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Abstract

Infection of macrophages with the protozoan parasite Toxoplasma gondii results in inhibition of a large panel of LPS-
responsive cytokines, including TNF-a, while leaving others such as IL-10 intact. Recent studies provide evidence that the
parasite interferes with chromatin remodeling at the TNF-a promoter that is normally associated with LPS stimulation, but
that is not required for TLR4 induction of IL-10. Here, we examined the effect of Toxoplasma on IL-10 induced by
simultaneous signaling through TLR4 and FccR, a combined stimulus that triggers histone H3 covalent modification at the
IL-10 promoter resulting in high level IL-10 cytokine production. We show that the parasite inhibits high level IL-10
production and prevents histone H3 Ser10 phosphorylation and Lys9/14 acetylation at the IL-10 promoter. These results
provide compelling evidence that T. gondii targets the host cell chromatin remodeling machinery to down-regulate
cytokine responses in infected macrophages.
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Introduction

The protozoan Toxoplasma gondii is an opportunistic apicomplexan

parasite with worldwide distribution in humans and animals. Although

normally causing an asymptomatic infection, the parasite can emerge

as a dangerous pathogen in immunodeficient hosts [1,2]. Previous

work by us and others has found that macrophages and dendritic cells,

important reservoirs of in vivo infection, become nonresponsive to

Toll-like receptor (TLR) and IFN-c receptor activation [3,4,5,6,7,8,9].

Thus, T. gondii-infected mouse bone marrow-derived macrophages

(BMMØ) are strongly inhibited in their ability to produce a large

battery of proinflammatory mediators during stimulation with TLR4

ligand lipopolysaccharide (LPS) [10]. Importantly, not all LPS-

responsive genes are suppressed by the parasite. In particular, TLR4

stimulation continues to elicit IL-10 production even when macro-

phages are infected with tachyzoites [10].

Recently, we conducted a detailed analysis of the activity of the

gene encoding TNF-a, a cytokine that is strongly suppressed by

Toxoplasma [11]. We found that transcription factors associated

with the TNF-a promoter, such as NFkB, cAMP-responsive

element-binding protein (CREB) and c-Jun, were activated and

translocated into the nucleus normally during LPS stimulation of

infected cells. Nevertheless, using chromatin immunoprecipitation

(ChIP), we obtained evidence that these factors were unable to

bind to their target sequences on the native TNF-a promoter after

parasite infection [11]. TLR4 triggering of BMMØ resulted in

Ser10 phosphorylation and Lys9/14 acetylation on histone H3 at

the TNF-a promoter, epigenetic changes associated with increased

transcriptional activity [12]. However, Toxoplasma infection

prevented these covalent modifications. When we examined the

IL-10 promoter, we found that the relatively low level of cytokine

produced during LPS stimulation occurred in the absence of

histone H3 modification, providing a possible explanation for the

lack of suppressive effect of the parasite on this particular cytokine.

Other studies have also indicated that LPS activation of macrophages

induces only low amounts of IL-10 and no significant modification of

histone H3 [13,14]. However, combining FccR ligation with TLR4

stimulation triggers high level IL-10 production, and this is associated

with ERK mitogen-activated protein kinase-dependent Ser10 phos-

phorylation and Lys9/14 acetylation of histone H3 on the IL-10

promoter. Based upon our findings at the TNF-a promoter [11], it was

our prediction that high level IL-10 synthesis stimulated by LPS and

immune complex (IC) would be suppressed by the parasite, even though

low level LPS-induced IL-10 was not affected. Here, we tested this

prediction. We found that, as with the TNF-a promoter during LPS

stimulation, Toxoplasma blocked histone H3 covalent modification at the

IL-10 promoter during stimulation with LPS and IC. These combined

data provide strong support for a new model in which T. gondii targets

histone modification rather than the activity of specific transcription

factors, and in this way the parasite silences multiple host genes using a

common mechanism of suppression.

Results

Toxoplasma blocks high level IL-10 production
stimulated by combined LPS and immune complex
stimulation

We previously reported that Toxoplasma-infected BMMØ were

suppressed in their ability to produce TNF-a after LPS/TLR4
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stimulation, but that low level IL-10 production was not affected

by the parasite [11]. Here, we asked if high-level IL-10 induced by

LPS in combination with IC was blocked by the parasite. As

expected, stimulation with LPS alone induced low levels of IL-10,

and this response was not affected by T. gondii (Fig. 1A). However,

BMMØ produced approximately three-fold more IL-10 when the

cells were triggered with LPS + IC, although IC alone failed to

elicit this cytokine. Notably, this response was down modulated to

levels obtained with LPS alone when cells were pre-infected with

Toxoplasma (Fig. 1A).

We also measured IL-10 mRNA levels following stimulation

with the combination of LPS and IC. Previously, we found that the

parasite has no effect on increased IL-10 mRNA levels following

LPS stimulation [11]. Here, we found an approximately 10-fold

increase in IL-10 mRNA after stimulation with LPS + IC relative

to triggering with LPS alone (Fig. 1B). Infection of cells with

T. gondii resulted in suppressed IL-10 mRNA induction following

LPS + IC stimulation (Fig. 1B). We conclude that Toxoplasma does

not block low-level IL-10 induced by LPS, but that high level IL-

10 production triggered by the combination of LPS and IC is

sensitive to suppression by the parasite.

We examined the effect of LPS + IC on TNF-a levels in

BMMØ. In this case, FccR ligation did not further enhance TNF-

a production over levels obtained with LPS alone (Fig. 1C). Unlike

the case of IL-10, infection with T. gondii inhibited TNF-a
production during LPS and LPS + IC stimulation to background

levels.

T. gondii inhibits histone H3 covalent modification
triggered by LPS + IC

We next assessed if global changes in histone H3 during LPS +
IC stimulation were affected by Toxoplasma. We used Western blot

analysis to examine histone H3 Ser10 phosphorylation following

stimulation of infected cells with LPS and LPS + IC. As reported

previously, LPS stimulation induced an increase in Ser10

phosphorylation of histone H3 in total macrophage lysates, and

this response was inhibited when cells were preinfected with

Toxoplasma (Fig. 2A). In similar fashion, stimulation with LPS + IC

triggered increased Ser10 histone H3 phosphorylation, and this

response was blocked by T. gondii (Fig. 2B). We also examined

histone H3 Lys9/14 acetylation in cell lysates but found that

nonstimulated, noninfected BMMØ possessed constitutively high

levels of this histone modification that were not noticeably affected

by LPS + IC stimulation (data not shown).

Histone modifications detected in whole cell lysates are not

necessarily reflective of chromatin status at specific loci. Therefore,

we employed chromatin immunoprecipitation (ChIP) to evaluate

the effect of Toxoplasma on the status of IL-10 promoter-associated

histone H3, focusing on Ser10 phosphorylation and Lys9/14

acetylation in response to LPS + IC. Work by others has

established that IL-10 superinduced by combined stimulation with

LPS and IC results in chromatin remodeling, allowing access of

transcription factors at the IL-10 promoter [13,14]. We specifically

examined modification of histone H3 at the nucleosome 2 position

of the IL-10 promoter, since this region is most strongly associated

with histone phosphorylation and acetylation following stimulation

through TLR4 and FccR [14]. In accord with previous data,

stimulation of BMMØ with LPS alone failed to induce changes in

phosphorylation or acetylation of histone H3 at the IL-10

promoter (Fig. 3A and B). However, stimulation with LPS and

IC triggered rapid Ser10 phosphorylation and Lys9/14 acetylation,

and both of these responses were suppressed when cells were pre-

infected with Toxoplasma (Fig. 3A and B). We conclude that histone

H3 modification-independent IL-10 induction is not sensitive to

suppression by T. gondii, but that histone H3 modification-

dependent IL-10 synthesis, like control of TNF-a, is blocked by

infection.

Discussion

Superinduction of IL-10 in macrophages requires two signaling

cascades. One emanates from TLR4 and results in activation of

IL-10 transcription factors such as STAT3 and Sp1 [15]. The

second pathway is activated through FccR and results in

chromatin remodeling at the IL-10 promoter to allow access of

Figure 1. Toxoplasma inhibits superinduction of IL-10 stimulat-
ed by LPS and IC. Macrophages were infected with T. gondii and
18 hr later cells were stimulated with either LPS (10 ng/ml) or LPS plus
immune complex. 6 hr later supernatants were collected for IL-10 (A)
and TNF-a ELISA (C) and at the indicated time points cells were
harvested and RNA was extracted for real-time RT-PCR analysis of IL-10
mRNA levels relative to GAPDH (B). Error bars indicate SD of triplicate
samples. Each experiment was repeated a minimum of 3 times. In A and
B, * p,0.05 comparing IC+LPS to Tg+IC+LPS. In C, * p,0.05 comparing
LPS to Tg+LPS and IC+LPS to Tg+IC+LPS. Med, medium; Tg, T. gondii, IC,
immune complex.
doi:10.1371/journal.pone.0007589.g001
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transcription factors [13,14]. The results of this study suggest that

Toxoplasma inhibits the superinduction response by interfering with

the chromatin remodeling pathway. These data reinforce recent

findings from our laboratory indicating that T. gondii has a similar

inhibitory effect on LPS-initiated histone H3 modification at the

TNF-a promoter [11]. In that case, we found that although

transcription factors were activated normally during LPS stimu-

lation, histone H3 phosphorylation and acetylation were blocked

by T. gondii. Recent studies have found that histone H3

phosphorylation, but not acetylation, is the proximal event to

IL-10 gene transcription [14]. Our finding that Toxoplasma

possesses inhibitory effects on total levels of histone H3 Ser10

phosphorylation suggests that this may be the relevant target of

suppression.

The IL-10 molecule is an anti-inflammatory mediator that is

important in down-modulating proinflammatory responses to

avoid pathology. Its relevance during Toxoplasma infection was

shown in studies employing IL-10 gene deficient mice, because

animals infected with this parasite succumb during acute infection

in the absence of IL-10. Death is associated with a runaway

proinflammatory cytokine response that, despite controlling the

parasite, leads to lethal immunopathology during systemic and

oral infection [16,17]. Similarly, IL-10 has an important role in

limiting inflammation during toxoplasmic encephalitis [18]. From

the perspective of the parasite, IL-10 production is important to

keep the host alive to maximize chances of transmission.

Nevertheless, the ability of IL-10 to down-modulate activation of

innate immune effector cells such as macrophages suggests that

overproduction of this cytokine must be avoided. In this case,

uncontrolled parasite replication would rapidly lead to host death,

minimizing the chances of transmission to a new host. We

previously reported that low-level IL-10 induction triggered by

TLR4 was not inhibited by Toxoplasma. Here, we now demonstrate

that macrophages triggered through TLR4 and FccR produce

much higher amounts of IL-10, and that T. gondii blocks this

superinduction response to levels achieved by LPS stimulation

alone. We hypothesize that inhibition of high but not low level IL-

10 is a reflection of the parasite’s need to ensure appropriate

amounts of IL-10 that avoid immunopathology and permit cyst

formation, favoring long-term persistence in the host.

In addition to TNF-a and high level IL-10, many other LPS-

responsive cytokines and chemokines are down regulated by

Toxoplasma infection of macrophages [10]. Similar effects occur in

LPS-stimulated dendritic cells, where infection blocks upregulation

of MHC class II and costimulatory molecules in addition to TNF-

a and IL-12 [5]. It is also known that the parasite inhibits the

ability of macrophages and fibroblasts to respond to IFN-c [8,19].

For the case of fibroblasts, a large family of IFN-c-responsive genes

is inhibited during T. gondii infection [20]. The ability of the

parasite to simultaneously down-regulate large subsets of genes

during activation with stimuli such as LPS and IFN-c suggests that

targeting chromatin remodeling may be the mechanism that

mediates these profound effects.

The mechanism used by Toxoplasma to interfere with host

chromatin remodeling is presently unclear. The parasite is known

to inject rhoptry kinases and phosphatases into the host cytoplasm

during infection, and although these molecules relocate to the host

cell nucleus, whether they are involved in the effects reported here

is not presently known [21,22,23,24]. Nevertheless, it is possible

that such molecules interfere with host histone kinases and

Figure 2. Toxoplasma interferes with global Ser10 phosphoryla-
tion of histone H3 induced by LPS and immune complex.
Macrophages were infected with tachyzoites (2:1 ratio of parasites to
cells), then 18 hr later cells were stimulated with LPS (10 ng/ml) (A) or
the combination of LPS and immune complex (B). Cells were lysed at
the indicated time points and lysates were subjected to Western blot
analysis using Ab specific for Ser10 phosphorylated histone H3 and total
histone H3. Tg, T. gondii; IC, immune complex.
doi:10.1371/journal.pone.0007589.g002

Figure 3. T. gondii inhibits LPS + immune complex-inducible
histone H3 phosphorylation and acetylation at the IL-10
promoter. Macrophages were infected with tachyzoites at a parasite
to cell ratio of 2:1. After 18 hr incubation cells were subjected to
stimulation with LPS alone or LPS in combination with immune
complex. At either 30 min (A) or 60 min (B) cells were collected and
samples were subjected to ChIP analysis using anti-phospho-histone H3
(Ser10) (A) or anti-acetyl-histone H3 (Lys9/14) (B). Real-time PCR analysis
was carried out using primers specific for the IL-10 promoter. The data
were normalized to corresponding input controls. The error bars show
SD values for triplicate samples. This experiment is representative of
three performed. * p,0.05, comparing IC+LPS to Tg+IC+LPS. Med,
medium; Tg, T. gondii; IC, immune complex.
doi:10.1371/journal.pone.0007589.g003
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acetylases. Alternatively, it is possible that parasite-derived effector

molecules directly dephosphorylate and deacetylate histone H3.

The findings reported in the present manuscript in combination

with other recent results from our laboratory together provide

strong evidence for a new view of Toxoplasma as an intracellular

pathogen that targets chromatin modification rather than (or in

addition to) targeting specific transcription factors. The finding

that proinflammatory TNF-a and anti-inflammatory IL-10

cytokines are both subject to the same type of regulation by

T. gondii reinforces the concept that interference with inducible

histone modification is a common strategy used by the parasite to

influence host gene transcription. These combined studies are the

first to demonstrate these effects during protozoan infection, but

recent data suggest that some bacterial pathogens, such as Shigella

flexneri, Listeria monocytogenes, and Mycobacterium tuberculosis adopt

similar strategies during infection [25,26,27,28]. Together, these

data support an emerging view of host cell chromatin structure as

an important target during microbial pathogenesis.

Materials and Methods

Ethics Statement
All work with animals received approval from the Cornell

University Institutional Animal Care and Use Committee.

Mice and Parasites
C57BL/6 mice (6–8 wk of age) were purchased from The

Jackson Laboratory. The mice were kept under specific pathogen-

free conditions at the Transgenic Mouse Facility, Cornell

University College of Veterinary Medicine. The facility is overseen

by an Institutional Animal Care and Use Committee. The Type I

T. gondii parasite strain RH was maintained by bi-weekly passage

on human foreskin fibroblast monolayers (American Type Tissue

Collection) in DMEM supplemented with 1% Bovine Growth

Serum (BGS), 100 U/ml penicillin and 0.1 mg/ml streptomycin.

Parasite cultures were tested every 6–8 wk using a PCR-based

ELISA (Roche Diagnostics).

Cell culture
Bone marrow cells were flushed from femur and tibia of

C57BL/6 mice and cultured in macrophage medium consisting of

DMEM supplemented with 10% BGS, 1 mM sodium pyruvate,

0.1 mM nonessential amino acids, 20% supernatant from L929

cells, 100 U/ml penicillin and 0.1 mg/ml streptomycin. The cells

were supplemented with fresh macrophage medium on Day 3

after culture initiation. After 5 days of culture, nonadherent cells

were removed, adherent monolayers were washed with PBS and

cells were harvested by gentle pipeting with ice-cold PBS.

Macrophage infection was accomplished by adding tachyzoites

to cell cultures followed by brief centrifugation (200 x g, 3 min) to

initiate contact between cells and parasites. Immune complex and

LPS were added 18 hr after infection. Cells were recovered at

varying times depending upon the assay performed.

Immune complex preparation
IgG-opsonized erythrocytes (E-IgG) were generated by incu-

bating sheep red blood cells (SRBC, Lampire Biological

Laboratories) with anti-SRBC IgG (MP Biomedicals) at non-

agglutinating titers for 30 min at room temperature while rotating.

Opsonized cells were washed once in Hank’s Buffered Saline

Solution (Invitrogen Life Technologies) and resuspended in

macrophage medium. E-IgG were added to cells at a ratio of 10

E-IgG to 1 macrophage.

Semiquantitative real-time PCR
RNA was isolated from cells using a commercial kit (RNeasy

Mini-kit; Qiagen) and cDNA synthesized according to standard

protocols. Real-time PCR was performed with a Power SYBR

green kit according to the manufacturer’s instructions (Applied

Biosystems). Amplification was carried out on an Applied

Biosystems 7700 Sequence Detector. The sequences of primers

used are indicated in Table 1.

Cytokine ELISA
IL-10 in culture supernatants was measured using a commercial

kit according to the manufacturer’s recommendations

(eBioscience).

Immunoblotting
Anti-phospho-histone H3 (Ser10; Cell Signaling) and anti-total

histone H3 (Cell Signaling) were used for Western blot analysis.

Cells (26106/sample) were lysed in reducing SDS-PAGE sample

buffer, and DNA was sheared by forcing samples 3 times through

a 27-guage needle. After 3 min at 100uC, samples were separated

by 10% SDS-PAGE and proteins were subsequently electrotrans-

ferred onto nitrocellulose membranes. The membranes were

blocked in 0.1% Tween 20 in Tris-buffered saline, pH 7.6 (TBST)

containing 5% nonfat dry milk for 1 hr at room temperature,

followed by overnight incubation (4uC) with Ab in 5% BSA in

TBST. After washing blots in TBST, Ab binding was detected

with a horseradish peroxidase-conjugated secondary anti-rabbit

Ab (Jackson Immunoresearch) in TBST containing 5% nonfat dry

milk. Following 1 hr incubation, blots were washed in TBST and

developed with a chemiluminescence-based detection system (Cell

Signaling).

Chomatin immunoprecipitation (ChIP)
ChIP-grade Ab to phospho-histone H3 (Ser10) and acetylated

histone H3 (Lys9/14) were obtained from Cell Signaling. Assays

were performed using the ChIP-IT enzymatic express kit (Active

Motif) according to the manufacturer’s instructions. Briefly, cells

(1.56107/sample) were fixed in 1% paraformaldehyde at room

temperature for 10 min. Fixation was quenched by adding glycine

to the mixture. The cells were then collected by scraping in buffer

containing PMSF (100 mM). After brief centrifugation, the

macrophages were resuspended in cell digestion buffer (Active

Motif) and subjected to enzymatic digestion for 10 min at 37uC.

The reaction was terminated by addition of 0.5 M EDTA. Ab

were added to the sheared chromatin preparations and the

mixture was incubated with Protein G magnetic beads (Active

Motif) overnight at 4uC. The precipitated DNA-protein-Ab

complexes were then washed and the cross linking was reversed

by incubation at 65uC for 4 hr. Proteinase K was added to digest

Table 1. Primers used in this study.

Primer Sequence (59 to 39)

IL-10 forward CCT GGC TCA GCA CTG CTA T

IL-10 reverse GCT CTT ATT TTC ACA GGG GAG AA

GAPDH forward CCT GAA CAG AAC AGC AAT GGC T

GAPDH reverse GCT TGA CGG TGT CTT TTG CCT

IL-10 nucleosome 2 forward GCA GAA GTT CAT TCC GAC CA

IL-10 nucleosome 2 reverse GGC TCC TCC TCC CTC TTC TA

doi:10.1371/journal.pone.0007589.t001
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protein and DNA was subsequently purified using ethanol

extraction, air dried, and redissolved in 100 ml H20. The retrieved

DNA was then subjected to real-time RT-PCR using promoter-

specific primers.
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