idea of the algorithm is to train several different basic learners
based on the initial training data set and then generate a new
data set to train the next layer of learners according to the
output of the primary learner as the input. The tag value of
each training data is unchanged. In practice, in order to
prevent overfitting, we often use cross validation or leave
one method to generate the training samples of the next level
of the learner with the samples not used in the training of the
basic learner, and the basic learner uses different learning
algorithms for generation.

In order to improve the recognition ability and generali-
zation of the model, we use five simple heterogeneous learn-
ing devices, including SVM, random forest [28], logistic
regression [29], KNN [30], and AdaBoost [31] to build a
two-tier stacking integrated learning model.

The proposed algorithm in this paper adopts the deep
learning framework. The training set and test set are very
important. The ratio of the training set and the test setis 1:1.

Considering the phenomenon of overfitting, the training
set of the secondary learners is obtained by using the method
of half-fold cross validation, that is, each primary learner is
used to train the current compromised training set in each
compromise, and then the output of the current compromised
verification set is predicted. When the cross validation is
completed, the mapping of all the data in the original training
set is completed and the secondary training set is generated.

Take the average value after each predicted test set. The
execution process of the same primary learner cross valida-
tion is shown in Figure 2. First, the original training set is
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| Mode |
SVM Verify Learn Learn Learn Learn p| Verify
R?:i::n Learn Verify Learn- earn Learn p|  Verify
Tr;:zing ri;%l:;:;n Learn Learn Verify Learn Learn P Verify
KNN Learn Learn Learn Verify Learn B Verify
AdaBoost Learn Learn Learn Learn Verify ——® Verify

FI1GURE 2: Deep learning network based on multiple features.

divided into five parts. In each iteration, four parts of the data
are taken as the training set in turn, and the primary learner is
trained. Then, the remaining training data and all test data sets
are predicted, and the prediction results are saved. In this way,
after five iterations, each primary learner is trained five times,
and each data divided initially is predicted. All test data is pre-
dicted. A new training data matrix with the number of rows
equal to the number of training set samples and the number
of columns equal to the number of primary learners is
obtained, which is the input to the secondary learner as train-
ing data. After the training of the secondary learner, the new
test set is predicted and the final output is obtained.

3. Data Acquisition and Processing

The data studied in this paper can be divided into brain data
and pulmonary image data. It includes data acquisition,
annotation, and processing.

3.1. Data Acquisition and Presentation. The image sequence
is from the International Early Lung Cancer Action Project
database [32, 33], and the lung CT images were collected by
the hospital. Image presentation is on a 21-inch LCD. The
subjects sit in a comfortable posture, and the distance
between their eyes and the center of the screen is about
80 cm. EEG signal acquisition uses a 64-channel brain prod-
uct EEG. According to the international standard 10-20
system, electrode placement ensures effective coverage of all
interested cortical areas. The sampling frequency of the
EEG signal is 1000 Hz. Before the experiment, make sure that
the impedance of each electrode is below 5kQ. In order to
reduce the possible EMG signal crosstalk, the subjects are
required to reduce head activity as much as possible after
completing the EEG electrode arrangement.

3.2. Data Annotation. The image sequence of a solitary pul-
monary nodule is labeled by two professional doctors using
the independent blind marking method. The gold standard
of pulmonary nodules is selected.

All the data are marked by two professional doctors in
accordance with the blind mark method, and disputed anno-
tations are arbitrated by a third expert.10 groups of lung CT
images are collected in the experiment, which include 3200
frames in total. EEG signals include 100 sets.

3.3. Data Processing. In order to increase the locality of the
image sequence, maximize the awareness of spatial context,
and minimize the vertigo of the interpreter, the hexagon

search path algorithm is adopted [34]. The hexagon search
path algorithm decomposes a two-dimensional hexagon
mesh into a nested set of approximate self-similar patterns
with approximate hexagon symmetry. From the largest hexa-
gon in the image to the smallest hexagon, it is similar to a
Piano De Karl space to fill the whole image space. Through
the hexagon search path algorithm.

The EEG signal is preprocessed as follows: (1) Resam-
pling: reduce the EEG signal frequency to 256 Hz in order
to improve processing speed and remove interference. (2)
Select the common average reference surface: the average
value of all electrodes is used as the common average refer-
ence in this experiment. (3) Filtering: this is done because
the power frequency signal and high-frequency interference
will be mixed in the EEG acquisition process, and the fre-
quency of the EEG signal with research significance based
on the oddball experimental paradigm is generally less than
50 Hz. Thus, the passband frequency of a 0.5~48 Hz filter is
adopted in this experiment.

4. Experiment and Result Analysis

The subjects are divided into two groups, six in each group
(three males and three females, average age 35 years). Group
1 consists of professional radiologists. Group 2 consists of peo-
ple who had not participated in video training. There are 20
groups of image data, among which the coronal image sequence
is generated by coronal sequence, as shown in Figure 3.

Each experimenter needs to complete two sessions, with a
rest time of no more than five minutes between each session.
Each session contains several blocks. Before the start of the
block, the flashing red cross symbol is displayed in the center
of the screen to remind the subjects to pay attention, and the
two types of stimulus images appear in a proportional order.

4.1. Saliency and Specificity Verification. The significance of
response and the specificity of brain response are the premise
of brain-computer interface research. Because of the particu-
larity of the medical image, the traditional brain-computer
interface criterion cannot be directly applied to lung CT
image detection. Therefore, we study the significance of test
response and the specificity of brain response.

4.1.1. Test Response Saliency. According to the CT image
data of pulmonary nodules, in order to verify whether there
is significant difference in behavior of the subjects, we have
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(b) Coronal image sequence

FIGURE 3: Experiment data presentation.

TaBLE 1: Recognition effect of each group.

Group SEN SPE FPF AUC
1 56% 92% 16% 0.89
2 17% 80% 32% 0.43

made statistics on the recognition effect of group 1 and
group 2.

Sensitivity (SEN), specificity (SPE), and false positive
fraction (FPF) are introduced to measure the performance
of different algorithms [34]:

TP
SEN= — |
TP + FN
TN
SPE= | 16
TN + FP ( )
FP+F
FPF = RN
TP + FP + TN + FN

where TP is True Positive, FN is False Negative, FP is False
Positive, and TN is True Negative.

In this paper, the parameter setting of the comparison
algorithms is based on the parameter range mentioned in
the corresponding article to find the optimal parameters.

From Table 1, the detection effect by specially trained
doctors on pulmonary nodules is much higher than that by
group 2. Furthermore, it is confirmed that there is significant
difference in behavior among the pulmonary nodule test
subjects.

To visually demonstrate the detection effects of different
groups, an ROC curve is shown in Figure 4. We can see that
the recognition effect of group 1 is much higher than that of
group 2.
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FIGURE 4: Recognition ROC figure.

4.1.2. Brain Response Specificity. The EEG data of subjects
under relevant tasks are collected, and the specific brain
response information of subjects to target and nontarget
images is studied through the active participation of
subjects in the target detection task. The EEG data of each
subject are analyzed independently. Compared with the
nontarget image, the brain activity of the prefrontal cortex
area is more intense when the target image is observed,
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which is in line with P300 characteristics. That is to say, the
EEG amplitude of the prefrontal cortex area would be larger
than that of the normal stimulus sequence about 300 ms
after the abnormal stimulus sequence is observed. The dif-
ference of the EEG amplitude is convenient to distinguish
two kinds of data signals to judge the corresponding CT
images of pulmonary nodules. In Figure 5, it is the brain
topographic map of the target and nontarget images
observed by one of the subjects in the experimental group
at different time points. It can be concluded that the ampli-
tude of the prefrontal cortex in the observation target image
EEG data between 280 and 320 ms is larger than that in
other time periods, while the EEG data changes little in
the observation of nontarget images.

4.2. Image Presentation. The CT image of the lung has the
characteristics of medicine and anatomy, which leads to a
great difference between CT images and traditional images.
In order to obtain EEG signals better, we start experiments
from the time of image display, the proportion of target
and background display, the way of image presentation,
and the times of image repetition.

4.2.1. Display Time. The display time of an image will directly
affect the corresponding effect on the brain. Fast sequence
visual presentation is an experimental model for the detec-
tion of attention time characteristics [35]. In the fast
sequence visual presentation paradigm, a series of target
stimuli are placed in the background stimuli, which are fixed
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in the same specific position of the screen and presented in a
specific period of time. Because of the particularity of the
medical image, we need to further verify the effect of the
display time. For this reason, we use five representative image
sequences to select different display times to verify the effect.

The recognition accuracy of 50~250ms is shown in
Figure 6. With the increase of the presentation time, the
recognition rate shows an upward trend within 50-200 ms.
However, with the increase of presentation time, when it is
more than 200 ms, the recognition rate will decrease due to
the weakening of the brain signal. So far, in this paper, we
select the optimal 200 ms as the presentation time.

4.2.2. Target to Background Image Number Ratio. According
to the oddball paradigm [36], random presentation of two
stimuli acting on the same sensory channel should ensure
that there is a great difference in the probability of interclass
stimulus presentation under the relevant potential. There-
fore, we adjust the ratio of the number of pulmonary nodule
images to the number of pulmonary nodule images under the
condition of a 200 ms display. As shown in Figure 7, when
the ratio of the target to the background increases, the signal
stimulation produced by the brain tends to increase. When
the ratio of the target to background reaches 1:5, it tends
to be stable. So far, in this paper, we select the optimal ratio
of 1:5 as the number of target and background images.

4.2.3. Number of Repetitions. Visual expert object recognition
is a complex process of perception and cognition, including
the dynamic interaction of low-level perception and high-
level cognitive components, which involves the close
coupling of perception, memory, attention, and semantics.
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FIGURE 8: Presentation time-recognition accuracy relationship
graph.

At the central level, multiple subsystems interact and work
together to support visual experts to complete object recogni-
tion tasks. For medical image interpreters, each of them has
accumulated rich experience through long-term and high-
intensity purposeful training, and their behavior characteris-
tics are significant. The accuracy of EEG classification can be
improved by presenting the same image multiple times. For
this reason, we compared the effect of different repetition
times on the recognition accuracy.

As shown in Figure 8, with the increasing number of
image repetitions, the accuracy of EEG interpretation
increases correspondingly, and the curve rises and slows down
when the image is repeated 13 times. It can be seen that for the
same subject, repeated image presentation can improve the
signal-to-noise ratio of EEG data and provide more effective
brain response information.

4.2.4. Display Mode. Lung CT image data is 16 bits; an
ordinary display cannot display all its information on a single
frame image. To verify different image display modes, we
define the following modes:

(i) Mode I: the display of window width and window
position is set based on the average value of a single
frame CT image.

(if) Mode 2: window width and window position display
mapped by the lung window.

(iii) Mode 3: based on the lung window mapping, two
images are generated by floating up and down, that
is, three images are displayed.



0.9 4

0.8 4

0.7

0.6 ¢

TPR

0.5 7]

0.4 7]

0.3 ]

0.2 1

0.1 1

0 & T T T T T T T T T
01 02 03 04 05 06 07 08 09 1

FPR

o—e Method 1
o—a Method 2
—— Method 3

Fi1GURE 9: ROC curves of different methods.

The bone window, lung window, and vertical and hori-
zontal window have a display mode with a fixed mapping
range. No human-computer interaction is required. When
the image is inputted, it will be automatically displayed
according to the mapping rules.

As shown in Figure 9, due to the limited information
obtained in Mode 1, the features of pulmonary nodules are
not obvious, which lead to recognition failure. For Method
2, under the premise that the best window of the lung can
be observed, the shape of the lung can be displayed better,
but the recognition of pulmonary nodules with an unclear
boundary still fails. Inspired by the above two methods, Mode
3 displays the information image of multiple windows and
wide windows, and the tested person can make a comprehen-
sive judgment, which has a good effect.

4.3. Classification Effect Comparison. To verify the proposed
algorithm classification effect, we compare different
algorithms, as shown in Figure 10. SVM [18] establishes a
multilevel structure to decompose the input signal by
wavelet, which has a certain effect on EEG signal classifica-
tion. Random forest [28] integrates spatial information and
polarizes information to realize signal classification. Logistic
regression [29] extends the algorithm of polynomial logistic
regression to the semisupervised learning of posterior class
distribution to improve the classification performance. KNN
[30] introduces convolution to the EEG image for classifica-
tion. AdaBoost [31] combines fuzzy entropy, sample entropy,
approximate entropy, and spectral entropy to realize EEG sig-
nal classification.
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5. Conclusion

We studied the process of detecting solitary pulmonary
nodules by physicians from the aspects of pulmonary nodule
imaging and physicians’ EEG response. A time-domain and
frequency-domain model is proposed to extract EEG fea-
tures. A multilayer feature fusion model is proposed to verify
the feasibility of the brain-computer interface in detecting
pulmonary nodules.
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