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Abstract: According to recent studies, patients with COVID-19 have different feature characteristics
on chest X-ray (CXR) than those with other lung diseases. This study aimed at evaluating the layer
depths and degree of fine-tuning on transfer learning with a deep convolutional neural network
(CNN)-based COVID-19 screening in CXR to identify efficient transfer learning strategies. The CXR
images used in this study were collected from publicly available repositories, and the collected
images were classified into three classes: COVID-19, pneumonia, and normal. To evaluate the effect
of layer depths of the same CNN architecture, CNNs called VGG-16 and VGG-19 were used as
backbone networks. Then, each backbone network was trained with different degrees of fine-tuning
and comparatively evaluated. The experimental results showed the highest AUC value to be 0.950
concerning COVID-19 classification in the experimental group of a fine-tuned with only 2/5 blocks of
the VGG16 backbone network. In conclusion, in the classification of medical images with a limited
number of data, a deeper layer depth may not guarantee better results. In addition, even if the same
pre-trained CNN architecture is used, an appropriate degree of fine-tuning can help to build an
efficient deep learning model.
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1. Introduction

CORONAVIRUS disease (COVID-19) has quickly become a global pandemic since it was first
reported in December 2019, reaching approximately 21.3 million confirmed cases and 761,799 deaths as
of 16 August 2020 [1]. Due to the highly infectious nature and unavailability of appropriate treatments
and vaccines for the virus, early screening of COVID-19 is crucial to prevent the spread of the disease
by the timely isolation of susceptive individuals and the proper allocation of limited medical resources.

Currently, reverse transcription polymerase chain reaction (RT-PCR) was introduced as the gold
standard screening method for COVID-19 [2]. However, since the overall positive rate of RT-PCR,
using nasal and throat swabs, is reported to be 60–70% [3], there is a risk that a false-negative patient may
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again act as another source of infection in a healthy community. Conversely, there have been reports of
high sensitivity to COVID-19 screening in radiological tests such as chest computed tomography or
chest X-ray (CXR) [3–5]. According to the reports on CXR characteristics of patients confirmed as the
COVID-19 case, it demonstrated multi-lobar involvement and peripheral airspace opacities, which
was most frequently demonstrated as ground-glass [6]. However, in the early stages of COVID-19,
this ground-glass pattern may appear at the edges of the lung vessels, or as asymmetric diffused
airspace opacities [7], it can be difficult to visually detect the characteristic patterns of COVID-19 from
X-rays. Therefore, considering the fact that the number of suspected patients increases exponentially
in contrast to the limited number of highly trained radiologists, the diagnostic supporting procedures,
using an automated screening algorithm with a producing objective, reproducible, and scalable results,
can speed up earlier precise diagnosis.

In recent years, deep learning (DL) technology, a specific field of artificial intelligence (AI)
technology, has made remarkable advances in medical image analysis and diagnosis, and is considered
to be a potentially powerful tool to solve such problems [8,9]. Despite the lack of available published
data to date, DL approaches for the diagnosis of COVID-19 from CXR have been actively studied [10–17].
Because the available data are limited, previous research has focused on creating a new DL architecture
based on deep convolutional neural networks (CNNs) for providing effective diagnosis algorithms.
However, previous studies have focused only on the efficacy of the newly created network through
comparison between different CNNs, so the effect of the layer depth, called scalability, and degree of
fine-tuning of transfer learning with CNN has not been comparatively studied. Therefore, the main
objective of this study was to further investigate the effect of layer depth on the same CNN architecture,
and the degree of fine-tuning of transfer learning with the same CNN at the same hyper-parameters.
Furthermore, by employing the gradient-weighted class activation map (Grad-CAM) [18,19], this study
provided a visual interpretation explaining the feature characteristic region that the DL model has the
most influence on classification prediction.

2. Materials and Methods

2.1. Experimental Design

The overall experimental steps and experimental groups used in this study are shown in Figure 1.
The experiment consisted of 12 experimental subgroups. To evaluate the scalability of the same CNN
architecture, the experiment consisted of two main groups according to the layer depths of each CNN.
Each CNN main group is divided into 6 subgroups according to the degree of fine-tuning.

J. Pers. Med. 2020, 10, x FOR PEER REVIEW 3 of 14 

 

 
Figure 1. The experiment consists of a total of 12 experimental subgroups. It is largely divided into 
two main groups according to the layer depths, and each convolutional neural network (CNN) 
subgroup is divided into 6 subgroups according to the degree of fine-tuning. 

2.2. Datasets 

The datasets used for classification are described in Table 1. Several publicly available image 
data repositories have been used to collect COVID-19 chest -ray images. Normal and pneumonia 
samples were extracted from the open source NIH chest X-ray dataset used for the Radiological 
Society of North America (RSNA) pneumonia detection challenge [20]. The total dataset was curated 
into three classes: normal, pneumonia, and COVID-19. Since the balance of data for each class is a 
very important factor in classification analysis, this study randomly extracted the images of other 
classes according to the number of COVID-19 images that can be obtained as much as possible. 

The entire dataset was combined with 607 COVID-19 image data publicly shared at the time of 
the study, as well as 607 normal and 607 pneumonia chest radiographs randomly extracted from the 
RSNA Pneumonia Detection Challenge dataset, resulting in 1821 data being combined. In the case of 
the COVID-19 dataset, four public datasets were used, and only one image was used when the source 
of the image was duplicated. In the public datasets used in the experiment, patient information was 
de-identified or not provided. 

The entire collected dataset was randomly divided into a training and testing ratio of 80:20 for 
each class, and training data were also randomly divided by a training and validation ratio of 80:20 
for use in the 5-fold cross validation. 

Table 1. Description of datasets for COVID-19 classification. 

Class Reference Samples 
Normal RSNA pneumonia detection challenge [20] 607 

Pneumonia RSNA pneumonia detection challenge [20] 607 

COVID-19 

COVID-19 image data collection [21] 468 
Figure 1 COVID-19 Chest X-Ray [22] 35 
Actualmed COVID-19 Chest X-Rays [23] 58 
COVID-19 Radiography Database [24] 46 

Total  1821 

2.3. Image Preprocessing 

Figure 1. The experiment consists of a total of 12 experimental subgroups. It is largely divided into two
main groups according to the layer depths, and each convolutional neural network (CNN) subgroup is
divided into 6 subgroups according to the degree of fine-tuning.



J. Pers. Med. 2020, 10, 213 3 of 14

2.2. Datasets

The datasets used for classification are described in Table 1. Several publicly available image data
repositories have been used to collect COVID-19 chest-ray images. Normal and pneumonia samples
were extracted from the open source NIH chest X-ray dataset used for the Radiological Society of North
America (RSNA) pneumonia detection challenge [20]. The total dataset was curated into three classes:
normal, pneumonia, and COVID-19. Since the balance of data for each class is a very important factor
in classification analysis, this study randomly extracted the images of other classes according to the
number of COVID-19 images that can be obtained as much as possible.

Table 1. Description of datasets for COVID-19 classification.

Class Reference Samples

Normal RSNA pneumonia detection challenge [20] 607

Pneumonia RSNA pneumonia detection challenge [20] 607

COVID-19

COVID-19 image data collection [21] 468

Figure 1 COVID-19 Chest X-ray [22] 35

Actualmed COVID-19 Chest X-rays [23] 58

COVID-19 Radiography Database [24] 46

Total 1821

The entire dataset was combined with 607 COVID-19 image data publicly shared at the time of
the study, as well as 607 normal and 607 pneumonia chest radiographs randomly extracted from the
RSNA Pneumonia Detection Challenge dataset, resulting in 1821 data being combined. In the case of
the COVID-19 dataset, four public datasets were used, and only one image was used when the source
of the image was duplicated. In the public datasets used in the experiment, patient information was
de-identified or not provided.

The entire collected dataset was randomly divided into a training and testing ratio of 80:20 for
each class, and training data were also randomly divided by a training and validation ratio of 80:20 for
use in the 5-fold cross validation.

2.3. Image Preprocessing

Because the image data used in this experiment were collected from multiple centers, most of
the images have different contrast and dimensions. Therefore, all images used in this study required
contrast correction through the histogram equalization technique and resizing to a uniform size
before the experiment. In this study, preprocessing was performed using the contrast limited adaptive
histogram equalization (CLAHE) technique [25], which has been adopted in previous studies related
to lung segmentation and pneumonia classification [26–28]. Figure 2 shows sample images with CXR
contrast corrected using the CLAHE technique. For the consistency of image analysis, each image was
resized to a uniform size of 800 × 800.

2.4. Convolutional Neural Networks

This study employed two different deep CNNs as backbone networks: VGG-16 and VGG-19.
VGG [29] is a pre-trained CNN, from the Visual Geometry Group, Department of Engineering Science,
University of Oxford. The numbers 16 and 19 represent the number of layers with trainable weights of
VGG networks. VGG architecture had been widely adopted and recognized as a state of the art in both
general and medical image classification tasks [30]. Since VGG-16 and VGG-19 have the same neural
network architecture but different layer depths, a comparative evaluation of performance according to
the degree of layer depths can be performed under the same architectural condition.
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2.5. Fine-Tuning

When the training dataset is relatively small, transferring a network pre-trained on a large
annotated dataset and fine-tuning it for a specific task can be an efficient way to achieve acceptable
accuracy and less training time [31]. Although the classification of diseases from CXR images differs
from object classification and natural images, they can share similar learned features [32]. During the
fine-tuning of transfer learning with deep CNNs, model weights were initialized based on pre-training
on a general image dataset, except that some of the last blocks were unfrozen so that their weights were
updated in each training step. In this study, the VGG-16 and VGG-19, used in this study as a backbone
neural network, consist of 5 blocks regardless of the network layer depth. Therefore, fine-tuning was
performed in a total of 6 steps in a manner that was unfrozen sequentially from 0 to 5 blocks starting
from the last block, depending on how many blocks were unfrozen. As a result, VGG-16 and VGG-19
were used as backbone networks, and each deep CNN was divided into 6 subgroups according to the
degree of fine-tuning. Figure 3 shows the schematic diagrams of the layer composition and the degree
of fine-tuning of VGG-16 and VGG-19.

2.6. Training

The 1458 images selected as the training dataset were randomly divided into five folds. This was
done to perform 5-fold cross validation to evaluate the model training, while avoiding overfitting or
bias [33–35]. Within each fold, the dataset was partitioned into independent training and validation
sets using an 80 to 20% split. The selected validation set was a completely independent fold from the
other training folds and was used to evaluate the training status during the training. After one model
training step was completed, the other independent fold was used as a validation set and the previous
validation set was reused as part of the training set to evaluate the model training. An overview of the
5-fold cross validation performed in this study is presented in Figure 4. As an additional method to
prevent overfitting, drop out was applied to the last fully connected layers, and early stopping was
also applied by monitoring the validation loss at each epoch.



J. Pers. Med. 2020, 10, 213 5 of 14

Figure 3. Schematic diagram of 12 experimental groups according to the degree of fine-tuning in the
VGG-16 (top) and VGG-19 (bottom) backbone neural networks.

The above training process was repeated for all 24 experimental groups (Figure 1). All deep CNN
models were trained and evaluated on an NVIDIA DGX StationTM (NVIDIA Corp., Santa Clara,
CA, USA) with an Ubuntu 18 operating system, 256 GB system memory, and four NVIDIA Telsa
V100 GPU. The building, training, validation, and prediction of DL models were performed using
the Keras [36] library and TensorFlow [37] backend engine. The initial training rate of each model
was 0.00001. A ReduceLROn-Plateau method was employed because it reduces the learning rate
when it stops improving the training performance. The RMSprop algorithm was used as the solver.
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After training all the 5-fold deep CNN models, the best model was identified by testing with the
test dataset.
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2.7. Performance Evaluation

To comprehensively evaluate the screening performance on the test dataset, the accuracy, sensitivity,
specificity, receiver operating characteristic (ROC) curve, and precision recall (PR) curve were calculated.
The accuracy, sensitivity, and specificity score can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FN + FP

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP
.

TP and FP are the number of correctly and incorrectly predicted images, respectively. Similarly,
TN and FN represent the number of correctly and incorrectly predicted images, respectively. The area
under the ROC curve (AUC) was also calculated in this study.

2.8. Interpretation of Model Prediction

Because it is difficult to know the process of how deep CNNs make predictions, DL models have
often been referred to as non-interpretable black boxes. To determine the decision-making process of
the model, and which features are most important for the model to screen COVID-19 in CXR images,
this study employed the gradient-weighted class activation mapping technique (Grad-CAM) [18,19] so
that the most significant regions for screening COVID-19 in CXR images were highlighted.

3. Results

3.1. Classification Performance

Table 2 summarizes the classification performance of the three classes, normal (N), pneumonia
(P), and COVID-19 (C), for each experimental group.
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Table 2. Performance metrics of experimental groups where N, P and C are normal, pneumonia and
COVID-19, respectively.

CNN
Models

Number of
Fine-Tuning Blocks Accuracy Specificity Sensitivity AUC

VGG-16

0

N 0.871 0.909 0.793 0.851

P 0.832 0.814 0.868 0.841

C 0.906 0.883 0.752 0.868

1

N 0.873 0.884 0.851 0.868

P 0.884 0.913 0.826 0.870

C 0.945 0.979 0.876 0.928

2

N 0.901 0.930 0.842 0.886

P 0.909 0.921 0.884 0.903

C 0.959 0.975 0.925 0.950

3

N 0.884 0.888 0.876 0.882

P 0.884 0.909 0.835 0.872

C 0.939 0.983 0.851 0.917

4

N 0.901 0.934 0.835 0.884

P 0.862 0.847 0.893 0.870

C 0.928 0.988 0.810 0.899

5

N 0.873 0.905 0.810 0.857

P 0.796 0.748 0.893 0.820

C 0.857 0.992 0.587 0.789

VGG-19

0

N 0.873 0.971 0.678 0.824

P 0.804 0.777 0.860 0.818

C 0.904 0.938 0.835 0.886

1

N 0.893 0.913 0.851 0.882

P 0.857 0.893 0.785 0.836

C 0.926 0.950 0.876 0.913

2

N 0.882 0.909 0.826 0.868

P 0.868 0.905 0.793 0.849

C 0.937 0.950 0.909 0.930

3

N 0.879 0.897 0.843 0.870

P 0.847 0.876 0.777 0.826

C 0.920 0.959 0.843 0.901

4

N 0.860 0.872 0.835 0.853

P 0.840 0.876 0.769 0.822

C 0.915 0.963 0.818 0.890

5

N 0.862 0.864 0.860 0.862

P 0.835 0.888 0.727 0.808

C 0.912 0.955 0.826 0.890

Compared with all the tested deep CNN models, the fine-tuned with two blocks of the VGG-16
(VGG16-FT2) model achieved the highest performance in terms of the COVID-19 classification of
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accuracy (95.9%), specificity (97.5%), sensitivity (92.5%), and AUC (0.950). For all the tested deep CNNs,
fine-tuning the last two convolutional blocks presented a higher classification performance compared
to the fine-tuning of the other number of convolutional blocks. In addition, the case of all untrainable
convolutional blocks without fine-tuning, regardless of the scalability of the backbone network, showed
the lowest classification. Generally, the fine-tuned models using VGG16 as a backbone architecture
were better than those using VGG19.

Figure 5 shows how the number of fine-tuned deep CNN blocks influences the classification
performance in terms of the accuracy of COVID-19 screening. In this figure, the classification
performance was not proportionately dependent on the degree of fine-tuning with the base model.
There was a decrease in classification accuracy when more than three convolutional blocks of all deep
CNNs were used. In addition, regardless of the number of fine-tuned blocks, the VGG19 models with
more convolutional layers had lower classification accuracy than the VGG16 models. The confusion
matrix and ROC of VGG16-FT2 achieving the highest performance in multi-class classification are
presented in Figures 6 and 7.
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3.2. Interpretation of Model Decision Using Grad-CAM

Figures 8–10 show examples of a visualized interpretation of predictions using deep CNN models
in this study. In each example, the color heat map presented which areas were most affected by the
classification of the deep CNN model.
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Figure 8 shows representative examples of correctly classified cases for each of the three classes
(normal, pneumonia, and COVID-19) in the VGG16-TF2 experimental group that showed the highest
classification performance. Through the Grad-CAM result in Figure 8, it is possible to identify the
significant region where the difference in CXR image features of each of the three classes is made.
Figures 9 and 10 show representative examples of wrong and right classifications based on the wrong
reasons. In most cases where classification has occurred based on the wrong reason, there is a foreign
body in the chest cavity of the CXR image.

4. Discussion

In addition to the long-term sustainability of the COVID-19 pandemic and symptom similarity with
other pneumonia diseases, the limited medical resources and lack of expert radiologists have greatly
increased the importance of screening for COVID-19 from CXR images for the right concentration
of medical resources and isolation of potential patients. To overcome these limitations, various
cutting-edge artificial intelligence (AI) technologies have been applied to screen COVID-19 from
various medical data. Accordingly, until recently, numerous new DL models, such as COVID-Net [10],
Deep-COVID [16], CVDNet [38], and Covid-resnet [13], to classify COVID-19 through publicly shared
CXR images have been proposed, or mutual comparison studies through the transfer learning of
various pre-trained DL models have been presented [39,40]. These previous papers showed high
accuracy of more than 95%. However, most of them performed transfer learning but did not mention
the specific degree of fine-tuning. It is also rare to have a qualitative evaluation. As a result, it is often
difficult to reproduce a similar degree of accuracy with the same pre-trained DL model. Therefore,
in the present study, the effects of the degree of fine-tuning and layer depths on deep CNNs for the
screening performance of COVID-19 from CXR images were evaluated. Furthermore, these influences
were visually interpreted using the Grad-CAM technique.

4.1. Scalability of Deep CNN

It is known that the VGG architecture used as the deep CNN backbone network in this experiment
does not leverage residual principles, has a lightweight design, and low architectural diversity, so it is
convenient to fine-tune [10]. In particular, the VGG-16 and VGG-19 used in this study have the same
architecture with five convolutional blocks; however, the depth of the layers of VGG-19 is deeper than
that of VGG-16 (Figure 3).

According to Table 2 and Figure 5, the overall classification performance of VGG-16 was higher
than that of VGG-19, regardless of the fine-tuning degree. These results are similar to the fact that the
latest deep neural networks do not guarantee higher accuracy in the classification of medical images
such as CXR images, as in other previous research papers [39]. It can be considered that in the case of
medical images requiring less than 10 classifications, deep CNNs with low scalability can show better
performance, unlike the classification of general objects that require more than 1000 classifications.

4.2. Degree of Fine-Tuning of Deep CNN

In general, the deep CNN model learned from pre-trained deep neural networks on a large natural
image dataset which could be used to classify common images but cannot be well utilized for specific
classifying tasks of medical images. However, according to a previous study that described the effects
and mechanisms of fine-tuning on deep CNNs, when certain convolutional blocks of a deep CNN
model were fine-tuned, the deep CNN model could be further specialized for specific classifying
tasks [32,41]. More specifically, the earlier layers of a deep CNN contain generic features that should
be useful for many classification tasks; however, later layers progressively contain more specialized
features to the details of the classes contained in the original dataset. Using this property, when the
parameters of the early layers are preserved and that in later layers are updated during the training of
new datasets, the deep CNN model can be effectively used in new classification tasks. In conclusion,
fine-tuning uses the parameters learned from a previous training of the network on a large dataset,
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and then adjusts the parameters in later layers from the new dataset, improving the performance and
accuracy in the new classification task.

As far as the authors know, there has been no previous research paper evaluating the accuracy of
COVID-19 screening according to the degree of fine-tuning. According to Figure 5, regardless of the
scalability of VGG, classification accuracy increases as the degree of fine-tuning increases; however,
the fine-tuning of more than a certain convolutional block (more than 3 blocks in this experiment)
decrease the classification accuracy. Therefore, it seems necessary to find the appropriate degree of
fine-tuning by judging the degree of fine-tuning in the transfer learning by a hyper-parametric variable
such as batch-size or learning rate in DL.

4.3. Visual Interpretation Using Grad-CAM

Grad-CAM uses the gradient information flowing into the last convolutional layer of the deep
CNN to understand the significance of each neuron for making decisions [18]. In this experiment,
a qualitative evaluation of classification adequacy was performed using the Grad-CAM technique.
In the case of the deep CNN model, which showed the best classification as shown in Figure 8, image
feature points for each class were specified within the lung cavity in CXR images. However, as shown
in Figure 9, if there is a foreign substance in the lung cavity in a CXR image, it can be classified
incorrectly. Moreover, even if a CXR image is correctly classified, it can be classified for an incorrect
reason as shown in Figure 10. In the CXR image analysis using the DL algorithm, the implanted
port catheter and pacemaker or defibrillator generator have shown similar results to the previous
studies that interfere with the performance of the DL algorithm by causing false positives or false
negatives [42]. This shows the pure function of the Grad-CAM technique and suggests candidate areas
to be excluded through image preprocessing for areas or foreign body subjects that affect classification
accuracy improvement on the image.

5. Conclusions

This experiment showed the appropriate transfer learning strategy of a deep CNN to screen for
COVID-19 in CXR images as follows. In using the deep CNNs for COVID-19 screening in CXR images,
it is not always guaranteed to achieve cutting-edge results, increasing their complexity and layer depth.
In addition, when applying transfer learning to a deep CNN for classification, an appropriate degree
of fine-tuning is required, and this must also be treated as an important hyper-parametric variable that
affects the accuracy of DL. In particular, in the case of image classification using DL, it is also necessary
to qualitatively evaluate a classification as to whether an appropriate classification has occurred based
on the correct reason, using visual interpretation methods such as the Grad-CAM technique.
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