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Naturally occurring coronaviral infections have been studied for several decades in the

context of companion and production animals, and central nervous system involvement

is a common finding, particularly in cats with feline infectious peritonitis (FIP). These

companion and production animal coronaviruses have many similarities to recent human

pandemic-associated coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV2

(COVID-19). Neurological involvement is being increasingly recognized as an important

clinical presentation in human COVID-19 patients, often associated with para-infectious

processes, and potentially with direct infection within the CNS. Recent breakthroughs

in the treatment of coronaviral infections in cats, including neurological FIP, have utilized

antiviral drugs similar to those currently in human COVID-19 clinical trials. Differences

in specific coronavirus and host factors are reflected in major variations in incidence

and mechanisms of CNS coronaviral infection and pathology between species; however,

broad lessons relating to treatment of coronavirus infection present within the CNS may

be informative across species.
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INTRODUCTION

The Coronaviridae family of viruses are single-stranded RNA viruses found in a variety of species
including cats, dogs, horses, mice, birds, pigs, bats, camels, whales, and humans (1). Coronaviruses
are grouped into four genera; alpha, beta, gamma, and delta (Table 1) and viral particles contain
four main structural proteins, namely, spike (S), envelope (E), membrane (M), and nucleocapsid
(N) with specific coronaviruses also having a unique set of accessory proteins (2, 3). The distinctive
trimeric spike protein (S) is primarily responsible for recognition of cellular receptors associated
with viral binding and potentially internalization of host target cells (2–4). Many key receptors
interacting with the spike proteins have been defined for the known coronaviruses (Table 1).

Coronavirus infections typically affect the respiratory or gastrointestinal tracts; however,
coronavirus-related neurological disease is receiving increased attention as the COVID-19
(SARS-CoV-2) pandemic progresses. Neurological manifestations of COVID-19 infections in
humans have become more widely recognized as a significant component of clinical disease (5–16);
however, coronavirus involvement of the nervous system is not unique to the SARS-CoV-2.

Several coronaviruses have been associated with neurological disease as a common clinical
presentation (Table 1), including feline infectious peritonitis (FIP), porcine hemagglutinating
encephalitis virus, murine hepatitis virus (MHV), and currently with SARS-CoV2 virus in
COVID-19 patients. Less commonly, the human respiratory disease coronaviruses HCoV-299E and
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TABLE 1 | Coronaviruses of humans and domestic animals.

Genera Species Virus Disease association Receptor

Alpha Coronavirus Cat FCoV Ser I Feline infectious peritonitis Unknown

FCoV Ser II Feline infectious peritonitis APN

Human HCoV-NL63 Respiratory disease, gastroenteritis ACE2

HCoV-229E Respiratory disease APN

Pig TGEV Transmissible gastroenteritis APN

PEDV Endemic diarrhea APN

CSeCoV, SADS-CoV Diarrhea Unknown

PRCV Respiratory disease APN

Dog CECoV Enteric disease APN

Beta Coronavirus Human SARS-CoV-2 COVID-19 ACE2

SARS-CoV Severe acute respiratory syndrome ACE2

MERS-CoV Middle East respiratory syndrome DPP4

HCoV-HKU1 Respiratory disease Sialic acids

HCoV-OC43 Respiratory disease Sialic acids

Pig Porcine hemagglutinating

encephalitis virus (PHEV)

Vomiting-wasting/encephalomyelitis NCAM

Mouse Murine hepatitis virus (MHV) Hepatitis/encephalitis CEACAM1

Cow BCoV Enzootic pneumonia/Diarrhea-enteritis Sialic acids

Dog CRCoV Respiratory disease Sialic acids

Gamma Coronavirus Avian IBV Infectious bronchitis α-2, 3-Linked sialic acid

Delta Coronavirus Pig PDCoV/PCoV-HKU15 Diarrhea APN

APN, aminopeptidase N; ACE2, angiotensin-converting enzyme 2; DPP4, dipeptidyl peptidase-4; NCAM, neural cell adhesion molecule; CEACAM1, carcinoembryonic antigen-related

cell adhesion molecule 1. Viruses in red represent coronavirus disease commonly presenting with neurological signs.

OC43 have been demonstrated in brains of multiple sclerosis
(17–21) and encephalitis patients (22–24). Coronavirus-
associated encephalitis has been reported in children (25), and
sporadic neurological disease has been reported in human
Middle Eastern Respiratory syndrome (MERS) and SARS-
CoV patients (26–33) although in a relatively limited manner
compared to SARS-CoV-2 patients (27, 28, 34).

MECHANISM OF CNS ENTRY

Several mechanisms of entry of coronaviruses into the CNS have
been postulated and vary depending on the specific coronavirus,
host factors, viral dose, and site of infection. Mechanisms are
incompletely or poorly understood in many species; however,
hematogenous spread via capillary endothelial cells, retrograde
axonal transport via olfactory, pulmonary vagal and enteric
neurons, exosomes, and entry via macrophage/monocytic cells
have been suggested as potential mechanisms (35–41). Porcine
hemagglutinating encephalitis virus has been shown to infect the
CNS via retrograde transport in peripheral nerves from primary
sites of replication (40, 42), and a similar mechanism of entry has
been shown for neurotropic strains of MHV (43) and in a SARS
mouse disease model (37).

S protein interaction with cell surface receptors (Table 1) is
a major determinant of virus virulence and tropism allowing
cell binding; subsequent cleavage of the bound spike protein

by cellular proteases such as transmembrane serine protease
2 (TMPRSS2) allows internalization by direct fusion with the
plasma membrane or use of endocytic mechanisms. Specific
coronavirus target receptors have been shown to be variably
expressed in a variety of infected CNS cell types (36, 44, 45);
however, virus–host interactions are complex as not all infected
cells necessarily express a single receptor, additional mechanisms
such as receptor independent fusion can occur (46), and binding
and entry may utilize similar or different receptors for some
viruses (47). Major receptors for the CNS-tropic coronaviruses
have been defined in most species, including angiotensin-
converting enzyme 2 (ACE2) utilized by human coronaviruses
HCoV-NL63, SARS-CoV, and SARS-CoV-2; however, the specific
mechanism by which the pre-dominant Type I pathogenic
feline coronaviruses attach and enter host cells is poorly
defined (48–50).

MECHANISM OF CNS DISEASE

Viral-mediated CNS damage may arise due to direct effects of
viral replication within target cells and as a consequence of the
vigorous inflammatory response that may have both positive
anti-viral and potentially negative secondary effects (51, 52).
Profound activation of inflammatory and immune cascades
driven by a variety of cytokines and chemokines, including
IL6, CXCL10, IL1, IFNγ, and TNFα have been documented
in CNS coronavirus infections in a variety of species (11, 25,
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37, 51, 53–55). Secondary immune-mediated mechanisms of
pathology have also been described relating to the presence of
viral antigens and antibody-mediated type III hypersensitivity
vasculitis (56, 57). Although poorly defined, coronavirus CNS
infections may also result in more chronic disease, as is seen with
some strains of MHV (51, 56), and human coronavirus infection
has been implicated in the pathogenesis of chronic conditions
including Parkinson’s disease, multiple sclerosis, and peripheral
neuropathies (7, 12, 17, 19, 58).

Clinical and pathological findings in the most commonly
affected species with CNS-associated coronavirus diseases is quite
variable and likely reflects the variability in cellular tropism,
mechanism of infection, and-immune mediated characteristics
of disease in the different species. Para-infectious mechanisms,
with neurological consequences secondary to extra-CNS disease
factors such as sepsis and vascular disease, may also be important
when the CNS is not the primary target organ as is the case for
COVID-19 patients with acute respiratory disease (5, 7, 8, 59, 60).

Feline Infectious Peritonitis
Feline infectious peritonitis virus is a pathotype of the feline
enteric coronavirus (FECV) arising through specific mutations
in key viral genes [reviewed in (38)]. Feline infectious peritonitis
is named for the more commonly presenting effusive “wet” form
of the disease, with a less common “dry” form characterized by
granulomatous disease in the absence of marked inflammatory
exudation into body cavities (57). Both FECV and FIP biotypes
exit as one of two serotypes (61, 62). Type I is the more common
serotype and possibly more likely to cause disease (62–64), while
type II represents a recombinant between feline and canine
enteric coronaviruses (65). Neurological involvement with FIP
is well-documented (57, 66–70), occurs in ∼30–40% of cats
presenting with the non-effusive form of the disease (57), and is
almost universally fatal (57).

Coronavirus infections resulting in FIP do not generally
infect primary CNS cells. Pathogenic transformation of the
FECV to the FIP biotype involves a marked alteration of
tropism from apical epithelial enteric cells to internalization
and replication within macrophages/monocytes (71, 72)
that pre-dominantly represents the infected cell population
within the CNS. Histopathology reflects the pre-dominant
immune-mediated perivasculitis mechanism of disease with
a lymphoplasmacytic infiltrate and variable presence of
macrophages and neutrophils, often perivascular and typically
centered around the leptomeninges and ependyma. Lesions
particularly affect the caudal brainstem with perivascular
oriented meningitis, periventricular and superficial encephalitis,
and choroiditis with secondary hydrocephalus (57, 66, 67, 70).

Mouse Hepatitis Virus
Unlike FIP virus, MHV is capable of infecting ependymal
cells, astrocytes, microglia, oligodendrocytes, and neurons (56,
73). Depending on specific virus and mouse strain as well
as route of infection, a variety of neuropathologies are seen
with MHV infection, from acute encephalitis to a more
chronic encephalomyelitis and demyelinating disease (56).Mixed
inflammation with a significant neutrophilic component is

typically present often centered around the choroid plexus,
ependyma, and meninges (51, 74, 75).

Porcine Hemagglutinating
Encephalomyelitis Virus
In contrast to MHV, PEHV causes a non-suppurative
encephalomyelitis with lymphoplasmacytic cuffing involving
the gray matter of the cerebrum and neuronal degeneration
of the brainstem and trigeminal ganglia (42). Viral infection
is restricted to the neuronal perikaryon following spread from
primary sites of replication via the peripheral nervous system
(40, 76).

Human CNS Coronavirus Infection
Detailed reports of cell tropism and histopathological lesions
in human patients with coronavirus-associated neurological
disease are lacking. SARS-CoV and HCoV-OC43 have been
reported in cerebral neurons from autopsy specimens using
immunohistochemistry and in situ hybridization (23, 32, 33,
77), and coronavirus has been similarly reported in unspecified
cells from MS patients (17, 20). Neuronal degeneration, gliosis,
and cerebral edema were the most consistent findings reported
in SARS patients where histopathology of the brain was
described (32, 33) and involvement of brainstem neurons has
been proposed as a component of respiratory failure seen in
patients (78, 79). Findings in COVID-19 patients are limited
and variable. The most common underlying mechanisms of
CNS involvement in COVID-19 patients remain to be defined
(10, 80, 81), and direct evidence of virus in the CNS is
limited. However, SARS-CoV-2 virus has been demonstrated
specifically in the CSF (6, 80, 82, 83) and in brain tissue in
up to 36% of COVID-19 patients examined at autopsy (59, 60,
84, 85). Variable neuropathological findings have been reported
including subcortical white matter vascular and demyelinating
lesions (86), lymphocytic meningoencephalitis with prominent
neuronal loss (79), and hypoxic injury (60). Neuroimaging with
MRI in 37 patients was similarly variable with common findings
including signal abnormalities in the medial temporal lobe,
multifocal white matter hyperintensities, and extensive white
matter microhemorrhages (80).

Clinical neurological signs associated with the COVID-19
SARS-CoV-2 virus are variable and have been commonly
associated with sequelae secondary to systemic effects of
COVID-19 infection as well as primary viral effects on the CNS
and peripheral nervous system. Common presentations include
encephalopathy with delirium/psychosis, inflammatory CNS
syndromes, ischemic strokes, peripheral neurological disorders
including Guillain–Barre syndrome, and an/hyposmia and
dys/hypogeusia (altered sense of smell and taste) (5, 6, 8–
11, 13–16). As with other CNS coronaviral infections,
the proposed pathological mechanisms include secondary
inflammatory syndromes, secondary immune-mediated
syndromes, neurological consequences of systemic disease
including sepsis, hypoxia, and hypercoagulability, and direct
neuronal/glial cell injury.

Frontiers in Veterinary Science | www.frontiersin.org 3 October 2020 | Volume 7 | Article 584673

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Dickinson CNS Coronavirus

TREATMENT

Data relating specifically to treatment of naturally occurring
CNS coronavirus infections is extremely limited in humans,
domestic, and production animals. Therapeutic approaches are
generally similar regardless of organ systems affected; however
specific issues relating to the blood–brain barrier/blood–CSF
barrier limitations on drug delivery and pronounced neurological
effects due to secondary inflammation need to be considered. The
variable pathogenesis and clinical aspects of coronavirus disease
in non-human species means that translational therapeutic
studies in these animals may have some limitations. However,
CNS coronaviral infections in domestic cats (FIP), in particular,
may be translationally valuable given both the severity of disease
presentation and the individualized approach to treatment in
a companion vs. production or research setting. Recent data
relating to treatment of both non-CNS and CNS FIP with
antiviral drugs may have relevance to specific aspects of ongoing
trials in SARS-CoV-2 patients. Interestingly, domestic and big
cats are susceptible to SARS-CoV-2 infection, consistent with
expression of ACE2 viral receptor in these species (87, 88),
although associated clinical CNS disease has not been reported
(89, 90).

Management of coronavirus infections consists of a
variety of preventative and therapeutic approaches based
on pathogenic mechanisms of the targeted coronaviruses
as well as species-specific aspects of clinical disease. Several
reviews of therapeutic aspects of coronavirus infections are
available and discuss the main arms of disease management
relating to prevention, husbandry, vaccination, antiviral
drugs, and modulation of immune/inflammatory aspects
of coronavirus infections in humans (91–94) and domestic
animals (57, 95–98).

Preventative
Preventative management, beyond husbandry, and
environmental management of disease outbreaks is centered
around vaccination. The value of vaccination depends on both
severity of the disease and efficacy/longevity of the vaccines
developed. Development of effective vaccines for human
coronavirus infections, particularly SARS-CoV-2 (COVID-19),
is an ongoing priority (91, 92). Inactivated and live attenuated
vaccines have been shown to provide protective immunity in
several domestic species (98); however, the value of vaccination
has to be balanced against expense and prevalence of disease.
Immunological sequelae following coronavirus infection appears
to play a major role in disease progression, particularly in the
CNS, and adverse events associated with vaccination must
be considered in this context. Immunity to FIP is largely cell
mediated, and humoral immunity with systemic antibodies to
FIP virus may exacerbate disease by enhancing viral uptake
and replication in macrophages and by stimulating a vascular-
oriented Arthus-type hypersensitivity reaction (57, 99). An
intranasal temperature-sensitive mutant FIP vaccine generating
a local IgA response has been shown to have efficacy; however,
its value in the clinical setting is questionable (57).

Anti-inflammatory/Immunomodulatory
Therapies
Dexamethasone is one of the few therapies that has been
shown to have a beneficial effect in COVID-19 patients
(100), although the pros and cons of anti-inflammatory vs.
immunosuppressive effects have been debated with COVID
19 as with other coronaviruses such as SARS-CoV and MERS-
CoV. Use of corticosteroids and intravenous immunoglobulin
therapy for non-specific inflammatory and potential immune-
mediated aspects of CNS disease have been anecdotally
reported in neurological COVID-19 (8). Non-specific anti-
inflammatory drugs such as corticosteroids, cyclophosphamide,
and cyclosporine have anecdotally been associated with
amelioration of signs in FIP CNS disease but are not curative
(57, 66, 95–97). More targeted inhibition of specific cytokines
such as TNFα have shown mixed therapeutic benefits in systemic
FIP (101–103), and poor responses have generally been seen with
the use of interferons α, β, and omega (57, 96, 97).

Antivirals—Lessons From Feline Trials
A wide spectrum of antiviral drugs has been developed targeting
most aspects of the coronavirus life cycle [reviewed in (92)],
including neutralizing antibodies (convalescent plasma or
monoclonal), fusion and viral protease inhibitors, nucleoside
analogs, host protease and receptor inhibitors, and lipidomic
reprogramming drugs. The nucleoside analogs ribavirin, NHC
(β-D-N4-hydroxycytidine), and remdesivir/GS-5734 have
activity against a variety of RNA viruses including coronaviruses.
Chloroquine/hydroxychloroquine is an antimalarial and
autoimmune drug that can block viral infection by increasing
endosomal pH (required for virus-cell fusion) and can also
interfere with glycosylation of cellular receptors. Remdesivir and
chloroquine can inhibit SARS-CoV-2 in vitro (104) and are in
trials for COVID-19 patients. There is currently no evidence
for a beneficial effect of chloroquine/hydroxychloroquine in
COVID-19 patients (105), and chloroquine had only modest
effects in cats with experimentally induced FIP, and toxicity
with elevations of serum alanine aminotransferase has been
noted (106).

Recent trials using antiviral drugs in clinical FIP have
been extremely encouraging that treatment and potential cures
are a realistic goal, including for CNS disease. Screening of
large numbers of antiviral compounds to identify individual
and combinations of drugs shows promise for future effective
FIP therapies (107) and may address concerns relating to
development of resistance with single drug regimens (108, 109).
However, monotherapy with the nucleoside analog GS-441524
(Gilead Sciences Inc.) and a 3C-like antiviral protease inhibitor
(Anivive Life Sciences Inc.) have already shown efficacy in
experimental and naturally acquired non-CNS FIP (108, 110–
112), although limitations associated with drug access across the
blood–brain barrier resulted in CNS relapses, particularly with
protease inhibitor therapy (108, 112). Cat pharmacokinetic data
for GS-441524 showed that CSF concentrations of GS-441524
were∼20% of plasma levels (111) and that doses five times those
shown to effectively treat non-CNS FIP (2–4 mg/kg) would be
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FIGURE 1 | CNS coronavirus infection (FIP) in a cat presenting with neurological deficits and treated with GS-441524, the parent nucleoside of remdesivir.

Pre-contrast (A–D) and post-contrast T1-weighted and fluid-attenuated inversion recovery pre-treatment MRI sequences (E–H) reveal multifocal leptomeningeal

lesions (arrowheads) typical of CNS FIP. Resolution of clinical signs was incomplete using drug dosing typically effective in non-CNS disease (4 mg/kg); however,

increased dosing (10 mg/kg) resulted in resolution of clinical signs and resolution of MR lesions on images acquired 7.5 months after initiation of treatment and 3

months after completion of treatment (I–L). T1, T1-weighted; FL, fluid-attenuated inversion recovery; +C, contrast (gadopentetate dimeglumine, “Magnevist”).

necessary to achieve 1µM concentrations consistent with the in
vitro 50% effective concentration (EC50) to prevent coronavirus
cytopathic effects. Subsequent pilot data from cats presenting
with CNS FIP supported these data with resolution of disease
signs and apparent cures with dosing up to 10 mg/kg (Figure 1)
(113). GS-441524 is a 1′-cyano-substituted adenine C-nucleoside
ribose analog that inhibits viral RNA synthesis once it has
been tri-phosphorylated intracellularly. Remdesivir (GS-5734) is
a monophosphate prodrug of GS-441524 with the phosphate
masked by McGuigan prodrug moieties designed to promote
release of the monophosphorylated analog intracellularly and
to overcome the perceived rate-limiting first phosphorylation
step. Remdesivir has been given emergency use authorization
for treatment of SARS-CoV-2 with encouraging if limited
preliminary results (114–116). Given the efficacy of GS-441524
in the treatment of FIP, it has been suggested that there may be
advantages to the use of the parent (GS-441524), rather than the
prodrug (remdesivir) in human trials (117). Remdesivir appears
to be rapidly metabolized in the serum to GS-441524 rather than
entering cells intact (118, 119), and GS-441524 can be present
in the serum at concentrations 1,000-fold higher than remdesivir
(118). In vitro comparison of antiviral efficacy of remdesivir and
GS-441524 against SARS-CoV and MERS-CoV showed similar
EC50 values, and GS-441524 values were lower in some cases
than the EC50 values reported in feline CRFK cells (Crandel

Reese Feline Kidney Cells) infected with FIP virus (109, 111).
GS-441524 serum levels in humans would more likely exceed
these EC50 values based on published data (117), and similarities
to cat in vitro data together with the encouraging clinical efficacy
in cat FIP (111–113) would support the investigation of GS-
441524 for use in human coronaviral disease, including CNS
infections. Current dosing of remdesivir in COVID-19 trials is
200mg loading followed by 100mg (114, 115), equivalent to
1.5–3 mg/kg for a 70-kg human. These doses fall within the
range shown to be effective in treating non-CNS FIP in cats
(111, 112); however, the increased doses necessary to treat CNS
FIP infections (8–10 mg/kg) in cats (113) would be equivalent
to 560–700mg for a 70-kg human. GS-441524 appears to have a
high therapeutic index and minimal adverse effects at all doses of
GS441524 reported in cats (2–10 mg/kg) (111–113). CNS blood–
brain, blood–CSF barrier pharmacokinetic limitations are likely
to be similar between cats and humans, and experience with FIP
suggests that dose escalation of remdesivir (or GS-441524) may
be necessary to optimize clinical efficacy in humans if targeting
of coronavirus within the CNS is a specific therapeutic goal.

GS-441524 is not approved or available for clinical veterinary
use limiting the potential for expanded and regulated clinical
studies necessary to support approval in clinical veterinary
practice. Unapproved sources of GS-441524 have become
available online to owners of FIP cats, and FIP advocacy groups
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have collated observational data relating to outcomes in these
“owner-treated” animal cohorts. Data arising from unverified
drug sources and owner reported outcomes have major
limitations; however, against a historical background of almost
universal fatality in cases of CNS FIP, some clinically relevant data
may be available. Advocacy group treatment regimens, based on
published data (111–113), typically recommend a minimum 12-
week course of treatment, with 4- to 6-mg/kg doses for non-CNS
FIP treatment and 8- to10-mg/kg doses for CNS disease cases.
Cure or remission is defined as no evidence of clinical disease
>12 or <12 weeks, respectively, after completion of treatment.
Data from an FIP advocacy group (personal communication)
detailing owner outcomes from 110 cats with neurological signs
and presumptive FIP treated with unapproved GS-441524 drug
showed the following: 57/110 (52%) in remission, 22/110 (20%)
cured, 9/110 (8%) died or euthanized, and 7/110 (6%) with
relapsed CNS disease. Fifteen cats (14%) presented with non-
CNS disease but relapsed with CNS signs following treatment.
Sequential dose data was available for five cats that relapsed with
CNS disease; initial doses ranged from 5 to 7 mg/kg, and four of
five cats were subsequently cured with one in remission following
dose escalation to 10–16 mg/kg. These uncontrolled data are
supportive of the efficacy previously documented in four cats
treated with GS-441524 (113) and of the necessity of increased
dosing for optimal treatment of CNS infections. A striking
aspect of GS-441524 treatment of FIP is the dramatic (often
<36 h) improvement in clinical signs following adequate dosing
(112, 113). Resolution of gross neuropathology in this time
period is unlikely, and it is possible that decreased production
of inflammatory cytokines, known to be a significant component
of CNS coronaviral pathology, may be responsible for this rapid
clinical improvement. Whether similar clinical correlates will be

present with treatment of human coronaviral infections with
GS-441524 or remdesivir remains to be seen.

Naturally occurring coronaviral infections in companion
and production animals have many similarities to human
pandemic-related diseases such as SARS, MERS, and COVID-
19, although species and virus-specific factors described above
mean that broad translation of therapeutic data across species
will have major limitations. However, findings relating to basic
treatment-related factors such as blood–brain barrier effects
on therapeutic drug penetration to the CNS are likely to be
relevant across species. It is currently unclear to what degree
viral infection of the CNS impacts the clinical outcome in
COVID-19 patients and how it may influence therapeutic
practice; however, advances in the treatment of previously
fatal coronavirus infections in cats with antiviral nucleoside
analog drugs, particularly in the context of CNS infection,
is encouraging that similar approaches may be efficacious in
other species.
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