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Abstract

Purpose of the Review This review presents the analytical techniques, processing and analytical steps used in metabolomics
phenotyping studies, as well as the main results from epidemiological studies on the associations between metabolites and high
blood pressure.

Recent Findings A variety of metabolomic approaches have been applied to a range of epidemiological studies to uncover the
pathophysiology of high blood pressure. Several pathways have been suggested in relation to blood pressure including the
possible role of the gut microflora, inflammatory, oxidative stress, and lipid pathways. Metabolic changes have also been
identified associated with blood pressure lowering effects of diets high in fruits and vegetables and low in meat intake.
However, the current body of literature on metabolic profiling and blood pressure is still in its infancy, not fully consistent and
requires careful interpretation.

Summary Metabolic phenotyping is a promising approach to uncover metabolic pathways associated with high blood pressure

and throw light into the complex pathophysiology of hypertension.
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Introduction

High blood pressure is the leading modifiable cause of death
worldwide; even small increments in blood pressure are asso-
ciated with an increased risk of cardiovascular disease (CVD)
[1e, 2]. Extensive research has confirmed independent
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unfavorable additive effects on blood pressure of adiposity
(body mass), excess alcohol use, high salt intake, and inade-
quate potassium intake, as well as beneficial effects from use of
the Diet Approaches to Stop Hypertension (DASH) feeding
trial combination diet [3—8]. Yet the effect of other nutrients,
environmental factors as well as the mechanisms through which
known dietary factors affect blood pressure are less well
understood.

Metabolic phenotyping (metabolomics), the study of low
molecular weight molecules or metabolites produced within
cells and biologic systems, offers a promising approach to mea-
sure biological effects of environmental and other exposures
and discover novel disease biomarkers [9+¢] with applications
to blood pressure research. Here, we outline the main analytical
approaches in metabolic phenotyping research and then discuss
its application to blood pressure research in human studies,
focusing on recent epidemiological studies investigating meta-
bolic markers and pathways associated with blood pressure.

Metabolic Phenotyping

High-throughput metabolic phenotyping or profiling is a pow-
erful tool in systems biology [10] that is being increasingly

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11906-018-0877-8&domain=pdf
mailto:i.tzoulaki@imperial.ac.uk

78 Page 2 of 8

Curr Hypertens Rep (2018) 20: 78

applied to biomarker discovery. It refers to the biochemical
quantitative analysis of multiple metabolites in biological
fluids, tissues, and tissue extracts. Specifically, global
(untargeted) metabolic profiling provides a comprehensive as-
sessment of the metabolic effects of intrinsic markers and ex-
trinsic exposures (the internal and external exposome) from a
variety of sources including, but not limited to, dietary, life-
style, gut microbial, and psychosocial factors [9ee, 11, 12¢].
These factors interact at a cellular and systems level to generate
a metabolic signature characteristic of health or disease [13].
Low molecular weight metabolites are intermediates or end
products of cellular processes and as an ensemble characterise
the function of an organism. The main analytical methods used
are proton Nuclear Magnetic Resonance ("H NMR) spectros-
copy, and Mass Spectrometry (MS) coupled to an array of
separation techniques including Gas Chromatography (GC)
and Liquid Chromatography (LC). These methods are comple-
mentary to each other [14] with different strengths and weak-
nesses (Fig. 1) and allow the simultaneous detection and quan-
titation of a variety of low-molecular-weight metabolites in-
cluding carbohydrates, lipids, organic acids, amino acids,
energy-related metabolites and gut microbial co-metabolites,
with concentrations ranging from picomoles per litre to milli-
moles per litre. The wealth of resulting spectral data can be
analysed using emerging methods for automated data reduc-
tion and pattern recognition techniques (multivariate chemo-
metric analysis) leading to the efficient exploitation of

NMR Spectroscopy

complex spectral profiles and extraction of latent information
[15-18].

"H NMR spectroscopy is based on the excitation properties
of protons in the presence of magnetic field. NMR-active nu-
cleus absorbs electromagnetic radiation at characteristic fre-
quencies providing information about the structure and abun-
dance of the molecule, enabling both identification and quan-
titation. NMR is a non-destructive method characterised by
high reproducibility [19-21]. Different NMR techniques can
be used for particular type of analysis like magic angle spin-
ning (MAS)-NMR to study intact tissues or lipoprotein pro-
filing for lipoprotein particle number and size, and lipoprotein
subfractions in blood samples by scrutinising the shape of the
signal envelopes [22]. NMR is restricted by means of sensi-
tivity and the number of metabolites that can be detected by a
single run. High abundance metabolites may cause masking of
lower abundance molecules. To overcome the latter, prior
sample preparation [23, 24] (e.g. separation between aqueous
and lipid phase), two-dimensional NMR spectra [25], or hy-
phenation of NMR with separation techniques [26] can be
used.

By contrast, MS is characterised by high sensitivity
(1 pmol/L), allowing the detection of less abundant metabo-
lites. It is particularly useful for global metabolite profiling, as
thousands of metabolites can be detected in a single run [27,
28]. Its principle is that molecules are charged or ionised and
then charged molecules and their fragments are separated

Mass Spectrometry

Significantsample

Quantitative analysis
High reproducibility

Minimal sample
preparation

Non-destructive method

Easy metabolite
identification

Low sensitivity
(increased with high
field strength, cryo-,
micro-probes)

Non selective analysis,
lessrelevant for
targeted analysis (few
selective experiments
available)

40-200 metabolites
detected perrun
depending on spectral

resolution

High sensitivity (LOD at
nanomolar level)
Suitable both for
targeted and untargeted
analysis

Thousands of
metabolites detected
perrun

preparation

Destructive method (but
small sample volumes
required)

Complex metabolite
identification

Low reproducibility (QC
samples/internal
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Differentclasses of
metabolites may require
different chromatographic
techniques, optimization
of ionization

Fig. 1 Strengths and weaknesses of NMR Spectroscopy and MS spectrometry as an analytical technique in metabolomics research
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based on the m/z ratio (mass-to-charge ratio). In metabolic
phenotyping, where small molecules are studied, z is equal
to one, so that m/z ratio coincides with the mass. Different
ionisation techniques can be used, with Electrospray lonization
Technique (ESI), both in negative and positive mode, being the
most applicable in metabolic phenotyping research [29, 30].
Major disadvantages of MS technique include that it is a destruc-
tive method, though a smaller sample is needed compared to
NMR. Attention should be paid to sample preparation, as hy-
drophobicity and ionisation potential affects the analysis. When
hyphenated with GC, a derivatisation process is needed [31¢].
Moreover, MS is characterised by low reproducibility, necessi-
tating the use of internal standards and quality control samples
[32]. The latter may be pooled samples, consisting of a small
amount of each one of the study samples, predetermined mix-
tures of “representative’” metabolites or samples commercially
available.

Metabolic phenotyping through NMR or MS can be
hypothesis driven, named as a targeted approach [33],
where only a preselected group of metabolites is mea-
sured, usually related to the pathway of interest or a spe-
cific class of metabolites. In targeted methods, chemical
identification (annotation) of the metabolites is completed
at the development phase and also serves for validation of
potential biomarkers previously discovered. On the other
hand, untargeted approaches are hypothesis generating
and allow for unbiased detection of a wide range of me-
tabolites and therefore may help reveal novel metabolic
pathway or biomarkers. However, structural identification
of the metabolic features can be complex and often anno-
tation of the metabolic features that are of interest is in-
complete [27, 34, 35].

The most frequently used samples in human metabolomics
studies are blood and urine as they are relatively easy to collect
and provide a comprehensive overview of various system lev-
el metabolic pathways [36, 37]. Metabolic phenotyping can
also be undertaken of other biological fluids (e.g. saliva), tis-
sue extracts from biopsies, or cell extracts [38—41]. These
samples may reflect pathophysiological changes in specific
tissues or cells that may not be captured by blood and urine.

Data analysis of metabolic phenotyping data is relatively
complex (Fig. 2). It may comprise, among others, initial steps
of processing to correct for instrumental drift [42, 43],
methods for peak alignment/integration [44—46], correction
of sample dilution effects [47], quality control of variables,
and later use of multi- or univariate statistical methods
adjusting for covariates, in order to find associations with
health outcomes. The complexity of the task increases in stud-
ies with subsets of data acquired by different platforms, instru-
ments, and methods [31¢, 48¢]. In untargeted analyses in par-
ticular, attention needs to be paid to the high dimensionality of
the data, the large inter-correlations between data points, and
the problems of multiple testing [31¢, 49].

md 1. Pre-processing

*MS: Peak detection, retention time alignment, peak integration, quality
control analysis, drift correction

*NMR: Full resolution, binning, peak fitting, alignment

*NMR and MS: scaling and normalisation

wad 2. Exploratory analysis

«Unsupervised visualisation of data with principal components analysis
to identify outliers and main sources of variation

—

« Univariate analysis to determine which signals are associated with
phenotype of interest. Sequential models for confouder adjustment.

« Calculation of statistical significance level e.g. Bonferonni,
Metobolome Wide Significance Level or False Discovery Rate

= 4. Multivariate analysis —

«» Orthogonal partial least square methods (OPLS) and other
multivariable methods (e.g. penalized regression approaches)
« Cross-validation

=l 5. Replication of results

*Replication of results in independent populations

= 6. Metabolite identification and pathway analysis —

+ Bionformatics and analytical chemistry for metabolite
annotation

» Pathways analysis using bioinformatics resources

+ Experimental validation

Fig. 2 Data analysis workflow for metabolic phenotyping studies

Epidemiological Studies on Metabolic
Phenotyping in Blood Pressure Research

Applications of metabolic phenotyping to blood pressure re-
search have been multifaceted, including the study of lifestyle
and environmental factors on blood pressure levels through
biomarkers of exposure [S0—-61], investigation of disease path-
ophysiological processes [62—70] and evaluation of drug re-
sponse to treatment for high blood pressure and associated
side effects [71-77]. However, despite increasing interest in
this area, most studies are still small, cross-sectional, and lim-
ited to targeted metabolic platforms.

By far, the largest piece of evidence regarding small me-
tabolites and pathogenesis of high blood pressure comes from
the INTERnational collaborative study on Macro/
micronutrients And blood Pressure INTERMAP) that includ-
ed 4630 men and women aged 4059 years from 17 popula-
tion samples in the USA, UK, Peoples’ Republic of China,
and Japan [55¢]. The study has a unique collection of four
interviewer-administered multi-pass 24-h dietary recalls
allowing for a comprehensive assessment of dietary habits,
and two 24-h urine collections from each individual. 'H
NMR-based untargeted metabolic phenotyping of urine was
performed on the stored 24-h urine collections from the 4630
participants. These analyses highlighted discriminatory me-
tabolites across the four countries, of which four metabolites
(alanine, hippurate, formate, and N-methylnicotinate) were
associated with blood pressure of individuals. Two of these
metabolites were inversely related to blood pressure, formate
(a byproduct of fermentation of dietary fibre by the gut
microbiome), and hippurate (formed by hepatic glycine
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conjugation of benzoate, derived from gut microbial fermen-
tation of plant phenolics). Alanine, on the other hand, which is
higher in people who predominantly consume animal rather
than vegetable products, was directly associated with blood
pressure. Hippurate and 2-hydroxy-isobutyrate, derived from
microbial degradation of dietary proteins, also discriminated
between North and South Chinese populations, at differing
cardiovascular risk (higher blood pressure and rates of stroke
in North vs South China) [60].

The importance of the gut microbiome in cardiovascular
phenotypes such as blood pressure is further supported by
studies showing a link between trimethylamine-N-oxide
(TMAO) and atherosclerosis [78]; TMAO, a small-molecule
metabolite derived from the metabolism of dietary phosphati-
dylcholine, has been associated with risk of atherosclerosis
and heart disease in observational studies and mouse models
[79, 80]. In relation to blood pressure, Li et al. found de-
creased microbial richness and diversity in prehypertensive
and hypertensive populations compared with healthy controls
[81¢] while in rats, TMAOQ infusion was found to enhance the
hypertensive effects of angiotensin 11 [82].

A role for the gut microbiome in high blood pressure was
also reported in analysis of data from 896 normotensive black
participants in the Atherosclerosis Risk in Communities
(ARIC) study [57]. Serum samples were analysed by GS-
MS using the Metabolon platform; 4-hydroxyhippurate, an
end product of benzoate metabolism from microbial fermen-
tation of polyphenols, was associated with 17% higher risk of
hypertension at 10 years follow-up, after adjusting for baseline
blood pressure and traditional risk factors (hazard ratio per SD
(95%CI) 1.17 (1.08, 1.28)). In addition, a sex steroid pattern
derived from principal components analysis (PCA) was posi-
tively associated with elevated risk of incident hypertension
(highest versus lowest quintile of the sex steroid scores,
HR 1.72).

In the European Prospective Investigation into Cancer and
Nutrition (EPIC)-Postdam study [68¢], 127 metabolites were
analysed among 135 cases (participants who developed
hypertension over 10 years follow-up) and 981 non-cases,
using a targeted MS platform in blood samples (Biocrates);
serine, glycine, acyl-alcyl-phospatidylcholines (PCs), and
diacyl-PCs were associated with incident hypertension.
These results suggest a possible role of inflammatory path-
ways in high blood pressure; both serine and glycine share
anti-inflammatory and antioxidant properties, while PCs
may also exhibit an anti-inflammatory role and protect lipo-
proteins from oxidation. Other cross-sectional studies with
targeted metabolic profiling have supported the role of inflam-
mation and oxidative stress in high blood pressure [65, 70].

Finally, a number of studies have supported the associa-
tions between lipid [63+¢, 66, 83] and amino acid [62, 64,
68+¢] metabolism with blood pressure. The TWINUK study
with measurement of 280 metabolites in fasting serum

@ Springer

samples (MS-based metabolic profiling using Metabolon
platform) on 3580 females with replication in two indepen-
dent cohorts: Cooperative Health Research in the Augsburg
Region (KORA) (n=1494) and Hertfordshire (n=1515)
[63+¢] showed direct associations between hexadecanedioate
(dicarboxylic acid) and both blood pressure and all-cause mor-
tality. A causal role of this metabolite on blood pressure was
supported by in vivo studies in rats highlighting the potential
role of fatty acid w-oxidation in blood pressure regulation.
Other smaller studies also suggested several lipids and amino
acids associated with blood pressure levels [67, 69].

Metabolic Phenotyping, Dietary Intervention
Studies, and Blood Pressure

The response of blood pressure regulation to dietary interven-
tions has been investigated through metabolic phenotyping
approaches in several studies, where different dietary patterns
were adopted including the DASH Diet [50-52], Optimal
Macronutrient Intake Trial for Heart Health (OmniHeart)
Diets [56¢°], and Mediterranean Diet [61].

The metabolic response to OmniHeart diet [56¢¢] was stud-
ied by "H NMR of stored 24-h urine samples among 58 indi-
viduals with prehypertension or stage 1 hypertension. In a
randomised crossover design, participants received a carbohy-
drate rich (OMniCarbo), a protein rich (OmniProt), or a mono-
unsaturated fat-rich (OmniMFA) diet, for 6 weeks each. Blood
pressure was significantly associated with six urinary metabo-
lites reflecting (i) dietary intake: proline-betaine (inverse) and
carnitine (direct); (i) gut microbial co-metabolites: hippurate
(direct), 4-cresyl sulfate (inverse), and phenylacetylglutamine
(inverse); and (iii) tryptophan metabolism: N-methyl-2-
pyridone-5-carboxamide (inverse). These results demonstrate,
in a trial setting, changes in metabolic profiles from manipula-
tion of dietary macronutrient content that lowers blood pressure
levels.

Metabolic phenotyping in relation to dietary sodium re-
duction has also been studied. The response of dietary so-
dium reduction (DSR) was studied in a 10-week crossover
RCT study among 17 adults with elevated systolic blood
pressure (130—159 mmHg) [51]. Ten (of 289) measured
urinary metabolites were significantly altered (nine upreg-
ulated and one downregulated) during low-sodium diet.
These metabolites were involved in biologic pathways of
nitric oxide production, oxidative stress, and osmotic reg-
ulation. Moreover, in the DASH-sodium randomised cross-
over trial [52], with individuals assigned to either DASH
diet or control diet for 12 weeks, receiving in random order
high, medium, and low amount of sodium for 30 days, 531
plasma metabolites were measured among 73 participants
at the end of their high- and low-sodium interventions
and among 46 participants at the end of their high- and
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medium-sodium interventions. 4-Ethylphenylsulfate, a xe-
nobiotic produced by the gut microflora related to benzoate
metabolism, increased with sodium reduction, suggesting
that sodium intake may affect the gut microbial activity.

Metabolic Phenotyping and Response
to Therapy

Several studies have attempted to identify potential bio-
markers of drug responsiveness and to understand the molec-
ular mechanisms that lead to drug response variation in blood
pressure. For example, 313 Finnish men with high blood pres-
sure (aged 35 to 60 years) from the Genetics of Drug
Responsiveness in Essential Hypertension (GENRES) study
received in a double-blind rotational design amlodipine,
bisoprolol, hydrochlorothiazide (HCTZ), and losartan, each
as monotherapy for 1 month, with 1-month placebo cycles
between each treatment [71]. Treatment led to decreased
long-chain acyl carnitines (amlodipine, bisoprolol, losartan)
and medium and long-chain fatty acids (bisoprolol).
Hexadecanedioate, a fatty acid previously linked to hyperten-
sion, was reduced after treatment with amlodipine, while
HCTZ was, as expected, associated with increased uric acid.
Although the study failed to identify a potential biomarker of
drug response, it underscored the importance of fatty acids
metabolism in hypertension. A lipidomics-based study [72]
of 25 patients with essential hypertension on antihypertensive
drug therapy, compared with 30 untreated patients with essen-
tial hypertension and 28 normotensive participants, also pro-
vided evidence supporting perturbed plasma lipid metabolism
associated with hypertension. Specifically, triglycerides and
total cholesteryl esters were significantly higher in hyperten-
sive compared with normotensive participants, but significant-
ly decreased in hypertensive patients after treatment.

Conclusions

A variety of metabolomic approaches applied to a range of
epidemiological studies has been used to uncover the patho-
physiology of high blood pressure. Several pathways have
been suggested in relation to blood pressure including the
possible role of the gut microflora [55¢¢, 56¢¢, 57], inflamma-
tory [68¢¢], oxidative stress [65, 70], and lipid pathways [63 e,
66, 83]. Metabolic changes have also been identified associ-
ated with blood pressure lowering effects of diets high in fruits
and vegetables and low in meat intake [51, 52, 56°°].
However, the current body of literature on metabolic profiling
and blood pressure is still in its infancy, not fully consistent
and requires careful interpretation. The majority of studies are
small cross-sectional investigations in which the temporality
of the relationship between exposure (metabolite) and

outcome (high blood pressure) is uncertain, limiting any caus-
al interpretation. In addition, independent replication efforts
are rare and are further impaired by metabolic profiling meth-
odologies that are difficult to integrate and harmonise between
studies. To that end, metabolomics research should adapt prac-
tices such as those that are common in genetic epidemiology
including correction for multiple testing and independent rep-
lications of findings in other populations. Similarly, functional
follow-up studies that investigate the role of the metabolites in
a physiological pathway such as animal models and human
cell lines are necessary to further elucidate causal associations.
Mendelian Randomisation approaches [84] are another ap-
proach to investigate the causality and direction of associa-
tions although they may face challenges in metabolomics re-
search due to the large inter-correlations between metabolites
and widespread pleiotropy. [85] Finally, integration of meta-
bolomics with other omic methods is a promising approach to
uncover the complex pathophysiology of hypertension by
throwing light onto metabolic pathways linking, for example,
genetic [86¢] or epigenetic loci to high blood pressure.
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